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Abstract 

The mortality patterns of human populations reflect several inherent biological attributes and 

other external factors including social, medical and environmental conditions. Mathematical 

modelling, in addition to experiments and simulations, is an important tool for the analysis of 

those patterns. One of the main observed characteristics of mortality patterns in human 

populations is the age-specific increase in mortality rate after sexual maturity. This increase is 

predominantly exponential and satisfies the well-known Gompertz law of mortality. Although 

the exponential growth in mortality rate is observed over a wide range of ages, it excludes 

early- and late-life intervals.  

The heterogeneity of human populations is a common consideration in describing and 

validating their various age-related features. In this study we develop a mathematical model 

that combines (i) the assumption of heterogeneity within each human population, where 

different subpopulations are distinguished for their certain mortality dynamics and (ii) the 

assumption that the mortality of each constituent subpopulation increases exponentially with 

age (in the same way as described by the Gompertz law). The proposed model is used to fit 

available observational data in order to analyse the dynamics of mortality across the lifespan 

and the evolution of mortality patterns over time.  

We first explore the effects of the variation of the model parameters to the dynamics of 

mortality and use the model to fit actual age-specific mortality data. We show that the model 

successfully reproduces the entire age-dependent mortality patterns explaining the 

peculiarities of mortality at young and very old ages. In particular, we show that the mortality 

data on Swedish populations can be reproduced fairly well by a model comprising of four 

subpopulations. Besides the confirmation that heterogeneity can explain the irregularities of 

mortality patterns at young ages and the deceleration of mortality at extremely old ages, we 

analyse the influence of stochastic effects on mortality and we conclude that evident effects 

due to stochasticity are manifested at the age intervals (early and late life ages) where only 

few individuals contribute to mortality.  

We then analyse the evolution of mortality patterns over time by fitting the proposed model to 

(Swedish) mortality data of consecutive periods across the 20th century. The evolution of 

mortality is described in terms of the changes of model parameters estimated by fitting the 

model to data from different time periods. We show that the evolution of model parameters 

confirms the applicability of the compensation law of mortality to each constituent 
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subpopulation separately. The compensation law states an inverse relationship between the 

scale and the shape parameter of Gompertz law. Our analysis also indicates a change in the 

structure of this population over time in a way that the population tends to become more 

homogeneous by the end of the 20th century. This change in structure is reflected in changes 

to the initial proportions of the constituent subpopulations. These two observations, namely 

the validity of the compensation effect and the homogenisation of the population, imply that 

the alteration of model parameters (which reflect demographic terms) can explain the 

decrease of the overall mortality over time. It is shown that the decrease in mortality across 

the 20th century is mainly due to changes in the structure of the population, and to a lesser 

extent, to a reduction in mortality for each of the subpopulations.     

The outcomes of our research show that the consideration of heterogeneity is efficient for the 

description of various features of a population’s mortality. The idea of “pure” subpopulations, 

such that in each of them exponential law is held for all ages, has been used as a convenient 

mathematical constraint which allows very accurate reproduction of the entire mortality 

patterns. This provides a justification for the deviation of mortality from its exponential 

increase at young and very-old ages and for the decrease of mortality over time. In the last 

part of this thesis we propose that the proposed heterogeneity is not only a convenient tool for 

fitting mortality data but indeed reflects the true heterogeneous structure of the population. 

Particularly we demonstrate that the model of a heterogeneous population fits mortality data 

better than most of the other commonly used models if the data are taken for the entire 

lifespan and better than all other models if we consider only old ages. Also, we show that the 

model can reproduce seemingly contradicting observations in late-life mortality dynamics 

like deceleration, levelling-off and mortality decline. Finally, assuming that the differences 

between subpopulations reflect genetic variations within the population and using the 

Swedish mortality data for the 20th century, we show that evolutionary processes resulting in 

changes of allele frequencies, can explain the homogenisation of the population as predicted 

by the model. 
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Thesis Outline 

This thesis is comprised of five chapters: 

Chapter 1 presents the main mortality-related observations, outlines several mathematical 

models of mortality and describes our motivation and methodology. Here, the focus is mainly 

on age-dependent observations represented by three phenomena known as the “three laws of 

mortality”. The first law is the Gompertz law which describes the exponential increase of 

mortality rate for a certain range of ages. The second law is the compensation effect which 

states that high initial mortality rate in a population is compensated by low rate of mortality 

change with age. The third law known as late-life mortality deceleration states that the 

mortality rate in later life increases at a lower rate than the exponential increase during a wide 

portion of lifespan as described by the Gompertz law. In addition to age-dependent 

observations, we describe the compression of mortality and the “rectangularization” of 

survival curve which are both indicators of the evolution of mortality over time. Moreover, 

we outline a number of mathematical models that have been developed to describe mortality-

related observations and we specify the modelling approaches that take into account the 

heterogeneity of populations. The Chapter ends with the research aims which include the 

development of a model able to describe and analyse the observations of mortality and with 

the description of fitting procedure and selection criterion applied in the current study. 

In Chapter 2 we present the results of a study published in the 48th volume of Experimental 

Gerontology journal in 2013. In this Chapter we develop the mathematical model that will be 

used in the analysis of the dynamics of mortality across the lifespan. The model combines the 

consideration of population heterogeneity with the assumption that the mortality dynamics of 

each constituent subpopulation follow an exponential law. The model attains to generate a 

mortality trajectory that accurately fits an entire dataset of actual mortality rates and 

particularly to reproduce the peculiarities of mortality patterns that are observed at early and 

late life intervals. We also analyse the influence of stochastic effects on the mortality 

dynamics to show that they play a role only at young and very old ages, when only a few 

individuals contribute to mortality. We conclude that the deviations from the exponential law 

at young ages can be explained by the heterogeneity of populations, while the deviations at 

old ages can be viewed as fluctuations and explained by stochastic effects. 

Chapter 3 is based on a work published in the 60th volume of Experimental Gerontology 

journal in 2014. In that Chapter we use the model of a heterogeneous population (described in 

https://en.wikipedia.org/wiki/Gompertz_law
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Chapter 2) to fit actual mortality data of one-century period in order to analyse the evolution 

of mortality dynamics over time. The analysis is performed by examining the changes of 

optimum model parameters that fit data from consecutive periods. This study shows that the 

evolution of model parameters validates the applicability of the compensation law of 

mortality to each subpopulation separately. Furthermore, the analysis indicates that the 

population’s structure changes in a way that the population tends to become more 

homogeneous over time. We finally show that the decrease of the overall mortality in the 

Swedish population over the 20th century is mainly due to the homogenisation of the 

population and to a lesser extent to a reduction of mortality of each of the constituent 

subpopulations, the latter being represented by an alteration to the scale and shape parameters 

of Gompertz functions. 

In Chapter 4 we present the results submitted for publication in Experimental Gerontology 

journal. In that Chapter we present a few arguments to say that the heterogeneity in human 

populations is not only a convenient constraint used to accurately fit actual mortality data but 

indeed reflects the real structure of the population. We first show that the model of a 

heterogeneous population fits mortality data better than most of the other models if the data 

from the entire lifespan are used and better than all other models if we consider only old ages. 

Also, we show that the model can reproduce seemingly contradictory observations in late-life 

mortality dynamics which include deceleration, levelling-off and mortality decline. 

Furthermore, assuming that the existence of subpopulations reflects the genetic variations in 

the population, we show that the homogenisation of the Swedish population over the 20th 

century, as predicted by the model, can be associated with the evolution of allele frequencies. 

Chapter 5 discusses the findings of this research and provides directions for future work. The 

discussion includes an analysis of the model by summarising its advantages, demonstrating 

further applications (continuous model of mortality, probability density and survival function 

in heterogeneous populations) and indicating its limitations. We then describe four directions 

for future research that provides an extension of the present study and we close the Chapter 

(and thesis) with our final conclusions. 
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Chapter 1.  

Introduction 

Studies of ageing and senescence attract the attention of scientists from a variety of 

disciplines including biology, medicine, actuarial mathematics and epidemiology. One of 

the central problems addressed in these studies is to understand what fails in the 

organisms with age and how to prevent and delay these changes (Olshansky, 1998). 

With a dramatic increase in human longevity, the process of biological ageing and 

mortality becomes also a central issue for many practical concerns related to the 

development of modern society. Ageing is defined as an inevitable progressive decline 

of physiological function with increasing age that is associated with a decline in 

fecundity and an increase of mortality (Rose, 1991, Bronikowski and Flatt, 2010). 

Demographically, ageing is manifested by the acceleration of mortality with age and 

mathematically expressed by the Gompertz law of mortality. Therefore, while the death 

rate is a proxy indicator of ageing, a number of studies attempt to analyse the dynamics 

of mortality in order to understand the processes underlying human ageing.  

In a similar way, the premise of our research is to use mathematical techniques to 

analyse the dynamics of mortality over age and time in human populations. In this 

Chapter which is the introduction to our research we present the main mortality-related 

age and time-dependent observations (Section 1.1), outline an overview of several 

mathematical models of mortality (Section 1.2) and present our motivation and 

methodology (Section 1.3). 
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1.1. Basic mortality-related observations 

Mortality–related data such as death rates, survival probabilities and probabilities of 

death have specific characteristics at different ages and at different periods. Some of 

those characteristics are well understood while others still look paradoxical and remain 

biologically unexplained. For example the exponential increase of mortality rate with 

age, observed after sexual maturity, has been known for two centuries but still remains to 

be an empirical observation without a uniform biological justification. Another 

paradoxical observation is the phenomenon known as the compensation effect which 

describes the decrease of the relative differences in death rates with age, between 

different populations. This is observed when higher initial death rates in disadvantaged 

populations are compensated by a lower rate of mortality increase with age (Gavrilov 

and Gavrilova, 1979). The main age and time dependent observations related to 

mortality are described in the following sections. 

1.1.1. Lexis diagram and mortality rates 

The analysis of human mortality dynamics over the lifespan and their evolution over 

time requires an introduction of some common notations and definitions. These 

definitions include the measurements that are tabulated in life tables. The life tables 

provide essential information on the age-related structure of a certain population and on 

the survivorship of its individuals at specific ages (Preston et al., 2000). The life tables 

contain probabilities of death and survival, numbers of survivors and numbers of deaths, 

life expectancies, death rates and other mortality-related quantities at each age. 

There are two types of life tables, period and cohort, which correspond to two different 

ways the data are recorded. Data recording deaths of individuals born in a certain year 

(or time interval of another length) form the cohort data. Data recording deaths in a 

certain population occurring during a specific year form the period data. Both kinds of 

data can be illustrated by a Lexis diagram. The Lexis diagram (Lexis, 1875) outlines the 

stocks and flows of a population and the occurrence of demographic events (such as 

deaths) over age and time. It is a two-dimensional graph (Figure 1.1) where the vertical 

axis represents age and the horizontal axis represents time, both measured in the same 

units (e.g. years). Deaths occurring in a parallelogram formed by two diagonal lines in 

Figure 1.1 contribute to cohort mortality, while the deaths occurring in a rectangle 

outlined by two vertical lines in Figure 1.1 refer to period mortality. 

https://en.wikipedia.org/wiki/Death_rate
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Figure 1.1: Lexis diagram. The diagram illustrates demographic events as distributed 

over age and time. Cohort mortality rates refer to the deaths in a cohort that are 

occurring in a parallelogram formed by two diagonal lines. Period mortality rates 

refer to deaths occurring within a period outlined by two vertical lines. 

