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1 Introduction

In this section, firstly, we introduce Excitable Media and FitzHugh-Nagumo
Model and then state the objective of this paper and how the chapters
are organised.

1.1 Excitable Media

Excitable media, which are spatially distributed ”dynamical systems”,
can be characterised by their ”threshold of excitability” and their ability
to generate and support ”propagation of undamped solitary excitation
waves or wave trains”.Threshold of excitability means; for a system, there
is certain level excitation which needs to be applied or attained for the
system to get excited and when it’s in its excited state it generates un-
damped propagating waves. Undamped propagating waves imply; waves
keep their shape and speed while moving through a medium.They are also
called ”Travelling waves” For example, a forest fire can be considered as
an excitation wave, which starts at its initiation point at a certain ex-
treme temperature and regenerates by igniting its adjacent trees. This
kind of wave propagation is called active wave propagation unlike the
passive wave propagation like passing of sound through air, where signal
damping happens due to friction.

Generally, excitability is refereed to as a property of living organisms
where they as a whole or their constituent cells respond strongly to the
action of a relatively weak stimulus. An Ideal example is the generation
of a spike of transmembrane action potential by a nerve or cardiac cell. In
such cases, the shape of the generated action potential does not depend on
the stimulus strength, strong response is generated, as long as stimulus
exceeds some threshold level. After the generation of this excitation,
the system returns to its initial resting state and subsequent excitation
can only be generated after a certain length of time, which is called the
”refractory period”.

Other notable examples of excitable media are:

1. concentration waves in the bromate-malonic acid reagent (The Belousov-
Zhabotinsky reaction).

2. propagating waves(called CMAP) during the aggregation of social
amoeba (Dictyostelium discoideum).

3. calcium waves within frog eggs.

1.2 FitzHugh-Nagumo Model

The FitzHugh-Nagumo model was put forward by Dr. Richard FitzHugh
in 1961 [1], as a simplification of the Noble prize winning Hodgkin-Huxley
model [2], which very successfully modelled the initiation and propagation
of neural action potential using a squid axon. The Hodgkin-Huxley model
is a four variable model with four ordinary differential equations(ODEs)
and it’s phase space can only viewed as a projection to two dimensional
space, hence, FitzHugh devised a simplified two variable model with two
ODE by modifying The Van der Pol ”relaxation oscillator” [1], which itself
is a modification of a damped linear oscillator, and called it Bonhoeffer-
van der Pol model or BVP model for short.Although, being a simplified
version, the BVP model captured all the key features of the Hodgkin-
Huxley model(H-H model) [1]. In 1962, a Japanese engineer named Jin-
Ichi Nagumo, Inspired by FitzHugh published a paper [3] where used
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Figure 1: Dynamics of the FHN model.

electrical circuits to simulate BVP model and since then the BVP model
has been renowned as FitzHugh-Nagumo model (FHN model).

The FHN can be written in a general form as;

V ′ = f(V )−W + I + Vxx W
′ = a(bV − hW ) (1)

Here,V is the excitation variable and V ′ represent first derivative, an ex-
ample of V would be; membrane potential in a living cell, W is the recov-
ery variable, and I is the magnitude of stimulus. Also, Vxx is the diffusion
term, which is a second partial derivative with respect to spatial variable
x, this term is required for the propagation of excitation waves. Without
the diffusion term, the model is called ”space-clamped” i.e. homogeneous
or ”no diffusion” model, and this model doesn’t involve partial differential
equations (PDEs) and has only two ODEs. This space clamped model was
used by FitzHugh(1961) [1] for his analysis of nonlinear dynamics of the
model and Nagumo(1962) [3] used the reaction diffusion model to simu-
late the Travelling waves.There are mainly two formulations of f(V ), one
is where f(V ) = V 3 − V

3
and c(f((V ) −W )), as in FitzHugh(1961) [1]

and other is f(V ) = V (a − V )(V − 1) and a = 1, as in Rinzel(1981) [4].
a, b and c are constants, and either a or b is normally taken to equal 1.

The dynamics of FHN model at its excited state can be by the follow-
ing diagram; In Figure 1, left, we see a phase portrait where a stimulus
above threshold is applied and a ”limit cycle oscillation” ABCD is cir-
cling around the fixed point. In Figure 1, right, we see the corresponding
trajectory plotted against time. The trajectory starts from A and very
quickly moves to B, for this reason there is almost vertical movement from
A to B at Figure 1(b), then, it moves slowly from B to C, hence we see
bendy curve from B to C in Figure 1(b), afterwards, it again moves very
quickly from C to D and then slowly goes to A from D and completes a
cycle, these fast and slow movements are again reflected in Figure 1(b) and
thus a ”spike” or excitation wave is formed and repeating cycles generate
repeating spikes.