Two of the basic quantities of interest that are tabulated in a human life table are the 

probability of death and the mortality rate. Probability of death, 𝑞𝑖, is the probability that 

an individual aged 𝑖 will die before they reach age 𝑖 + 1. The probability of death is 

expressed as the ratio of the number of deaths of people aged 𝑖, Δ𝑁𝑖, divided by the 

number, 𝑁𝑖, of individuals who have reached age 𝑖 in the cohort data or alive individuals 

at exact age 𝑖 in the period data. Death (or mortality) rate 𝑚𝑖 is defined as the number of 

deaths of people aged 𝑖 divided by the number of person years of age 𝑖: 

 𝑚𝑖 =
Δ𝑁𝑖
𝑃𝑌𝑖

≈
Δ𝑁𝑖

0.5(𝑁𝑖 +𝑁𝑖+1)
, (1.1) 

where the number of deaths of people aged 𝑖 is represented as Δ𝑁𝑖 = 𝑁𝑖 −𝑁𝑖+1. The 

number of person years can be approximated by the average number of survivors within 

a one-year age interval which roughly coincides with the number of survivors at the 

centre of the interval and therefore the mortality rate is commonly referred to as the 

central death rate. 
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When mortality is considered as a continuous process, age is defined by a real number 𝑥 

(continuous age) rather than by the integer number 𝑖 (discrete age). In this case, the 

instantaneous mortality (force of mortality), 𝜇(𝑥), at age 𝑥 is defined by 

 𝜇(𝑥) = lim
Δ𝑥→0

−Δ𝑁(𝑥)

𝑁(𝑥)Δ𝑥
=

−1

𝑁(𝑥)

𝑑𝑁(𝑥)

𝑑𝑥
. (1.2) 

Discrete and continuous descriptions of mortality are almost identical (the discrete form 

can be derived from the continuous one) and mathematical modelling can be performed 

in both forms. The characteristics of mortality dynamics across the life span and 

observations on mortality-related measurements over time are described in Sections 

1.1.2 and 1.1.3. 

1.1.2. Observations on age-specific mortality dynamics 

The mortality rate in human populations increases exponentially with age for a 

significant part of the lifespan, starting from the period of reproductive maturity (age 

~35) up to extreme old ages (age ~100), satisfying the Gompertz law of mortality 

(Gompertz, 1825). Mathematically, the Gompertz law is expressed as 

 𝑚𝑖 = 𝑚0𝑒
𝛽𝑖, (1.3) 

where parameter 𝑚0 can be considered as initial mortality at age 𝑖 = 0 and parameter 𝛽 

defines the rate of change of mortality with age (usually called rate of ageing, mortality 

coefficient or Gompertz slope). 

Graphically, mortality data are most frequently presented in semi-logarithmic graphs 

(logarithm of mortality versus age) and therefore their exponential increase with age, as 

expressed by the Gompertz law (equation (1.3)), is represented with a straight line. 

Figure 1.2 shows period mortality rates of the 2010 Swedish population and a Gompertz 

line (solid line) showing their exponential increase over a big portion of lifespan. 

Although the exponential growth of mortality dominates across a wide range of ages, 

some deviations from it are observed at young (before 35) and extremely old (after 100) 

ages. 
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Figure 1.2: The Gompertz law of mortality. The mortality rate increases 

exponentially from sexual maturity to extremely old ages. The presented data are the 

mortality rates of the 2010-period Swedish population set in a semi-logarithmic scale. 

The data are taken from the Human Mortality Database (http://www.mortality.org). 

The Gompertz function with parameters 𝑚0 = 8.7 ∙ 10
−6 and 𝛽 = 0.109 fits the data 

very well after the age of 35. Deviations from the exponential growth are observed at 

young (before 35) and considerably old (after 100) ages. 

Upon analysis of various causes of death, Gompertz concluded that if mortality rate is 

taken for only intrinsic causes of death, the exponential law is valid between ages 20 and 

80 for humans. The Gompertz law has been shown to be a fundamental mortality law 

and verified by demographic observations across different countries, different time 

periods, and even different species (Gavrilov and Gavrilova, 1991). Analysis of available 

data on mortality rates for various diseases indicates that for most diseases there is a 

considerably wide age range where the mortality rate is also increasing exponentially 

(Jones, 1956, Finch, 1994). 

The deviation of mortality from the exponential increase at very old ages is a 

phenomenon called “late-life mortality slow-down”. Late-life mortality slow-down 

corresponds to the deceleration of mortality increase so that it happens at a slower pace 

compared to the exponential growth observed during adulthood or even saturates to a 

constant rate (the phenomenon known as mortality level-off or mortality plateau). 

Late-life mortality deceleration is observed in human populations (Greenwood and 

Irwin, 1939, Manton et al., 2008) and other non-human species such as invertebrates; for 

http://www.mortality.org/
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example nematodes, flies, beetles, etc. (Economos, 1979, Curtsinger et al., 1992, Carey 

et al., 1992, Vaupel et al., 1998, Tatar et al., 1993) and in other mammalian populations 

such as rats, mice, horses, sheep, etc. (Lindop, 1961, Economos, 1979, Economos, 1980, 

Sacher, 1966). However this phenomenon is not considered as a universal law of 

mortality and is still debated by scientists. For example, Gavrilov and Gavrilova 

(Gavrilova and Gavrilov, 2015) have compared the goodness of fitting exponential and 

logistic functions to mortality data at advanced ages for humans, laboratory mice and 

laboratory rats and they found that the Gompertz model fits the data in all these three 

species, significantly better than the logistic model. They concluded that the 

observations of mortality deceleration or levelling-off, which is described by the logistic 

function, could be invalid due to various reasons including the inaccuracy of data at very 

old ages. 

Another observation related to the dynamics of mortality is a phenomenon known as the 

compensation law of mortality or the compensation effect. This law states that high 

initial mortality (parameter 𝑚0 in Gompertz law) in a population is compensated by a 

low mortality coefficient (parameter 𝛽 in Gompertz law) and respectively low initial 

mortality is compensated by a high mortality coefficient (Gavrilov and Gavrilova, 1979, 

Gavrilov et al., 1978, Gavrilov, 1984). This phenomenon was observed not only in 

human populations but also in other species such as fruit flies (Gavrilov and Gavrilova, 

1991, Gavrilov and Gavrilova, 2006). The compensation law points to an inverse 

relationship between the Gompertz parameters and is expressed mathematically by the 

equation 

 ln(𝑚0) = ln(𝑀) − 𝛽𝑋, (1.4) 

where 𝑋 is the target lifespan (the age when the last remaining survivors die) and 𝑀 is 

the target mortality (the level of mortality when the last survivors die). The inverse 

relationship between Gompertz parameters (equation (1.4)) was observed first by 

Strehler and Mildvan and is therefore called the Strehler-Mildvan correlation (Strehler 

and Mildvan, 1960, Strehler, 1978). 

The compensation law of mortality in its strongest form refers to the convergence of 

mortality trajectories from different populations of a given species at a certain point 

having coordinates the target lifespan and the target mortality. This late-life mortality 

convergence is illustrated by the convergence of mortality trajectories in a single point at 
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old ages, obtained by fitting the Gompertz function to mortality rates of different 

populations (for example data from different countries) and plotting the trajectories onto 

the same semi-logarithmic graph. The compensation effect is also observed on mortality 

trajectories for data on the same country but for different periods (see Chapter 3).   

The exponential increase of mortality across a wide range of lifespan (Gompertz law), 

the late-life mortality deceleration and the compensation effect together compose the so-

called “three laws of mortality”. The explanation for the existence and validation of 

these laws is the main goal of most of the developed theories of ageing and longevity 

(Gavrilov and Gavrilova, 2001). Furthermore, there are many other interesting 

observations based on the evolution of mortality over time. These include the 

compression of mortality and the rectangularization of the survival curve, both of which 

are described in the following section. 

1.1.3. Observations on the evolution of mortality over time  

The evolution of mortality over time and primarily the reduction of mortality rate in all 

age-intervals is the result of several factors such as medical improvements, health and 

safety, hygiene developments and many others. The mortality evolution can be 

expressed in terms of mortality compression, rectangularization of survival curve, 

compensation effect, increase in life expectancy and others. The evolution of the 

mortality process was also analysed through Epidemiological Transition Theory which 

explains how some phases of historical changes caused the transition of birth and death 

rates to different levels and influenced the growth of human populations (Omran, 2005, 

Olshansky and Ault, 1986, Rogers and Hackenberg, 1987, Robine, 2001). 

In this section we present two observations on the evolution of mortality, the 

compression of mortality and the rectangularization of the survival curve. Mortality 

compression refers to the decrease in variance of the age-related distribution of deaths 

over time. Due to the reduction of mortality over time, a larger number of deaths occurs 

at later ages and these deaths are concentrated in a certain age-range. The phenomenon 

of mortality compression is shown in Figure 1.3A. The blue and red colours denote the 

distribution of deaths over ages as taken from the 1900 and 2000 Swedish period life 

tables respectively. It is observed that over a period of 100 years the number of deaths 

for ages below age 65 is significantly reduced. These deaths were redistributed across 

the lifespan and concentrated more at older ages (for the 2000 data this concentration is 
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around the age of 85 as shown by the peak of the red curve in Figure 1.3A). The age 

where the local maximum number of deaths among adults occurs is called the modal age 

at adult death (note that another local maximum exists at age 0) (Canudas-Romo, 2008, 

Cheung et al., 2005). Through time, the compression of deaths occurs in narrower age-

ranges. 

 

Figure 1.3: Compression of mortality and rectangularization of the survival curve. 
Panel A demonstrates the time-evolution of the number of deaths. It is observed that in 

over long period of time an increasing number of deaths occurs at older ages and in a 

narrower age-range. Panel B shows the time-evolution of the number of survivors. It 

is observed that due to the concentration of deaths at older ages, the survival curve 

becomes more rectangular in shape over time. In both panels the blue and red colours 

denote the data from the 1900 and 2000 Swedish period life tables respectively. The 

data are taken from the Human Mortality Database (http://www.mortality.org). 

The compression of mortality over time results in the “rectangularization” of the survival 

curve. Rectangularization refers to the evolution of the survival curve towards a more 

rectangular shape due to an increase in survival across the first half of the lifespan and to 

a concentration of deaths around the modal age of death that is shifted to older ages as 

time increases (i.e. more individuals survive over childhood and young-adulthood 

periods but then rapidly die at older ages) (Fries, 1980, Manton and Tolley, 1991, 

Kannisto, 2001, Weon and Je, 2011). The rectangularization of the survival curve is 

illustrated in Figure 1.3B. The data represented in blue and red colours are numbers of 

survivors over ages as taken from the 1900 and 2000 Swedish period life tables 

respectively. 

One of the interesting questions associated with time dependent mortality-related 

phenomena refers to the existence of an upper limit in human lifespan. In fact, longevity 

and life expectancy are increasing over time and it is unknown whether a biologically-

http://www.mortality.org/
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related maximum length of life exists (Wilmoth et al., 2000). The existence of a limit in 

lifespan can be partially explained by a phenomenon known as the Hayflick limit 

(Hayflick and Moorhead, 1961, Hayflick, 1965) which gives the number of times that a 

population of human cells proliferates until the end of the cells’ division process. During 

the process of DNA replication which occurs in each cell division, the length of each 

telomere (the region at the end of each chromosome’s chromatid) decreases. When the 

telomere disappears (or becomes shorter than a certain critical length), the cell cannot 

divide anymore; this halts the organism’s ability to repair tissues bringing it to the death. 

Today there is no evidence for a fixed value of a theoretical limit of human lifespan. 

Some studies state that there is no increase in the maximum limit of human lifespan over 

time (Olshansky et al., 1990) while others indicate that the length of lifespan is 

increasing over time and this indicates the reduction of mortality rate and the 

postponement of senescence (Wilmoth and Lundstrom, 1996). Some other studies use 

mathematical models to estimate the theoretical maximum lifespan. For example, Weon 

and Je (Weon and Je, 2009) used a modified Weibull function to model the survival 

probability and to estimate the maximum human lifespan which they found to be around 

125 years.  

Studies that aim to analyse human mortality dynamics over the lifespan and their 

evolution over time are of great importance for many reasons including an understanding 

of the mechanisms underlying ageing and the development of ways to control and extend 

the duration of lifespan. Mathematical modelling makes a significant contribution to 

these studies. Various mathematical techniques are used to model processes associated 

with ageing and senescence and validate mortality laws and other observations.  

A number of theories have been developed in attempts to relate the process of ageing to 

the dynamics of some (hypothetical) physiological functions. Alternative theories take 

into account facts such as heterogeneity, stochasticity and homeostasis to model and 

explain the observations of age-related mortality trajectories (Yashin et al., 2000). 

Several mathematical models have been developed and used to analyse human mortality 

dynamics across the lifespan and to explain the deviations in mortality from the 

exponential growth at young and old ages. For example, the proposed explanations for 

the late-life mortality plateau include an assumption that the Gompertz law is not valid at 

those ages and that mortality dynamics should be described by a logistic, a quadratic or 
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some other mathematical functions (Gavrilov and Gavrilova, 2001, Kannisto et al., 1994, 

Pham, 2011). In addition, population heterogeneity is a commonly used consideration in 

modelling mortality dynamics and explaining the deviation of mortality from its 

exponential increase at young and extremely old ages (Wrigley-Field, 2014, Chen et al., 

2013, Drapeau et al., 2000, Steinsaltz, 2005). An overview of mathematical models used 

to reproduce the dynamics of mortality is presented in Section 1.2. Section 1.2 also 

introduces mathematical models incorporating the concept of heterogeneity and its effect 

on mortality dynamics. Section 1.3 provides the aims of our research, which are focused 

on the modelling and analysis of mortality dynamics in heterogeneous populations, and 

presents our methodology which includes the fitting procedure and the selection criterion 

used in this study. 

1.2. Mathematical models of mortality dynamics 

Although many mortality and survival models have been developed over the last few 

decades, we should remember that a number of pioneering works were performed in 

previous centuries. Even before the great work by Gompertz, many scientists and 

philosophers were trying to investigate the dynamics underlying mortality. Amongst 

others, John Graunt (1620-1674) was one of the first demographers who, in 1662, 

analysed the mortality of the population of London. Edmond Halley (1656-1742) was a 

famous astronomer who, in 1693, published an article on life annuities that included the 

first known mortality table and had an important influence on the actuarial sciences and 

mortality statistics. Abraham de Moivre (1667-1754) was a mathematician who, in 1725, 

proposed the first known model that expresses the number of survivors as a function of 

age. In addition, works by Antoine Deparcieux (1703-1768), Daniel Bernoulli (1700-

1782), Thomas Robert Malthus (1766-1834) and Pierre François Verhulst (1804-1849) 

were important to the development of population-related studies. However, after the 

work by Gompertz, a new era on the analysis and modelling of mortality dynamics 

began. Some reviews and historical overviews on the earliest and most recent mortality 

models can be found in (Haberman and Sibbett, 1995, Tabeau et al., 2001, Keyfitz, 

1982). 

Most models of mortality are represented by parameterised functions that attain to 

reproduce the entire mortality patterns or parts of them. A typical example is the 

Heligman-Pollard model, an eight parameter function, which accurately reproduces an 
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entire mortality pattern. This model is composed of three terms, each of which is able to 

create a specific part of a mortality curve. The first term forms the sharp initial mortality 

decline at infant ages, the second forms the accidental hump and the third term forms the 

exponential increase in mortality after sexual maturity. Another example is the Perks 

model which is a logistic function that can reproduce a wide-range of a mortality pattern, 

namely, it reproduces fairly well the exponential increase of mortality at adulthood and 

the mortality plateau at very old ages. In Section 1.2.1 we present a list of commonly 

used age-dependent parametric mortality models. In Section 1.2.2 we outline a few 

models of mortality that include both age- and time-dependent components reflecting the 

cohort and period effects respectively and in Section 1.2.3 we introduce the models of 

mortality that incorporate the concept of population heterogeneity. 

1.2.1. Modelling age-dependent mortality 

The term “parametric models” refers to models which express mortality-related 

quantities such as the mortality rate, the force of mortality or the number of survivors as 

functions of age. Consequently, these models describe the age-specific mortality rates of 

certain cohorts or certain periods. Table 1.1 is adapted from (Tabeau et al., 2001) and 

presents the main age-dependent mortality models. The notations that are used in Table 

1.1 are the common demographic notations for the variables used in life tables. Hence 

𝜇(𝑥) is the force of mortality at age 𝑥, 𝑚(𝑥) is the mortality rate at age 𝑥, 𝑠(𝑥) 

(equivalent with 𝑙(𝑥)) is the probability of survival from birth until age 𝑥, 𝑞(𝑥) and 

𝑝(𝑥) = 1 − 𝑞(𝑥) are the probabilities of dying and surviving respectively between ages 

𝑥 to 𝑥 + 1, 𝑒(𝑥) is the expectation of life at age 𝑥, 𝜔 is the highest attainable age and all 

other symbols are unknown model parameters. 

As shown in Table 1.1, some of the recently developed mortality models represent 

extensions of older ones and many of them are based on, or related to the Gompertz law. 

The models in Table 1.1 are separated into groups which are expressed by polynomial 

and non-polynomial functions. Polynomials often appear in the exponentiation. Many 

functions can be approximated by polynomials using Taylor expansions and this gives 

them an advantage in modelling mortality-related data. On the other hand, non-

polynomial functions include a set of components, each of which can account for a 

different cause of death or process underlying mortality, and is able to reproduce a 

specific part of mortality patterns over a certain age-interval of lifespan. For example 
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Siler, Thiele, Heligman-Pollard, Rogers-Plank and Kostaki models are represented by 

functions composed by three terms. In each of these models the terms are different but in 

all of them the first component describes the decline of mortality in childhood, the 

second describes the accidental mortality during young-adulthood and the third describes 

the exponential mortality dynamics at post-reproductive ages. 

Author Publication Model 

OLD NON-POLYNOMIALS 

De Moivre 1725 
𝜇(𝑥) =

1

(𝜔 − 𝑥)
 

Gompertz 1825 𝜇(𝑥) = 𝐵𝑐𝑥 

Makeham 1860 𝜇(𝑥) = 𝐴 + 𝐵𝑐𝑥 

𝜇(𝑥) = 𝛼 + 𝛾𝑥 + 𝛽𝑐𝑥 

Opperman 1870 𝜇(𝑥) =
𝑎

√𝑥
+ 𝑏 + 𝑐√𝑥 

Thiele 1872 
𝜇(𝑥) = 𝑎1𝑒

−𝑏1𝑥 + 𝑎2𝑒
−
1
2
𝑏2(𝑥−𝑐)

2

+ 𝑎3𝑒
𝑏3𝑥 

Wittstein 1883 
𝑞(𝑥) =

1

𝑚
𝑎−(𝑚𝑥)

𝑛
+ 𝑎−(𝑀−𝑥)

𝑛
 

Steffenson 1930 log10 𝑠(𝑥) = 10
−𝐴√𝑥−𝐵 + 𝐶 

𝑒(𝑥) =
1

𝐴 + 𝐵𝑐𝑥
 

Perks 1932 
𝜇(𝑥) =

𝐴 + 𝐵𝑐𝑥

𝑘𝑐−𝑥 + 1 + 𝐷𝑐𝑥
 

Harper 1936 log10 𝑠(𝑥) = 𝐴 + 10
𝐵√𝑥+𝐶𝑥+𝐷 

Weibull 1939 𝜇(𝑥) = 𝛼𝑥𝛽−1 

Van der Maen 1943 
𝜇(𝑥) = 𝐴 + 𝐵𝑥 + 𝐶𝑥2 +

1

𝑁 − 𝑥
 

𝜇(𝑥) = 𝐴 + 𝐵𝑐𝑥 +
𝑐

𝑁 − 𝑥
 

POLYNOMIALS  

Unnamed 

(in Keyfitz, 

1982) 

 𝑦(𝑥) = 𝑒(𝑎0+𝑎1𝑥+𝑎2𝑥
2+⋯+𝑎𝑘𝑥

𝑘) 

𝑦(𝑥) = 𝑞(𝑥),
𝑞(𝑥)

𝑝(𝑥)
, 𝜇(𝑥) or 𝑒(𝑥) 
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RECENT NON-POLYNOMIALS 

Brillinger 1960 
𝜇(𝑥) =∑(𝐻𝑖(𝑥 − 𝐵𝑖)

𝐶𝑖−1 +
𝐴𝑖

(𝑏𝑖 − 𝑥)
𝐶𝑖+1

+ 𝐸𝑖𝑑𝑖
𝑥)

𝑖

 

Beard 1961 
𝜇(𝑥) =

𝐵𝑒𝑎𝑥

1 + 𝐷𝑒𝑎𝑥
 

Petrioli 1981 
𝑠(𝑥) =

1

𝑥𝑎(𝜔 − 𝑥)−𝑏𝑒
𝑐
2
𝑥2+𝑑𝑥 1

𝑘
+ 1

 

Martinelle 1987 
𝜇(𝑥) =

𝐴 + 𝐵𝑒𝑘𝑥

1 + 𝐷𝑒𝑘𝑥
+ 𝑐𝑒𝑘𝑥 

British actuaries 

(in Keyfitz, 

1982) 

1980s 𝑞(𝑥)

𝑝(𝑥)
= 𝐴 −𝐻𝑥 + 𝑏𝑐𝑥 

RECENT NON-POLYNOMIAL  

Siller 1979 𝜇(𝑥) = 𝑎1𝑒
−𝑏1𝑥 + 𝑎2 + 𝑎3𝑒

𝑏3𝑥 

Heligman-

Pollard 

1980 𝑞(𝑥)

𝑝(𝑥)
= 𝐴(𝑥+𝐵)

𝐶
+ 𝐷𝑒−𝐸(ln𝑥−ln𝐹)

2
+ 𝐺𝐻𝑥 

𝑞(𝑥) = 𝐴(𝑥+𝐵)
𝐶
+ 𝐷𝑒−𝐸(ln𝑥−ln𝐹)

2
+

𝐺𝐻𝑥

1 + 𝐺𝐻𝑥
 

𝑞(𝑥) = 𝐴(𝑥+𝐵)
𝐶
+ 𝐷𝑒−𝐸(ln𝑥−ln𝐹)

2
+

𝐺𝐻𝑥

1 + 𝐾𝐺𝐻𝑥
 

𝑞(𝑥) = 𝐴(𝑥+𝐵)
𝐶
+ 𝐷𝑒−𝐸(ln𝑥−ln𝐹)

2
+

𝐺𝐻𝑥
𝐾

1 + 𝐺𝐻𝑥
𝐾 

Brooks et al. 1980 𝜇(𝑥) = 𝜇𝐼(𝑥) + 𝜇𝐴(𝑥) + 𝜇𝑆(𝑥) 

{
 
 
 

 
 
 

  

𝜇𝐼(𝑥) = {
𝑄0    for  𝑥 = 0

𝑄1
𝑥𝛾  for  𝑥 > 0

𝜇𝐴(𝑥) = 𝑄𝐴𝑒
(ln𝑥−ln𝑥𝐴)

2

𝛿2    for  𝑥 ≥ 0

𝜇𝑆(𝑥) =
𝑄𝑆𝑒

𝑥
𝑥𝑆

1 + 𝑄𝑆𝑒
𝑥
𝑥𝑆

   for  𝑥 ≥ 0

 

Rogers and 

Planck 

1983 𝑞(𝑥) = 𝐴0 + 𝐴1𝑒
−𝑎1𝑥 + 𝐴2𝑒

−𝑎2(𝑥−𝜇2)−𝑒
−𝜆2(𝑥−𝜇2)

+ 𝐴3𝑒
𝑎3𝑥 

Kostaki 1992 𝑞(𝑥)

𝑝(𝑥)
= {

𝐴(𝑥+𝐵)
𝐶
+ 𝐷𝑒−𝐸1

2(log𝑥/𝐹)2 + 𝐺𝐻𝑥 , 𝑥 ≤ 𝐹

𝐴(𝑥+𝐵)
𝐶
+ 𝐷𝑒−𝐸2

2(log𝑥/𝐹)2 + 𝐺𝐻𝑥 , 𝑥 > 𝐹
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Rogers and Little 1993 𝑦(𝑥) = 𝑎0 +𝑚1(𝑥) + 𝑚2(𝑥) + 𝑚3(𝑥) + 𝑚4(𝑥) 

where: 

𝑚1(𝑥) = 𝑎1exp (−𝑎1𝑥) 

𝑚2(𝑥) = 𝑎2exp (−𝑎2(𝑥 − 𝜇2) − exp(−𝜆2(𝑥 − 𝜇2))) 

𝑚3(𝑥) = 𝑎3exp (−𝑎3(𝑥 − 𝜇3) − exp(−𝜆3(𝑥 − 𝜇3))) 

𝑚4(𝑥) = 𝑎4 exp(𝑎4𝑥) 

𝑦(𝑥) = 𝑞(𝑥),
𝑞(𝑥)

𝑝(𝑥)
, 𝜇(𝑥) 

RECENT NON-POLYNOMIAL, PARTIAL AGE FUNCTIONS 

Hartmann 1981 ages 0 to 15 years: 

𝑦(𝑥) = 𝐴1 +𝐵1 ln 𝑥 

ages 15 to 35 years: 

𝑦(𝑥) = 𝐴2 + 𝐵2𝑥 

ages 35 to 60 years: 

𝑦(𝑥) = 𝐴3 + 𝐵3𝑐
𝑥, 

where 𝑦(𝑥) – logit of 𝑙(𝑥) 

Mode and Busby 1982 ages 0 to 10 years: 

𝜇0(𝑥) = 𝛼0𝛽0𝑒
−𝛽0𝑥 

ages 10 to 30 years: 

𝜇1(𝑥) = 𝛼1 − 𝛽1(𝑥 − 𝛾1)
2 

ages 30 and over: 

𝜇2(𝑥) = 𝛼2 + 𝛽2𝛾2𝑒
𝛾2𝑥 

Table 1.1: Main parametric functions of mortality. The table is taken from (Tabeau 

et al., 2001) where standard demographic notations are used. 𝜇(𝑥) is the force of 

mortality at age 𝑥, 𝑚(𝑥) is the mortality rate at age 𝑥, 𝑠(𝑥) (equivalent with 𝑙(𝑥)) is 

the probability of survival from birth until age 𝑥, 𝑞(𝑥) is the probability of dying 

between ages 𝑥 to 𝑥 + 1 and 𝑝(𝑥) is the probability of surviving between this interval 

(𝑝(𝑥) = 1 − 𝑞(𝑥)), 𝑒(𝑥) is the expectation of life at age 𝑥, 𝜔 is the highest attainable 

age and all other symbols are the unknown model parameters. 