Here are some area of research where FHN model is used;

1. Pattern formation in Reaction diffusion systems [5].

2. Modelling of Dictyostelium discoideum slug formation, morphogen-
esis and migration [6] [7] [8].

3. Research on the cause of Cardiac arrhythmia [9].
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1.3 Objective & Flow of the paper

OBJECTIVE OF THIS PAPER FitzHugh and Nagumo papers
FLOW OF THIS PAPER

2 Derivation & Dynamics of FitzHugh-
Nagumo Model

2.1 Derivation of FitzHugh Nagumo Model

As mentioned earlier, FHN model was derived modifying Van der Pol
oscillator, and Van der Pol oscillator was derived from a damped linear
oscillator. A damped linear oscillator can be written as:

V ′′ + kV ′ + V = 0

Van der Pol(1926) [10] replaced the damping constant by a damping
coefficient which depends quadratically on x:

V ′′ + c(x2 − 1)V ′ + V = 0

Where c is a positive constant.Then by using Lienard’s transforma-
tion(Minorsky,1947 []):

W =
V ′

c
+
V 3

3
− V

The two ODEs of Van der Pol oscillator are obtained as:

V ′ = c(W + V − V 3

3
) (2)

W ′ = −V
C

(3)

The W nullcline of this oscillator a vertical line and there is only one
intersection with cubic nullcline V , and it is alway unstable. In order to
resemble a real excitable medium, which has a stable rest point and display
threshold phenomenon, FitzHugh introduced a rotated W nullcline and
ensured there’s only one intersection of nullclines by adding b

c
W and a

c

term to the second ODE, and thus derived the FHN model as:

V ′ = c(W + V − V 3

3
) + I (4)

W ′ = −−(V − a+ bW )

c
(5)

where:
1− 2b/3 < a < 1, 0 < b < 1 and b < c2

a, b, c, are constants and I is the stimulus. This is the FHN model and
introduced as BVP model by FitzHugh. As we shall see later, when the
phase portrait are plotted with this model, two nullclines intersect below
x axis, i.e. fixed points are negative. John Rinzel (1981) [4] modified this
model slightly to move the fixed point onto origin, so that at rest point,
fixed point is (0, 0), this model is written as:
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Figure 2: The Dynamics of FHN mode
l

V ′ = V (a− V )(V − 1)−W + I (6)

W ′ = bV − cW (7)

Again, a,b and c are constants, where: 0 < a < 1, b and c are positive
constants. The diagram below shows the phase portraits of Van der Pol
oscillator, BVP/FHN model and modified FHN model:

From now onwards, we would use the modified version of FHN model
for our analysis of its nonlinear dynamics.

2.2 Dynamics of FitzHugh-Nagumo Model

FHN model is an Autonomous Dynamical System i.e. it has no explicit
time dependency and it is Nonlinear which implies that Superposition
principle does not apply here, and it can not be solved analytically like
Linear Systems. Therefore, we use computer algebra software Maple to
perform Numerical Integration and solve the sytem of ODE numerically,
which also enabled us to plot, the phase portrait of the system and the
time evolution of its trajectories. We also make linear approximation
of the nonlinear system near the Equilibrium point or Fixed point, so
that we can determine the stability property of the system and classify
its phase paths according to the nature of eigenvalues of the Jacobian
Matrix. At the rest position, our model has coordinate (0, 0) as fixed
point, which is easy to use for calculations, but for the calculations of
the nonzero cases which involved solving a cubic polynomial and finding
eigenvalues of a complicated matrix, we formulate few Maple procedures
which automated the whole process. Thus, we analyse the excitability
of the system in response to various amounts of stimulus and strive to
determine the ”threshold of excitability”.

2.2.1 Linearistation

We know that by, Hartman-Grobman theorem[11], a nonlinear system
is ”topological conjugate” i.e. geometrically similar to a linear system,
sufficiently close to its equilibrium point. FHN model at rest state is
written as:

V ′ = V (a− V )(V − 1)−W (8)

W ′ = bV − cW (9)

Now they can be reorganised and named as:
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F (V,W ) = V ′ = V 3 − V 2(1− a)− V a−W
G(V,W ) = W ′ = bV − cW

Now, fixed points (V0,W0) of the system are found by solving F (V,W ) = 0
and G(V,W ) = 0 simultaneously.