Some of the functions presented above are used in Chapter 4 where we compare 

different models by analysis of their fit to mortality data on the entire lifespan and on 

very old ages. In addition to the age-dependent mortality models, several others have 

been developed to express mortality as function of age and time. The age and time 

dependent models of mortality are described in the next section.  
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1.2.2. Modelling age-time-dependent mortality 

“Age-period-cohort” is the name of a class of models that express the mortality rate at a 

specific age and specific time. In these models, mortality is determined by age, date of 

follow-up (period) and date of birth (cohort) (Hobcraft et al., 1982, Carstensen, 2007). 

The age-period-cohort models are mostly used to forecast mortality rates over a certain 

range of ages and over a certain period of time. The general mathematical form of age-

period-cohort models is given by: 

 𝜂(𝑚𝑥,𝑡) = 𝛼𝑥 +∑𝑓(𝑖)(𝑥, 𝜃𝑖)𝑘𝑡
(𝑖)
+ 𝛾𝑡−𝑥

𝑁

𝑖=1

, (1.5) 

where 𝜂 is the link function that transforms the mortality rate 𝑚𝑥,𝑡 (or other mortality-

related measurement such as the probability of dying, 𝑞𝑥,𝑡) into a suitable form (usually 

logarithmic or logistic transformations are used), 𝛼𝑥 is an age-related function which 

does not depend on time and specifies the shape of the mortality curve (age effects), 𝑘𝑡
(𝑖)

 

are period-trends that express the change in mortality curves over time (period effects), 

𝑓(𝑖)(𝑥, 𝜃𝑖) are age-dependent functions that determine the age-range within each trend 𝑖 

affects, and 𝛾𝑡−𝑥 is a function that varies between different cohorts (cohort effects) (Hunt 

and Blake, 2014). 

A simple example using the formulation of equation (1.5) is the Lee-Carter model (Lee 

and Carter, 1992) which excludes the cohort-related component (𝛾𝑡−𝑥) but is the most 

commonly used model for mortality forecasting purposes. Moreover, the models 

developed by Renshaw and Haberman (Renshaw and Haberman, 2003), Cairns et al. 

(Cairns et al., 2006, Cairns et al., 2011, Cairns et al., 2009), Yang et al. (Yang et al., 

2010) and several others, belong to the age-period-cohort class of mortality models. 

Table 1.2 presents eight special cases of mortality models that belong to this class as 

described in (Cairns et al., 2009). 

Mathematical models that express mortality as a function of age, or those that take into 

account both the age and time dependency of mortality, can use various assumptions to 

model out all possible observed features of mortality patterns. One of the more 

commonly used considerations is that the population is heterogeneous and composed of 

several subpopulations having different mortality dynamics (Rossolini and Piantanelli, 

2001, Vaupel, 2010). This consideration is made on the basis of research presented here 
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which is focused on modelling mortality dynamics and analysing their evolution over 

time (Chapters 2-4). An overview of mortality models that incorporate heterogeneity is 

presented in Section 1.2.3. 

Author Publication Model 

Lee and Carter 1992 log(𝑚(𝑡, 𝑥)) = 𝛽𝑥
(1)
+ 𝛽𝑥

(2)
𝑘𝑡
(2)

 

Renshaw and 

Haberman 

2006 log(𝑚(𝑡, 𝑥)) = 𝛽𝑥
(1)
+ 𝛽𝑥

(2)
𝑘𝑡
(2)
+ 𝛽𝑥

(3)
𝛾𝑡−𝑥
(3)

 

Currie 2006 log(𝑚(𝑡, 𝑥)) = 𝛽𝑥
(1)
+ 𝑛𝑎

−1𝑘𝑡
(2)
+ 𝑛𝑎

−1𝛾𝑡−𝑥
(3)

 

Currie, Durban 

and Eilers 

2004 log(𝑚(𝑡, 𝑥)) =∑𝜃𝑖𝑗𝐵𝑖𝑗
𝑎𝑦
(𝑥, 𝑡)

𝑖,𝑗

 

Cairns, Blake and 

Dowd 

2006 logit(𝑞(𝑡, 𝑥)) = 𝑘𝑡
(1)
+ 𝑘𝑡

(2)(𝑥 − 𝑥̅) 

Cairns et al. 2009 logit(𝑞(𝑡, 𝑥)) = 𝑘𝑡
(1)
+ 𝑘𝑡

(2)(𝑥 − 𝑥̅) + 𝛾𝑡−𝑥
(3)

 

Cairns et al. 2009 logit(𝑞(𝑡, 𝑥)) = 𝑘𝑡
(1)
+ 𝑘𝑡

(2)(𝑥 − 𝑥̅)

+ 𝑘𝑡
(3)((𝑥 − 𝑥̅)2 − 𝜎̂𝑥

2) + 𝛾𝑡−𝑥
(4)

 

Cairns et al. 2009 logit(𝑞(𝑡, 𝑥)) = 𝑘𝑡
(1)
+ 𝑘𝑡

(2)(𝑥 − 𝑥̅) + 𝛾𝑡−𝑥
(3) (𝑥𝑐 − 𝑥) 

Table 1.2: Age-period-cohort mortality models. The table is taken from (Cairns et al., 

2009). The functions 𝛽𝑥
(𝑖)

, 𝑘𝑡
(𝑖)

 and 𝛾𝑡−𝑥
(𝑖)

 represent the age, period and cohort effects 

respectively. The 𝑛𝑎 is the number of ages, 𝐵𝑖𝑗
𝑎𝑦
(𝑥, 𝑡) are B-splines with 𝜃𝑖𝑗 weights, 𝑥̅ 

is the mean age of analyzed age-range and 𝜎̂𝑥
2 is the mean value of (𝑥 − 𝑥̅)2. 

1.2.3. Modelling mortality incorporating heterogeneity 

Heterogeneity is an important characteristic of populations that should be considered to 

explain certain observations in mortality dynamics. Heterogeneity has an impact on the 

dynamics of population’s mortality, as individuals of the same age have different 

biological and physiological characteristics and they face different mortality dynamics 

even if they belong to the same cohort of a population. The consideration of 

heterogeneity is made in two different ways as related to the composition of a 

population. The first way is based on an assumption that the population is composed of a 

number of homogeneous subpopulations so that within each subpopulation the 

individuals are identical and follow the same mortality dynamics. This approach is used 
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in this thesis (Chapters 2-5) where we develop a model for the analysis of mortality in 

heterogeneous human populations. The second way is based on the consideration that 

each single individual in a population has their own specific traits and faces certain 

mortality dynamics. In this case, the force of mortality acting upon each individual has a 

cumulative effect on the mortality process in the entire population.   

Heterogeneity reflects many observed and unobserved characteristics. Observed 

characteristics include the life-style and environmental conditions, occupation, sex and 

many others, while unobserved characteristics mainly refer to genetic differences. A 

theory of mortality and ageing based on genetic heterogeneity was developed by Szilard 

(Szilard, 1959) who stated that the differences in the duration of individuals’ lifespans 

are mainly due to the different number of faults they have inherited. The consideration of 

genetic heterogeneity was also used by Beard (Beard, 1959) who developed a mortality 

model of heterogeneous populations which was expressed as a logistic curve. In 

addition, Strehler and Mildvan (Strehler and Mildvan, 1960) mentioned the existence of 

heterogeneity in populations and used it to explain the deviation in mortality from the 

exponential growth at very old ages. Other remarkable works were performed by Vaupel 

et al. (Vaupel et al., 1979), who defined individual frailty as a measure of individual 

differences in the chances of survival and proposed a model of mortality for 

heterogeneous populations, and by Vaupel and Yashin (Vaupel and Yashin, 1985a, 

Vaupel and Yashin, 1985b), who analysed the effects of heterogeneity on the dynamics 

of mortality including the explanation for late-life mortality deceleration and levelling-

off. There are many other interesting works which use heterogeneity to analyse human 

mortality (Shepard and Zeckhauser, 1980, Manton et al., 1981, Woodbury and Manton, 

1977, Keyfitz and Littman, 1979). 

A typical model of mortality, which takes into account the heterogeneity among 

individuals, includes a random variable which is called frailty and reflects individual 

unobserved heterogeneity on survival. The force of mortality of an individual aged 𝑥 as 

affected by its frailty 𝑍 can be represented as: 

 𝜇(𝑥, 𝑍) = 𝑍𝜇0(𝑥), (1.6) 

where 𝜇0(𝑥) is a pre-fixed function that describes underlying mortality. In this 

formulation it is assumed that each individual is born at a specific frailty level and 

remains at that level across their entire lifespan (Vaupel et al., 1979). In that case, frailty 
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is called fixed or unchanging. In (Vaupel et al., 1979) it is assumed that frailty follows a 

gamma-distribution with mean 1 and variance 𝜎2. The gamma distribution is used 

because frailty cannot be negative and this distribution takes only positive values.  

In the fixed frailty model, the average frailty of the population at age 𝑥 is given by 

 𝑍̅(𝑥) =
1

1 + 𝜎2𝐻(𝑥)
, (1.7) 

where 𝐻(𝑥) = ∫ 𝜇(𝑢)𝑑𝑢
𝑥

0
 is the cumulative hazard function. If the underlying mortality 

is described by the Gompertz model, 𝜇0(𝑥) = 𝑎𝑒
𝑏𝑥, the average frailty is 

 𝑍̅(𝑥) = (1 + 𝜎2
𝑎

𝑏
(𝑒𝑏𝑥 − 1))

−1

, (1.8) 

and the average mortality at age 𝑥 is given by 

 𝜇̅(𝑥) = 𝑎𝑒𝑏𝑥 (1 + 𝜎2
𝑎

𝑏
(𝑒𝑏𝑥 − 1))

−1

. (1.9) 

The average mortality of surviving individuals at age 𝑥 is equal to the mortality of the 

entire heterogeneous population that the individuals belong to. This model can be used to 

show that individuals’ mortality could increase faster than the population’s mortality. 

Indeed, as frail individuals with high values of frailty, die at young ages, the average 

frailty of the entire population decreases while age increases.  

The fixed frailty model (equation (1.9)) expresses the mortality of a population as a 

logistic function of age. The same function can be derived in a model of changing frailty 

(also known as acquired heterogeneity or debilitation) (Yashin et al., 1994). The result 

that the same mortality trajectory can be reproduced either by the fixed-frailty or 

changing-frailty model, indicates that the use of survival data alone is not enough to 

distinguish between different mechanisms that are able to generate the actual mortality 

patterns (Yashin et al., 2000) and that the modelling of frailty requires more complex 

considerations. The latter is indeed true, as in reality frailty is never fixed across the 

lifespan and also changes in heterogeneity are not always debilitative (for example if an 

individual has an increased probability of survival after recovering from a disease) 

(Yashin et al., 2000). 
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The second approach in modelling mortality by incorporating heterogeneity is based on 

the decomposition of a population into subgroups of individuals. The individuals in each 

subgroup are considered to be identical in terms of their exposure to mortality dynamics. 