Now, lets take a point V = V0 + h, where h is a very small number
and equals; h = V − V0. By differentiating, V = V0 + h we get; V ′ = h′

Similarly, from W = W0 + k we get; k = W −W0 and W ′ = k′

Now, by Taylor expansion for two variables we can write:

V ′ = F (V,W )→ h′ = h
∂F (V0,W0)

∂V
+ k

∂F (V0,W0)

∂W

W ′ = G(V,W )→ k′ = h
∂G(V0,W0)

∂V
+ k

∂G(V0,W0)

∂W

We can neglect the higher order terms O(h2, k2, hk) as long as h and k
are taken to be very small.

These can be written in matrix form as:

V′ = A V

Where, V = (h,k)T, and the matrix A =

(
∂F (V0,W0)

∂V
∂F (V0,W0)

∂W
∂G(V0,W0)

∂V
∂G(V0,W0)

∂W

)
.

=⇒ A =

(
−3V 2

0 − 2V0(1− a)− a −1
b −c

)
.

As, V0 = 0:

A =

(
−a −1
b −c

)
.

This is the Jacobian Matrix and we would need to find its Trace, Determi-
nant and Eigenvalues to determine stability and phase paths orientation
of our system.

2.2.2 Stability Criteria

Now, From matrix A of previous subsection, we can find the characteristic
equation by writing:

det(A− λI) = 0

Here, λ is the eigenvalue of the matrix, which we find by solving the
characteristic equation, and I is an identity matrix.

=⇒ det

(
−a− λ −1

b −c− λ

)
= 0

=⇒ −(a+ λ)− (c+ λ) + b = 0

=⇒ λ2 + (a+ c)λ+ (ac+ b) = 0

=⇒ λ =
−(a+ c)± 2

√
(a+ c)2 − 4(ac+ b)

2
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We know, ”Trace” of a matrix is defined as the sum of the elements
of the main diagonal(upper left to lower right), so for our matrix A it is
−(a+ c). Also, determinant of matrix A is (ac+ b).

So, for determining the stability of a system we use the Routh-Hurwitz
criteria [12], accordingly, the necessary and sufficient condition for a
quadratic characteristic polynomial is to have nonzero determinant and
negative trace of its Jacobian matrix, i.e. trace < 0 and determinant > 0.
Therefore, at rest state with V0 = 0, our system is stable, but to determine
stability of other nonzero fixed points we implement a Maple procedure
to produce the Jacobian matrix of system, get the trace and determinant
of the matrix and determine stability with an if/else conditional.

2.2.3 Phase Path Classification

We use the trace, determinant and eigenvalues of previous subsection to
classify the phase paths of our system at different states of evolution.

By calling, trace −(a + c) = p and determinant (ac + b) = q we can
write the eigenvalue solution as:

λ =
p± 2

√
(p2 − 4q)

2
We know there are two eigenvalues, so, calling them λ1 and λ2 and calling
(p2 − 4q) = 4 we can write the previous equation as:

λ1, λ2 =
1

2
(p± 2

√
4)

Now, we can classify the phase paths according to the nature of the eigen-
values with the precondition of having non zero determinant. There are
three distinct classes of scenario that can happen, they are:

1. λ1 ,λ2 real, distinct and having the same sign.

2. λ1 ,λ2 real, distinct and having opposite sign.

3. λ1 ,λ2 are complex conjugates.

For case 1, there are two possibilities, λ1 ,λ2 can be both positive or both
negative. When both negative, the system is stable, and phase paths
approach origin as t → ∞. And this type of phase path is called Stable
Node, in terms of p, q and 4, it can be written as:

Stable Node : 4 > 0,q > 0,p < 0;

When, λ1λ2 both positive, the system is unstable and phase paths ap-
proach infinity as t → ∞. This type of phase path is called Unstable
Node,and in terms of p, q and 4, it can be written as:

Unstable Node : 4 > 0,q > 0,p > 0;

For case 2, λ1 ,λ2 have opposite sign, i.e. if one is negative than other
is positive and determinant of matrix A is negative, in this case only two
phase paths that approach the origin and they are straight lines. There
are two other straight line paths which moves out of origin to infinity
as t → ∞. These four lines are called Asymptotes and all other paths
starts moving toward origin but bends outward to infinity coming near
the asymptotes, this creates a pattern which is like a family of hyperbolas
together with its asymptotes. This kind of equilibrium point at origin is
called a Saddle and they are always unstable.

Saddle Point : 4 > 0,q < 0;
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Figure 3: The Phase Classification Diagram
l

For case 3, λ1 ,λ2 are complex numbers and always appear as complex
conjugate pairs and they are written as:

λ1 = α+ iβ, λ2 = α− iβ

Where α and β are real numbers, and α is called the real part of the
eigenvalue. Now, there can be three scenarios depending on the real part
α, they are: α = 0, α > 0 and α < 0. When, α = 0 the equilibrium point
is a Centre and in this case phase paths form a family of geometrically
similar ellipses which circle around the centre with a constant angle to the
axes.

Centre : q > 0,p = 0;

When α 6= 0, the ellipses turn into spirals, and the equilibrium points are
called a Focus or Spiral. When α > 0 it is an expanding spiral, i.e. phase
paths spiral outward from origin and the system is unstable. When α < 0
it is a contracting spiral, where phase paths approach the equilibrium
point and the system is stable. In both cases direction can be clockwise
or counterclockwise.

Unstable Spiral : 4 < 0,q > 0,p > 0;

Stable Spiral : 4 < 0,q > 0,p < 0;

In order to classify the phase paths along with their stability prop-
erty, we integrate an if/elif/else conditional to our Maple program. This
enabled us to determine the change in phase path orientation and stabil-
ity, corresponding to various changes of parameters of the system. The
diagram below would give a graphical representation plotted in a (p, q)
coordinate system.

2.2.4 Simulations

Using our Maple procedure FHN EXCITATION(a,b,h,i), we applied
different amounts of stimulus i and observed at which levels the system
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produces a excitation wave or periodic excitation waves. We also var-
ied the parameter a but parameter b and h are kept fixed only for this
simulations, at .02.

Firstly, we run the program with a = .2, b = .02, h = .02 and i = 0,
to observe the rest state of the system, which is stable with fixed point at
(0, 0), we also see no activity on our ”FHN Trajectory” graph, which is a
plot of V and W against time t.This scenario is reflected in Figure 4.

Then, we input a very little amount of stimulus and run the program
with parameters a = .2, b = .02, h = .02 and i = 0.05. In this case, we
observe one circular movement on phase space diagram and one excitation
wave each for V and W . We also see that the cubic V nullcline has moved
slightly upward and new fixed point is now at (.043, .043) and this where
the phase path converges to after one circular motion. This is depicted in
Figure 5.

The most interesting scenario starts to occurs when we simulate with
a = .2, b = .02, h = .02 and i = .21, at this stage the cubic nullcline
moves further upward and the linear W nullcline intersects it at its middle
section where the qubic nullcline has a positive gradient. In the phase
space diagram we see a limit cycle oscillation appear, where all phase
paths circle around the fixed point at a set distance, and this reflects on
the trajectory graph, as appearance of seemingly infinite spiking waves.
FitzHugh in his 1961 paper [1] wrote;”When x is plotted against t, an
infinite train of spikes appears. It has not been possible to get a finite
train of spikes from BVP model”. Then we tried to investigate if the
spikes were really infinite, thanks to the power of our computers we found
that the spikes are finite and they end at around 3000 time interval. This
is reflected on Figure 6. We carried on increasing the stimulus slightly and
kept seeing spikes for longer time frame up to i = .589 where the spiking
ended at around 9000 t , which is seen on Figure 7. Then at i = .59 the
system becomes stable, when the linear nullcline approaches the flat right
knee of cubic nullcline and super fast spiking becomes damped oscillations
and eventually converges to its fixed point. Which can be seen of Figure
8.

Afterwards, we tried changing a and observe the consequence. We
found out that a represent the ”threshold of excitation”, so when we
increased a, we needed to put the stimulus very near or above new a,
to get limit cycle oscillations, and any stimulus significantly below the
threshold results in just one spiking and return to rest state. This is
reflected on Figure 9.

We can summarise our findings from the simulations as: The FHN
model successfully models an excitable media, as it has a threshold of
excitability parameter a, a stable rest state, it is unresponsive to super
threshold stimulus, produces one spike at sub threshold stimulus and un-
damped spiking only occurs at certain levels of stimuli.
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Figure 4: FHN Phase diagram and Trajectory. System at a stable resting state
with parameters a = .2, b = .02, h = .02 and i = 0.