Thus, a heterogeneous population can be seen as a composition of a number of 

homogeneous subpopulations. To examine the patterns of mortality in a simple case of a 

heterogeneous population composed by only two subpopulations, Vaupel and Yashin 

(Vaupel and Yashin, 1985b) used a mathematical model that expresses the mortality of 

the entire population, 𝜇̅(𝑥), as a function of mortality rates, 𝜇1(𝑥) and 𝜇2(𝑥), of the two 

subpopulations: 

 𝜇̅(𝑥) = 𝜋(𝑥)𝜇1(𝑥) + (1 − 𝜋(𝑥))𝜇2(𝑥), (1.10) 

where 𝜋(𝑥) = 𝜋(0)𝑝1(𝑥)/[𝜋(0)𝑝1(𝑥) + (1 − 𝜋(0))𝑝2(𝑥)] is the proportion of 

survivors at age 𝑥 of the first subpopulation to the entire population and 𝑝𝑗(𝑥) =

exp(−∫ 𝜇(𝑢)𝑑𝑢
𝑥

0
) for 𝑗 = 1, 2 are the survival functions for the two subpopulations. In 

their work, Vaupel and Yashin have shown how different age-dependent functions of 

mortality rates for the two subpopulations (different functions for 𝜇1(𝑥) and 𝜇2(𝑥)) 

affect the mortality trajectory of the entire population. Formulation similar to that 

expressed by equation (1.10) is used in our research as denoted in our motivation 

(following section) and described in detail in Chapters 2, 3 and 4. 

1.3. Motivation and methodology 

1.3.1. Motivation 

This study is focused on mathematical modelling of mortality dynamics in human 

populations. The model that we propose is based on two main assumptions. The first 

assumption is that each population is heterogeneous and consists of a number of distinct 

subpopulations. The factor that distinguishes our model from other existing models of 

heterogeneous populations is our second assumption which states that the mortality 

dynamics in each constituent subpopulation increases exponentially with age in a way 

similar to what is described by the Gompertz law. In other words, our model has the 

same formulation as equation (1.10) but in the general case of a population composed by 

𝑛 subpopulations where the mortality rate 𝜇𝑗(𝑥), for each subpopulation 𝑗 = 1,⋯ , 𝑛, is 

described by the exponential function. 
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The model that we developed is described in Chapter 2 and is used for the analysis of 

mortality dynamics across the lifespan and their evolution over time as presented in 

Chapters 2, 3 and 4. We should point out that the existence of the subpopulations in our 

study is highly hypothetical; the subpopulations are introduced as a convenient 

mathematical constraint which allows very accurate reproduction of the entire mortality 

patterns, gives explanations for the deviations of mortality from the exponential increase 

at young and very old ages and for the decrease in mortality over time. In Chapter 4 we 

put forward a few arguments to say that this model may reflect the real heterogeneous 

structure of a population and the differences between subpopulations can be due to 

genetic variation. Particularly, we show in Chapter 4 that evolutionary forces (i.e. natural 

selection) can explain the homogenisation of the Swedish population during the 20th 

century as predicted by the model. 

However, the nature of those subpopulations is not entirely verified in this thesis and the 

exact factors that identify the mortality-related differences between real subgroups of 

individuals are not yet clear. Alongside genetic variations, the differences between 

subpopulations could eventually reflect environmental and socio-economic disparities, 

life-style conditions and many other factors. We aim to further investigate the nature of 

differences between those subpopulations in future work (see also other future plans in 

Chapter 5). Nevertheless, for the purposes of this study, the consideration of 

heterogeneity as a convenient constraint allows the development of an extremely 

accurate (in terms of the goodness-of-fit) model and the implementation of a 

comprehensive analysis of mortality dynamics explaining its main features related to 

age- and time- dependencies. 

While the model includes parameters with demographic interpretations, we analyse the 

values of these parameters, as obtained by fitting the model to the observation data, and 

conclude with three main outcomes. The first outcome is related to the effect of 

heterogeneity on the dynamics of mortality across the lifespan which is examined in 

terms of the variation of model parameters (Chapter 2). The second outcome refers to the 

influence of heterogeneity on the evolution of mortality over time as described by the 

alteration of model parameters (Chapter 3). The third outcome is the justification of 

mortality-related homogenisation of the population during the 20th century and is derived 

by relating the existence of population heterogeneity with genetic variation between 

different subpopulations (Chapter 4). To perform this research and to derive the values 
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of parameters in the best fit model we have applied a specific fitting procedure and used 

a certain selection criterion as described in Sections 1.3.2 and 1.3.3 respectively. 

1.3.2. Fitting procedure 

In this research, we apply non-linear regression analysis to fit the model that we develop 

in Chapter 2, to mortality data. The Least Squares (LS) method is used to estimate the 

free (unknown) parameters that minimize the sum of squared residuals (a residual is the 

difference between the theoretical and the observed value). Linear and non-linear 

regressions have been shown to be less reliable than the Maximum Likelihood (ML) 

method in estimating the unknown parameters when simple mortality models are used 

(see (Wilson, 1993, Promislow et al., 1999, Yen et al., 2008)). Indeed the LS method 

overestimates mortality at early life and underestimates it at old ages when simple 

functions such as the Gompertz, Makeham or Weibull are used to fit the mortality rates. 

In contrast, when a complex nonlinear model fits very precisely an entire data set, the LS 

method is favoured over ML because it does not require the use of numerical methods 

for the partial differentiation of the function with respect to each unknown parameter.  

In addition, both LS and ML methods have many similarities (Pletcher, 1999). When the 

errors (residuals) are independent and identically distributed, the linear and nonlinear 

regressions give estimations for the unknown parameters identical to those given by the 

maximum likelihood method (Burnham and Anderson, 2003). To see this link between 

ML and LS methods let us consider a sample of 𝑛 variables, (𝑥1, … , 𝑥𝑛), where each one 

follows a normal distribution with mean 𝜇 and variance 𝜎2. Then, the probability density 

of a variable 𝑥𝑗 from the considered sample, is given by 

 𝑓(𝑥𝑗) =
1

√2𝜋𝜎
𝑒−(𝑥𝑗−𝜇)

2
/2𝜎2 . (1.11) 

The likelihood function of the probability distribution is expressed as: 

 𝐿(𝑥) =∏
1

√2𝜋𝜎
𝑒−(𝑥𝑗−𝜇)

2
/2𝜎2

𝑛

𝑗=1

= (
1

√2𝜋𝜎
)
𝑛

𝑒−∑ (𝑥𝑗−𝜇)
2𝑛

𝑗=1 /2𝜎2 , (1.12) 

and the log-likelihood by 
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 𝑙(𝑥) = ln(𝐿(𝑥)) = 𝑛 ln (
1

√2𝜋
) − 𝑛 ln(𝜎) −

1

2𝜎2
∑(𝑥𝑗 − 𝜇)

2
𝑛

𝑗=1

. (1.13) 

The maximum likelihood estimators are found by partial differentiation of the log-

likelihood function with respect to each parameter. Consequently, the estimator of the 

normal distribution’s mean is derived as: 

 0 =
𝜕𝑙(𝑥)

𝜕𝜇
=
1

𝜎2
∑(𝑥𝑗 − 𝜇)

𝑛

𝑗=1

⇒ 𝜇̂ =
1

𝑛
∑𝑥𝑗

𝑛

𝑗=1

= 𝑥̅. (1.14) 

The estimation of mean is substituted into the log-likelihood function (equation (1.13)) 

and the partial differentiation respect to 𝜎 gives the estimator for the variance: 

 0 =
𝜕𝑙(𝑥)

𝜕𝜎
= −

𝑛

𝜎
+
1

𝜎3
∑(𝑥𝑗 − 𝑥̅)

2
𝑛

𝑗=1

⇒ 𝜎̂2 =
1

𝑛
∑(𝑥𝑗 − 𝑥̅)

2
𝑛

𝑗=1

. (1.15) 

This shows that the estimators of the mean and the variance of the normal distribution as 

computed through ML are the same as computed by the LS method. In addition, the use 

of the normal distribution gives another important outcome. Using the above parameters’ 

estimators, the maximum log-likelihood is expressed as 

 ln(𝐿̂(𝑥)) = 𝑛 ln (
1

√2𝜋
) − 𝑛 ln(𝜎̂) −

1

2𝜎̂2
∑(𝑥𝑗 − 𝑥̅)

2
𝑛

𝑗=1

 (1.16) 

or 

 ln (𝐿̂(𝑥)) = −
𝑛

2
ln(𝜎̂2) −

𝑛

2
ln(2𝜋) −

𝑛

2
. (1.17) 

The additive constants (terms which do not depend on the unknown parameters) are 

often removed from the log-likelihood as they do not contribute to its maximization. As 

a result, the maximized value of the log-likelihood function can be expressed as: 

 ln (𝐿̂(𝑥)) ≈ −
𝑛

2
ln(𝜎̂2). (1.18) 
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This is a key point for the Bayesian Information Criterion (described in the next section) 

because it allows a simple mapping from the result of Least Squares analysis into the 

maximized value of the log-likelihood function. 

Taking into account that the LS method is easier to implement, and that its estimations 

for the parameters are the same as for ML (in the case when the errors are independent 

and identically distributed), we use the LS as the core method of estimating the unknown 

parameters of our model. Fortunately the model that we develop provides a very accurate 

fit for the mortality data across all ages and the residuals in all data points have 

approximately constant mean with a value very close to zero and almost constant 

variance (i.e. the errors are homoscedastic). We also verify that the residuals are 

approximately normally distributed (see Q-Q plots in Chapter 5). This validates that the 

method used does not cause any significant biases to the estimates. 

1.3.3. Model selection 

Model selection process is used to determine the most optimal model, from a set of 

candidate models, i.e. the model which fits a considered set of data without over or under 

fit. Quality of fit can be represented by a certain quantity which estimates over/under 

fitting and depends on the number of model parameters and the size of the dataset. 

Generally speaking, an increase in sample size can compensate for the increase in the 

model parameters. However, if a model with a small number of parameters fits a large 

sample of data efficiently, then this model is preferred amongst other models with a 

larger number of parameters. 

A number of different criteria have been introduced for the selection of the optimal 

model. The two most commonly used criteria that are closely related to each other, are 

the Akaike Information Criterion (AIC) (Akaike, 1973) and the Bayesian Information 

Criterion (BIC) which is attributed to Gideon Schwarz (Schwarz, 1978). Both criteria are 

based on the likelihood function but they differ in the penalty term used for the number 

of model parameters. The penalty term is important for fitting procedures, because the 

increase in the number of parameters usually increases the likelihood but also over-fits 

the data. The penalty term of BIC is 𝑘 log(𝑛) where 𝑘 is the number of parameters and 𝑛 

is the number of observations, and the penalty term of AIC is 2𝑘. Therefore, for any 

sample size greater than eight, the penalty term in BIC is larger than in AIC. This 

implies that the BIC generally penalizes the number of unknown parameters more 
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strongly than the AIC does (and makes BIC favoured compared to AIC), as it depends 

on the size of 𝑛 and the relative magnitude of 𝑛 and 𝑘. Many studies have been 

performed to compare these information criteria (see for example (Koehler and 

Murphree, 1988, Kuha, 2004, Stone, 1979)). However, since both are very similar, it is 

usually difficult to choose one of them over the other. For this study, we use BIC for the 

selection of the optimal model for the only reason that it gives stronger penalties to the 

number of free parameters.    

The BIC is represented by the formula: 

 BIC = −2 log(𝐿̂) + 𝑘 log(𝑛) (1.19) 

where 𝐿̂ is the maximized value of the likelihood function (Neath and Cavanaugh, 2012, 

Koehler and Murphree, 1988). Under the assumption that the residuals are independent 

and normally distributed, that is, the relationship expressed by the equation (1.18) is 

hold, the BIC can be rewritten as 

 BIC = 𝑛 log(𝜎̂2)+𝑘 log(𝑛). (1.20) 

This representation does not depend on the maximized likelihood and therefore can be 

used when the unknown parameters are estimated by the Least Squares method. Given a 

set of candidate models, the model with the lower value of BIC is the one to be 

preferred. Equation (1.20) indicates that the BIC is an increasing function of 𝜎̂2 and an 

increasing function of 𝑘. Hence, using the LS method, lower BIC implies better fit as it 

gives a minimal number of parameters for the minimal sum of squared residuals (𝜎̂2 in 

equation (1.20) is the sum of squared residuals divided by the number of data).  
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Chapter 2.  

A mathematical model of mortality 

dynamics across the lifespan 

combining heterogeneity and 

stochastic effects  

2.1. Summary 

The mortality patterns in human populations reflect biological, social and medical 

factors affecting our lives, and mathematical modelling is an important tool for the 

analysis of these patterns. It is known that the mortality rate in all human populations 

increases with age after sexual maturity. This increase is predominantly exponential and 

satisfies the Gompertz equation. Although the exponential growth of mortality rates is 

observed over a wide range of ages, it excludes early- and late-life intervals. In this 

Chapter we accept the fact that the mortality rate is an exponential function of age and 

analyse possible mechanisms underlying the deviations from the exponential law across 

the human lifespan. We consider the effect of heterogeneity as well as stochastic factors 

in altering the exponential law and compare our results to publicly available age-

dependent mortality data for Swedish and US populations. In a model of heterogeneous 

populations we study how differences in parameters of the Gompertz equation 

describing different subpopulations account for mortality dynamics at different ages. 

Particularly, we show that the mortality data on Swedish populations can be reproduced 

fairly well by a model comprising four subpopulations. We then analyse the influence of 
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stochastic effects on the mortality dynamics to show that they play a role only at early 

and late ages, when only a few individuals contribute to mortality. We conclude that the 

deviations from exponential law at young ages can be explained by heterogeneity, 

namely by the presence of a subpopulation with high initial mortality rate presumably 

due to congenital defects, while those for old ages can be viewed as fluctuations and 

explained by stochastic effects. 

2.2. Introduction 

Analysis of the dynamics of human mortality over the life course is of great importance. 

Demographic comparisons between populations may reveal clues into differences in 

causes of mortality that may be related to intrinsic and extrinsic factors. Study of 

mortality dynamics over age has a long story. Many researchers following the early 

works of Lexis (Lexis, 1878) and Pearson (Pearson, 1897) have considered mortality at 

different age intervals to be affected by different factors, with ageing to be at play only 

after sexual maturation (Gompertz, 1825). Early considerations of age dependent 

mortality were rather philosophical: according to Lexis (Lexis, 1878) everyone should 

live the same length of time — the normal length of life — but some die earlier due to 

accidents. He distinguished “normal” deaths which occur at the normal age of death or 

are randomly distributed around that age, from premature deaths of adults and, a fortiori, 

deaths of children. Pearson’s (Pearson, 1897) approach was far more scientific: he 

considered death as a random event and his statistical analysis of age distribution of 

death in England (1871-1880) revealed five different phases described by different 

probabilities of death for five age groups. The reasons why probability of death (or 

mortality rate) depends on age and should follow different dynamics at different age 

intervals are not well understood. Recent studies of mortality dynamics over the life 

course attempt to understand the mechanisms of age-related mortality based on the 

underlying physiological, molecular and genetic processes. It is not surprising that a 

number of studies have been conducted to analyse mortality data as a function of age 

(Vaupel, 2005, de Magalhaes et al., 2005, Gavrilov and Gavrilova, 2003).  

Mortality rate 𝑚𝑖 at age 𝑖 is defined as number of deaths of individuals of age 𝑖 (Δ𝑁𝑖) 

divided by the number of person-years (𝑃𝑌𝑖) calculated for individuals of age 𝑖 in the 

population (Preston et al., 2000). If an average person who died at age 𝑖 have died 𝑎 
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years (0 < 𝑎 < 1, i.e. 𝑎 gives the fraction of a year) after his last birthday then 𝑃𝑌𝑖 =

𝑁𝑖 − (1 − 𝑎)Δ𝑁𝑖 where 𝑁𝑖 is the number of individuals who have reached age 𝑖. Thus: 

 𝑚𝑖 =
Δ𝑁𝑖

𝑁𝑖 − (1 − 𝛼)Δ𝑁𝑖
  or equally  Δ𝑁𝑖 =

𝑚𝑖𝑁𝑖
1 + (1 − 𝛼)𝑚𝑖

. (2.1) 

If an average person who died at age 𝑖 had died 6 months after his birthday then 𝛼 = 0.5. 

Observations on mortality in human populations indicate that 𝛼 = 0.5 (with very high 

precision) for all ages except for the age zero, 𝑖 = 0, for which parameter 𝛼 is 

considerably smaller (typically 𝛼 ≈ 0.35). Furthermore, the number of deaths of people 

aged 𝑖 can be represented as: 

 Δ𝑁𝑖 = 𝑁𝑖 − 𝑁𝑖+1, (2.2) 

where 𝑁𝑖+1 represents the number of people who has reached the age 𝑖 + 1. 

For most of the human lifespan the Gompertz equation (Gompertz, 1825) depicting the 

exponential increase in mortality with age fits the data well and has been widely used. 

Mathematically the exponential dynamics of mortality rate is represented as: 

 𝑚𝑖 = 𝑚0𝑒
𝛽𝑖, (2.3) 

where 𝑚0 is the initial mortality when 𝑖 = 0 (can be derived from the mortality at the 

age when mortality rates begin to climb) and parameter 𝛽 defines the rate of 

demographic ageing or how quickly the mortality rate is changing.  

Combining equations (2.1-2.3) we have: 

 𝑁𝑖+1 = 𝑁𝑖 − Δ𝑁𝑖 = 𝑁𝑖 −
𝑚𝑖𝑁𝑖

1 + 0.5𝑚𝑖

= (
1 − 0.5𝑚𝑖

1 + 0.5𝑚𝑖
)𝑁𝑖 = (

1 − 0.5𝑚0𝑒
𝛽𝑖

1 + 0.5𝑚0𝑒
𝛽𝑖
)𝑁𝑖 . (2.4) 

Equation (2.4) shows how the number of individuals of age 𝑖 + 1 is defined by the 

number of individuals of age 𝑖. Using the derivation from equation (2.4) multiple times 

we can find the size 𝑁𝑖 as a function of the initial size 𝑁0, initial mortality, 𝑚0, and 

parameter 𝛽: 

 𝑁𝑖 = (
1 − 0.5𝑚0𝑒

𝛽(𝑖−1)

1 + 0.5𝑚0𝑒
𝛽(𝑖−1)

)𝑁𝑖−1 = ⋯ = 𝑁0∏(
1− 0.5𝑚0𝑒

𝛽𝑘

1 + 0.5𝑚0𝑒
𝛽𝑘
)

𝑖−1

𝑘=0

. (2.5) 
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Equations (2.1-2.5) represent a discrete counterpart of the continuous equations 

associated with the Gompertz law (Mueller et al., 1995). 

 

Figure 2.1: Mortality rate versus age for the United States population in the year 

2002 (Panel A) and for the Swedish population in the year 2007 (Panel B). The data 

presented in panel A is taken from the Centre for Disease Control and Prevention 

(http://www.cdc.gov/nchs/deaths.htm) and the data in panel B from the Human 

Mortality Database (http://www.mortality.org). Both panels represent the logarithm of 

mortality rate versus the age 𝑖. The data for the Swedish population is given for all 

ages while for the American population only selected ages are given. In both cases the 

data after the age of 25-30 fits into a straight line, i.e. indicates an exponential 

growth. The data for the Swedish population (which is more complete) shows the 

deviation from the exponential growth (which even includes drops in mortality rate) 

after the age of 100. 

Actual data on mortality in human populations can be found in different formats. Most 

commonly it is represented as a logarithm of mortality rate versus age (see Figure 2.1) 

which can be interpolated by a linear plot if it is given by the exponential function as in 

the case of equation (2.3). Plots in Figure 2.1 show that the mortality rate increases for 

most ages and this increase is approximately exponential. The deviations from the 

exponential law are observed in young (before 32) and old (after 102 in panel B) ages. 

The mortality plateau at late ages (Mueller and Rose, 1996, Pletcher and Curtsinger, 

1998, Wachter, 1999) is one of particularly intriguing facets in human populations as 

well as in other non-human species. 

A number of mathematical models have been developed and used to analyse 

observations on the mortality dynamics in human populations as well as in populations 

of other species (Yashin et al., 2000, Vaupel, 2010). Various explanations have been put 

forward for the peculiarities of mortality dynamics at young and old ages as we have 

mentioned in Chapter 1. The deviations of mortality from the exponential law can be 

explained by heterogeneity (Vaupel and Yashin, 1985a, Vaupel et al., 1979), while 

http://www.cdc.gov/nchs/deaths.htm
http://www.mortality.org/
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heterogeneity can be explained and described using different models (Steinsaltz and 

Wachter, 2006, Lebreton, 1996). However, we feel that the systematic analysis of the 

mortality dynamics in heterogeneous populations is incomplete. Particularly, it would 

make an important exercise to construct a model of heterogeneous population with 

parameters fitting real observations as this could provide clues regarding biological, 

genetic and medical factors driving these mortality patterns. Another reason for 

deviations of mortality dynamics from Gompertz law can be associated with the random 

events affecting the longevity. The role of stochastic effects on the mortality dynamics as 

mediated by their impact on individual frailty have been addressed by many authors 

(Weitz and Fraser, 2001, Vaupel, 2010). And again the results of these studies have not 

been systematically compared with detailed observations available nowadays. 

In this Chapter, we aim to model mortality across the whole lifespan presuming that the 

rate of mortality changes over age according to the Gompertz Law. Although many other 

models have been used to describe mortality dynamics over age (Pletcher, 1999) there is 

a genuine feeling that the fundamental processes underlying mortality should result in 

exponential law (Yashin et al., 2000). Therefore we analyse whether the deviations from 

Gompertz law can be explained by the heterogeneity of populations while the mortality 

in each subpopulation is still described by the Gompertz law. Also assuming that the 

mortality dynamics is described by Gompertz law we check whether the deviations from 

this law can be explained by stochastic effects. In order to perform this analysis we 

developed mathematical models comprising the heterogeneity of the population and/or 

stochastic effects. We also aim to derive likely Gompertz parameters for the model so 

that it would fit the observation data used in this study and infer clues about biological, 

social or biomedical processes at work. We first focus on the young ages and then on the 

old ages to model and analyse the irregularities in the mortality dynamics using data both 

from Sweden and the US. This allows us to explain these irregularities and to reproduce 

the observed data in the model. 

2.3. Study of heterogeneous populations 

2.3.1. Mathematical model of heterogeneous populations 

Each human population can be seen as consisting of a number of subpopulations which 

differ genetically and/or by life style (for example associated with gender or occupation). 
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The parameters defining the mortality dynamics (𝑚0, 𝛽 in equation (2.3)) of each 

subpopulation can be different, reflecting the variations in the genotype and life style 

(see (Vaupel et al., 1998) and references therein). Therefore, we can model the whole 

heterogeneous population in the following way. We consider the population as 

consisting of 𝑛 subpopulations and assume that the mortality rate in each subpopulation 

is defined by the Gompertz equation, although the equation parameters are different for 

different subpopulations (Vaupel, 2010). Let us use the notation 𝑁𝑗,0 for the initial size, 

𝑚𝑗,0 for the initial mortality rate, and 𝛽𝑗 for the rate of mortality dynamics of 

subpopulation 𝑗. According to the Gompertz law the mortality rate of subpopulation 𝑗 is: 

 𝑚𝑗,𝑖 = 𝑚𝑗,0𝑒
𝛽𝑗𝑖. (2.6) 

If the entire population consists of 𝑛 subpopulations then the equation (2.1) can be 

rewritten as: 

 

𝑚𝑖 =
Δ𝑁1,𝑖 + Δ𝑁2,𝑖 +⋯+ Δ𝑁𝑛,𝑖

𝑁1,𝑖 +𝑁2,𝑖 +⋯+𝑁𝑛,𝑖 − 0.5(Δ𝑁1,𝑖 + Δ𝑁2,𝑖 +⋯+ Δ𝑁𝑛,𝑖)

=
∑ Δ𝑁𝑗,𝑖
𝑛
𝑗=1

∑ 𝑁𝑗,𝑖
𝑛
𝑗=1 − 0.5∑ Δ𝑁𝑗,𝑖

𝑛
𝑗=1

 

(2.7) 

where sub-index 𝑖 denotes the age and sub-index 𝑗 - the subpopulation. Taking into 

account equations (2.1) and (2.6), equation (2.7) can be rewritten as: 

 𝑚𝑖 =

∑
𝑁𝑗,𝑖𝑚𝑗,0𝑒

𝛽𝑗𝑖

1 + 0.5𝑚𝑗,0𝑒
𝛽𝑗𝑖

𝑛
𝑗=1

∑ 𝑁𝑗,𝑖
𝑛
𝑗=1 − 0.5∑

𝑁𝑗,𝑖𝑚𝑗,0𝑒
𝛽𝑗𝑖

1 + 0.5𝑚𝑗,0𝑒
𝛽𝑗𝑖

𝑛
𝑗=1

. (2.8) 

In this equation the actual sizes of subpopulations can be replaced by their fractions. 