Figure 5: FHN Phase diagram and Trajectory. System at a stable state after
emitting an excitation spike, due to stimulus below threshold, with parameters
a = .2, b = .02, h = .02 and i = 0.05.

Figure 6: FHN Phase diagram and Trajectory. System at an unstable state
after a stimulus above the threshold, with parameters a = .2, b = .02, h = .02
and i = 0.21.
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Figure 7: FHN Phase diagram and Trajectory. System at an unstable state
after a stimulus above the threshold, with parameters a = .2, b = .02, h = .02
and i = 0.589

Figure 8: FHN Phase diagram and Trajectory. System at a stable state after
emitting few excitation spikes, due to super threshold stimulus, with parameters
a = .2, b = .02, h = .02 and i = 0.59

Figure 9: FHN Phase diagram and Trajectory. System at a stable state after
emitting an excitation spike, due to increased threshold and stimulus below
threshold, with parameters a = .5, b = .02, h = .02 and i = 0.21
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3 Travelling Waves in FitzHugh Nagumo
Model

3.1 The FHN model & It’s Travelling Wavefront
Solution

As we have seen, an excitable media generates excitation waves at its
excited state, which is also called Travelling wave, and afterwards it travels
through with a constant shape and speed. FHN equations can be used
to model these travelling waves as FHN equations do produce travelling
wave solutions at certain values of its parameters. For example, when
modelling neural communication by nerve cells via electrical signalling,
where travelling waves travel through great lengths of nerve axons without
distorting the message, we use the FHN model instead of using space
clamped model we use FHN model with spatial diffusion and it is written
as:

∂V

∂t
= V (V − 1)(a− V )−W +D

∂2V

∂x2
(10)

∂W

∂t
= a(bV − hW ) (11)

Here, ∂V
∂t

and ∂W
∂t

are the partial derivatives with respect to time, ∂2V
∂x2 is

the second partial derivative with respect to space and D is the diffusion
coefficient.

In order to study analytically we can consider b and h to be very small
and write:

b = εL, h = εM, 0 < ε << 1

Thus, FHN equations become:

∂V

∂t
= V (V − 1)(a− V )−W +D

∂2V

∂x2
(12)

∂W

∂t
= ε(LV −MW ) (13)

Now if we consider only the wavefront of the travelling wave, then in
the limiting situation ε → 0 W tuns out to be constant as its derivative
becomes zero. For the leading wavefront W is completely negligible, and
the FHN model can be written as:

∂V

∂t
= D

∂2V

∂x2
+ V (V − 1)(a− V ) (14)

Which is also know as Reduced Nagumo Equation. The phase portrait
of this equation is displayed in Firgure 10. We can see three fixed points
V 1 = 0, V 2 = .2 which is a i.e.the threshold of the system and ”V3=1”.
V 1 and V 3 are stable, but V 2 is unstable as it is on the middle part of
cubic nullcline and travelling waves will initiate due to this instability.

By assuming this equation to have travelling wave solution, we can
further simplify it by turning the PDE into a second order ODE, which
is solvable analytically. First we rewrite the equation in terms of its fixed
points as:

∂V

∂t
= D

∂2V

∂x2
+ V (V − V1)(V2 − V ) (15)

We let,

V (x, t) = v(z), z = x− ct, v(−∞) = V3, v(∞) = V1.
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Figure 10: The Phase diagram of Reduced Nagumo Equation. Showing three
fixed points V1, V2 and V3. V1 and V3 stable, V3 Unstable.

Where c is the constant wave speed of the travelling wavefront.
Now,

∂V

∂t
= −cdv

dz
and

∂2V

∂x2
=
d2v

dz2

Inserting back to PDE,

−cdv
dz

= v(v − V3)(V2 − v) +D
d2v

dz2

This ODE can also be written as:

Dv′′ + cv′ + v(v − V3)(V2 − v) = 0 (16)

Now assume that,
v′ = av(v − V3)

Inserting this into the ODE:

v(v − V3)Da2(2v − V3) + ca− (v − V2) = 0

or,
v(v − V3)(2Da2 − 1)v − (Da2V3 − ca− V2) = 0

Now,
2Da2 − 1 = 0 and Da2V3 − ca− V2 = 0

=⇒ a =

√
1

2D

=⇒ c =

√
D

2
(1− 2V2) or c =

√
D

2
(1− 2a)
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3.2 The Numerical Scheme implementation in Maple

3.3 Simulations

4 Conclusion
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