That is, we can define 𝜌𝑗,𝑖 as the fraction formed by subpopulation 𝑗 over the total 

population at any age 𝑖: 

 𝜌𝑗,𝑖 =
𝑁𝑗,𝑖
𝑁𝑖

=
𝑁𝑗,𝑖

𝑁1,𝑖 +𝑁2,𝑖 +⋯+𝑁𝑛,𝑖
 with ∑𝜌𝑗,𝑖

𝑛

𝑗=1

= 1. (2.9) 

Then the equation (2.8) can be rewritten as: 
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 𝑚𝑖 =

∑
𝜌𝑗,𝑖𝑚𝑗,0𝑒

𝛽𝑗𝑖

1 + 0.5𝑚𝑗,0𝑒
𝛽𝑗𝑖

𝑛
𝑗=1

1 − 0.5∑
𝜌𝑗,𝑖𝑚𝑗,0𝑒

𝛽𝑗𝑖

1 + 0.5𝑚𝑗,0𝑒
𝛽𝑗𝑖

𝑛
𝑗=1

. (2.10) 

The fractions 𝜌𝑗,𝑖 in the equation (2.10) are defined by the initial fractions 𝜌𝑗,0 by the 

equation similar to equation (2.5): 

 𝜌𝑗,𝑖 =

𝜌𝑗,0∏ (
1 − 0.5𝑚𝑗,0𝑒

𝛽𝑗𝑘

1 + 0.5𝑚𝑗,0𝑒
𝛽𝑗𝑘
)𝑖−1

𝑘=0

∑ (𝜌𝑠,0∏ (
1 − 0.5𝑚𝑠,0𝑒

𝛽𝑠𝑘

1 + 0.5𝑚𝑠,0𝑒
𝛽𝑠𝑘
)𝑖−1

𝑘=0 )𝑛
𝑠=1

. (2.11) 

We will use equations (2.10-2.11) to define the mortality rate of the heterogeneous 

population as a function of age 𝑖 and to examine the effect of model parameters on the 

dynamics of the mortality over age in the heterogeneous population. The continuous 

counterpart of equation (2.10) can be found in (Vaupel and Yashin, 1985a) (see also 

Chapter 5). 

2.3.2. Mortality dynamics in the model of heterogeneous populations 

We start our study by considering a heterogeneous population consisting of two 

subpopulations (Figure 2.2). The mortality of each subpopulation is described by 

equation (2.3) with parameters specific to the subpopulation. We can use equation (2.8) 

or equation (2.10) to analyse how the values of model parameters describing each 

subpopulation, namely initial sizes, 𝑁1,0 and 𝑁2,0 (or initial fractions 𝜌1,0 and 𝜌2,0), initial 

mortalities, 𝑚1,0 and 𝑚2,0, and parameters 𝛽1 and 𝛽2, defining ageing of subpopulations, 

affect the dynamics of the mortality rate of the entire population. Figure 2.2A shows the 

influence of the initial mortality rate of a subpopulation on the dynamics of the total 

mortality rate. Here we consider the case when the subpopulations have equal initial 

sizes and equal slopes of ageing, i.e., 𝛽1 = 𝛽2. We can see that the value of the mortality 

rate for the entire population is initially in between (exactly in the middle for age 𝑖 = 0) 

the mortality rates of the two subpopulations, but in the long run merges with the 

subpopulation that has the lower initial mortality. An increase in the difference in the 

initial mortality of subpopulations reduces the time needed for these to merge. The plot 

of mortality rate versus age has a single minimum that shifts down to smaller ages as the 
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higher initial mortality is increased (compare red, green and blue solid lines in Figure 

2.2A). 

 

Figure 2.2: The effect of varying model parameters on the mortality dynamics of a 

heterogeneous population consisting of two subpopulations.  

A: The effect of varying the initial mortality rate for one of the subpopulations. 

Subpopulations have equal initial sizes (𝜌1,0 = 𝜌2,0 = 0.5) and equal ageing slopes 

(𝛽1 = 𝛽2 = 0.039). The initial mortality 𝑚1,0 takes the values 0.5, 0.25 and 0.15 for 

the blue, green and red dashed lines, respectively, while the initial mortality 𝑚2,0 =
0.02 is constant. The total mortality of the entire population is represented by a solid 

line with the colour of the corresponding dashed line (indicating the value of 𝑚1,0). 

B: The effect of varying the ageing slope. Subpopulations have equal initial sizes 

𝜌1,0 = 𝜌2,0 = 0.5 and equal initial mortality rates 𝑚1,0 = 𝑚2,0 = 0.03. The rate of 

ageing 𝛽1 takes the values 0.2, 0.1 and 0.067 for the blue, green and red dashed lines, 

respectively, while 𝛽2 = 0.033 is constant. The total mortality of the entire population 

is represented by a solid line with the colour of the corresponding dashed line 

(indicating the value of 𝛽1). 

C: The effect of varying the initial size of the subpopulation. Two subpopulations 

(dashed lines) with different ageing slopes (𝛽1 = 0.036, 𝛽2 = 0.056) and different 

initial mortality rates (𝑚1,0 = 0.15, 𝑚2,0 = 0.02) are considered. Blue, green and red 

lines show the total mortality of a whole population where the initial fraction 𝜌1,0 is 

0.9, 0.99 and 0.999 correspondingly. 

We have also checked how the difference in the ageing slopes, 𝛽1 and 𝛽2, of 

subpopulations influences the dynamics of the mortality rate of a heterogeneous 

population (Figure 2.2B). If the ageing slopes of subpopulations are different then the 

mortality rate of the entire population has a value in between the mortality rates of 

subpopulations. The total mortality increases at young ages, decreases for a short age 

interval and then increases again for old ages. In the long run the total mortality saturates 

to the level of the mortality rate of the subpopulation with the lower ageing coefficient, 

𝛽. Generally, the graph of total mortality rate has a maximum and a minimum. They 

both are shifting to old ages when the difference between ageing slopes of 

subpopulations decreases.  
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The effect of variation in the initial sizes of subpopulations on the mortality dynamics of 

a heterogeneous population is shown in Figure 2.2C. We have checked a general case of 

two subpopulations with different initial mortality rates (𝑚1,0 = 0.15, 𝑚2,0 = 0.02) and 

different mortality coefficients (𝛽1 = 0.0357, 𝛽2 = 0.0556) and varied the initial 

fractions 𝜌1,0 and 𝜌2,0 (𝜌2,0 = 1 − 𝜌1,0) of the subpopulations. The curves for the total 

mortality of the entire population (Figure 2.2C) confirm the conclusions made after the 

analysis of the first two cases (shown in Figure 2.2A and Figure 2.2B). Generally, there 

is a single minimum on the plot of the total mortality rate and this minimum shifts to old 

ages with the increase of the initial fraction of subpopulation 1 which displays both a 

higher initial mortality level and a slower mortality increase with age (i.e. lower 𝛽).  

The analysis of simulations with varying parameters presented in Figure 2.2 can be used 

for reproduction of two sets of mortality data presented in Figure 2.1. Data on panel A of 

Figure 2.1 is represented by a few points while data on panel B is much more detailed. 

We have picked up these two sets of data to demonstrate that the technique we use for 

fitting model parameters to observation data works equally well for sparse and extensive 

data sets. Figure 2.1A gives the mortality data for the USA in the year 2002 taken from 

the Centres for Disease Control and Prevention http://www.cdc.gov/nchs/deaths.htm. 

Note, that this data could be interpolated either by a plot which has a single minimum 

(skipping the point at age 20) or by a plot with two minima. Our analysis (Figure 2.2) 

indicates that in order to reproduce a plot of mortality rate with a single extreme point 

we need to consider two subpopulations. Since each subpopulation is described by three 

model parameters (initial mortality, 𝑚0, rate of ageing, 𝛽, and fraction, 𝜌) and 𝜌1 + 𝜌2 =

1 we need to find values of five parameters to fit the data in Figure 2.1A. In the general 

case of 𝑛 subpopulations the number of free (unknown) parameters is 𝑘 = 3𝑛 − 1. 

To find values for the free parameters that could minimize the sum of squared residuals 

(residual is a difference between the theoretical prediction and the observation data) and 

therefore to fit the data we have used the Least Squares Method as described in Chapter 

1. This method was implemented using nonlinear regression algorithm (provided by the 

command DataFit in Maple which is included in the DirectSearch package). Using the 

LS method we have fitted parameters of the models for heterogeneous populations 

consisting of two (Figure 2.3A) and three (Figure 2.3B) subpopulations with the US data 

in Figure 2.1A. The next task is to find out which of these two models is a better fit. 

According to the BIC, the heterogeneous model with three subpopulations (BIC =

http://www.cdc.gov/nchs/deaths.htm
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−44.06) fits the US data better than the model with two subpopulations (BIC =

−13.01). For the particular US data we cannot consider a population composed of four 

subpopulations because in that case we will need to calculate 11 free parameters while 

there are only 9 data points. 

  

Figure 2.3: Fitting the heterogeneous model to the US mortality data using the 

Least Squares Method. The data is denoted by the circle symbols, the mortality rates 

of modelled subpopulations are given by the black dashed lines and the mortality of 

the whole population by the solid black curve.  

A: The heterogeneous population composed by two subpopulations. Model 

parameters: 1st subpopulation: 𝑚1,0 = 1.052, 𝜌1,0 = 0.00978, 𝛽1 = 0.0488; 2nd 

subpopulation: 𝑚2,0 = 0.00001133, 𝜌2,0 = 0.99022, 𝛽2 = 0.0753. Sum of squared 

residuals: 0.625592. 

B: The heterogeneous population composed by three subpopulations. Model 

parameters: 1st subpopulation: 𝑚1,0 = 0.9748, 𝜌1,0 = 0.01038, 𝛽1 = 0.065; 2nd 

subpopulation: 𝑚2,0 = 0.000345, 𝜌2,0 = 0.02486, 𝛽2 = 0.223; 3rd subpopulation: 

𝑚3,0 = 0.0000475, 𝜌3,0 = 0.96476, 𝛽3 = 0.0885. Sum of squared residuals: 

0.009544. 

Now let us consider the data on the death rates in Sweden for the year 2007 presented in 

Figure 2.1B (taken from the Human Mortality Database: http://www.mortality.org). This 

data is considerably more detailed compared to the US data presented in Figure 2.1A. 

From Figure 2.1B we see that the mortality rate is initially about 0.0025, and then 

declines to a minimum point at the age of 10 years, then increases until a local maximum 

value at the age of 25 years, drops slightly and advances exponentially (along a straight 

line on a logarithmic scale) from the age of 30 to about 100 years. At advanced ages, i.e. 

after approximately 100 years, the mortality data don not follow the monotonically 

increasing line. This can be explained either by fluctuations in mortality data or by the 

fact that the mortality rate starts to decline with age. 

Figure 2.4 shows three models of heterogeneous populations composed of three (panel 

A), four (panel B) and five (panel C) subpopulations fitting the data on the Swedish 

http://www.mortality.org/
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population presented in Figure 2.1B. Compared by eye the plots on panels B and C seem 

to be better fits than the plot on panel A. The BIC indicates (see Figure 2.4 legend) that 

the four-subpopulation model (panel B) fits to the data slightly better than the five-

subpopulation model (panel C). 

 

Figure 2.4: Fitting the heterogeneous model to the Swedish mortality data using the 

Least Squares Method. The data is denoted by the circle symbols, the mortality rates 

of modelled subpopulations are given by the dashed lines and the mortality of the 

whole population by the solid curve.  

A: The heterogeneous population composed by three subpopulations. Model 

parameters: 1st subpopulation: 𝑚1,0 = 0.7211, 𝜌1,0 = 0.00198, 𝛽1 = 0.67 ∙ 10
−5. 2nd 

subpopulation: 𝑚2,0 = 0.001169, 𝜌2,0 = 0.00483, 𝛽2 = 0.2129. 3rd subpopulation: 

𝑚3,0 = 0.00001317, 𝜌3,0 = 0.99319, 𝛽3 = 0.1041. Sum of squared residuals: 

5.715275, 𝐵𝐼𝐶 = −287.7033. 

B: The heterogeneous population composed by four subpopulations. Model 

parameters: 1st subpopulation: 𝑚1,0 = 1.6139, 𝜌1,0 = 0.00266, 𝛽1 = 0.67 ∙ 10
−5. 2nd 

subpopulation: 𝑚2,0 = 0.108, 𝜌2,0 = 0.00057, 𝛽2 = 0.2685. 3rd subpopulation: 

𝑚3,0 = 0.00052, 𝜌3,0 = 0.00460, 𝛽3 = 0.2558. 4th subpopulation: 𝑚4,0 =

0.000013146, 𝜌4,0 = 0.99217, 𝛽4 = 0.1041. Sum of squared residuals: 3.229884. 

𝐵𝐼𝐶 = −336.3785. 

C: The heterogeneous population composed by five subpopulations. Model 

parameters: 1st subpopulation: 𝑚1,0 = 1.986, 𝜌1,0 = 0.002, 𝛽1 = 0.67 ∙ 10
−5. 2nd 

subpopulation: 𝑚2,0 = 0.859, 𝜌2,0 = 0.00074, 𝛽2 = 0.4254. 3rd subpopulation: 

𝑚3,0 = 0.088, 𝜌3,0 = 0.00052, 𝛽3 = 0.3041. 4
th subpopulation: 𝑚4,0 = 0.0005207, 

𝜌4,0 = 0.00459, 𝛽4 = 0.2558. 5th subpopulation: 𝑚5,0 = 0.00001316, 𝜌5,0 =
0.99215, 𝛽5 = 0.1041. Sum of squared residuals: 3.173179. 𝐵𝐼𝐶 = −324.2254. 
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Figure 2.5: Extension of the four-subpopulation heterogeneous model with extra-

subpopulation to fit parameter 𝒂 (in equation (2.1)) in the Swedish mortality data 

for 2007 (panel A) and for 1751 (panel B). Since 𝑎 = 0.5 at all ages except for the 

age zero the fitting was done in 2 steps. 1. The four-subpopulation model is composed 

to fit all data except the very 1st point; 2. Extra (fifth) subpopulation was added to fit 

parameter 𝑎 (see equation (2.1)) and number of deaths for the 1st point. The data is 

denoted by the circle symbols, the mortality rates of modelled subpopulations are 

given by the dashed lines and the mortality of the whole population by the solid curve. 

A: The heterogeneous population composed by five subpopulations. Model 

parameters: 1st subpopulation: 𝑚1,0 = 3.28, 𝜌1,0 = 0.00122, 𝛽1 = 0.0066, 𝑎1,0 =
0.3. 2nd subpopulation: 𝑚2,0 = 0.8477, 𝜌2,0 = 0.00072, 𝛽2 = 0.4324; 3rd 

subpopulation: 𝑚3,0 = 0.08824, 𝜌3,0 = 0.00052, 𝛽3 = 0.3034; 4th subpopulation: 

𝑚4,0 = 0.0005179, 𝜌4,0 = 0.0459, 𝛽4 = 0.2561; 5th subpopulation: 𝑚5,0 =

0.000013163, 𝜌5,0 = 0.99295, 𝛽5 = 0.1041; Sum of squared residuals: 3.173157; 

𝐵𝐼𝐶 = −324.2261. 

B: The heterogeneous population composed by five subpopulations. Model 

parameters: 1st subpopulation: 𝑚1,0 = 2.544, 𝜌1,0 = 0.13045, 𝛽1 = 0.1473, 𝑎1,0 =
0.32. 2nd subpopulation: 𝑚2,0 = 0.2054, 𝜌2,0 = 0.13239, 𝛽2 = 0.2222; 3rd 

subpopulation: 𝑚3,0 = 0.007861, 𝜌3,0 = 0.28278, 𝛽3 = 0.045; 4th subpopulation: 

𝑚4,0 = 0.000862, 𝜌4,0 = 0.00587, 𝛽4 = 0.4975; 5th subpopulation: 𝑚5,0 =
0.0001501, 𝜌5,0 = 0.44851, 𝛽5 = 0.0853; Sum of squared residuals: 4.814607; 

𝐵𝐼𝐶 = −270.3817. 

So far we assumed that 𝑎 = 0.5 (see equation (2.1) for all subpopulations in the 

heterogeneous model. Observations indicate that this is indeed true for all ages except 

the very first year (𝑖 = 0) for which the value of parameter 𝑎 is significantly smaller. We 

have taken this observation into account by introducing an extra subpopulation for which 

the parameter 𝑎 was predefined for age 0 to fit its observed value.  The combination of 

Gompertz law and small parameter 𝑎 causes this extra subpopulation to die entirely 

within the first year (at age 0), and therefore this subpopulation affects only the first (𝑖 =

0) modelled point. This lets us use the following improved procedure for fitting the 

heterogeneous population model to the observation data. We remove the first data point 

(𝑖 = 0) from consideration and find the best four-subpopulation fit for the remaining 

data similar to what was done for Figure 2.4B. Then we add an extra subpopulation for 

which parameter 𝑎 is small (i.e., 𝑎 = 0.3 which is close to the observed value of 𝑎 for 

age 0). As this subpopulation entirely disappears during the 1st year, we just need to 

adjust its size to have an ideal fit to the first data point (𝑖 = 0) which was removed from 

consideration earlier. Figure 2.5A shows the outcome of the model, designed to fit the 

2007 data for the Swedish population. It turns that this new model fits the data much 

better than models designed for Figure 2.4. 
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We have used the procedure described above to fit a model comprising five-

subpopulations to Swedish 1751 data (Figure 2.5B). Although the 1751 data are 

considerably different from the 2007 data, the designed model also fits it remarkably 

well. A comparison of models for 1751 and 2007 data indicates that basically all 

parameters for all subpopulations did change over two-and-a-half century period. The 

most striking changes are the much higher initial mortality, 𝑚1,0, in the main 

subpopulation in 1751 (>10 fold higher), and the fact that the main subpopulation, which 

comprises over 99% of the population in 2007, makes up less than half of the whole 

population in 1751. The latter observation also means that the other subpopulations (i.e. 

those with higher mortality) in 1751 were much larger. The detailed study of the 

evolution of model parameters could be done by making fits to the data for intermediate 

years (see in Chapter 3 the analysis on the evolution of mortality patterns). 

2.4. Study of fluctuations in mortality dynamics  

The important observation we can make is that all models designed so far fail to describe 

the noisy pattern of observed data in early and late ages. This section will be devoted to 

the analysis of noise in mortality dynamics. 

2.4.1. Modelling the stochastic effects 

Assume that the probability to die, 𝑞𝑖, within a year for any individual depends only on 

his age. Then the number of death of individuals of age 𝑖 is Δ𝑁𝑖 = 𝑞𝑖𝑁𝑖 where 𝑁𝑖 is the 

number of people who reached their 𝑖-th birthday. Combining this with equation (2.1) 

we get 𝑞𝑖 = 𝑚𝑖 (1 + 0.5𝑚𝑖)⁄  where 𝑚𝑖 is presumed to follow the Gompertz Law 

(equation (2.3)). Furthermore, taking into account that if 𝑞𝑖 is the probability to die then 

the probability to survive is 𝑝𝑖 = 1 − 𝑞𝑖, we can find the probability that 𝑘 out of 𝑁𝑖 

individuals survive (while 𝑁𝑖 − 𝑘 individuals die) within a one-year interval. To find this 

probability we consider the following binomial expansion: 

 1 = [𝑞𝑖 + (1 − 𝑞𝑖)]
𝑁𝑖 =∑

𝑁𝑖!

𝑘! (𝑁𝑖 − 𝑘)!
𝑞𝑖
𝑁𝑖−𝑘(1 − 𝑞𝑖)

𝑘

𝑁𝑖

𝑘=0

. (2.12) 

Here the right-hand-side contains 𝑁𝑖 + 1 terms (corresponding to values of 𝑘 from 0 to 

𝑁𝑖), each giving the probability for 𝑘 individuals to survive or, correspondingly, the 
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probability that Δ𝑁𝑖 = 𝑁𝑖 − 𝑘. Therefore we can use formulas for the mean and the 

variance of the stochastic process described by the binomial distribution and conclude 

that the mean value of Δ𝑁𝑖 is 〈Δ𝑁𝑖〉 = 𝑁𝑖𝑞𝑖 and its variance, 𝜎2 = 𝑁𝑖𝑞𝑖(1 − 𝑞𝑖) (see 

(Ross, 2002, Morgan, 2000, Allen, 2010)). The mortality error, Δ𝑚, can be defined as 

the standard deviation of the number of deaths divided by the mean number of person 

years lived at age 𝑖: 

 Δ𝑚𝑖 =
σ

〈𝑃𝑌𝑖〉
=
√𝑁𝑖𝑞𝑖(1 − 𝑞𝑖)

𝑁𝑖 − 0.5𝑁𝑖𝑞𝑖
= √

𝑚𝑖(1 − 0.5𝑚𝑖)

𝑁𝑖
. (2.13) 

The fluctuations in mortality are observable when the mortality error is high relative to 

the mean mortality or when the relative mortality error defined as the mortality error 

divided by the mean mortality is above some threshold, 𝑇ℎ: 

 
Δ𝑚𝑖

𝑚𝑖

= √
1 − 0.5𝑚𝑖

𝑁𝑖𝑚𝑖

> 𝑇ℎ. (2.14) 

Equation (2.14) can be extended to the case of a heterogeneous population: the number 

𝑁𝑖 would represent the total size of the population (sum of all subpopulation sizes) and 

𝑚𝑖 represent the overall mortality of the heterogeneous population given by equation 

(2.10). The variables describing subpopulations in a heterogeneous population are 

independent and therefore the total variance, 𝜎2, for the whole population is a sum of the 

variances, 𝜎𝑗
2, of the constituent subpopulations. Therefore, the mortality error for the 

entire heterogeneous population can be written in the form: 

 
Δ𝑚𝑖

𝑚𝑖

=
(∑ 𝜎𝑗,𝑖

2𝑛
𝑗=1 )

1/2

〈𝑃𝑌𝑖〉𝑚𝑖

=
(∑ 𝑁𝑗,𝑖𝑞𝑗,𝑖(1 − 𝑞𝑗,𝑖)

𝑛
𝑗=1 )

1/2

𝑚𝑖 ∑ (𝑁𝑗,𝑖 − 0.5𝑁𝑗,𝑖𝑞𝑗,𝑖)
𝑛
𝑗=1

 (2.15) 

where 𝑚𝑖 is defined by equation (2.10). 

The value of the relative error gives the amplitude of random fluctuations in mortality 

curve and can be used as an indicator when the fluctuations on mortality are observable. 

Similarly, since the binomial distribution can be approximated by normal distribution, 

we can use normal confidence intervals which show the variability of fluctuations for the 

same purpose. However, to make a judgement on what values of relative errors and/or 
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confidence intervals are required to make fluctuations visible we need to perform 

simulations and to produce examples of mortality dynamics affected by fluctuations.   

2.4.2. Numerical implementations of the stochastic model 

The direct implementation of equation (2.12) for computer simulations requires the 

comparison of random computer-generated numbers with sums of terms on the RHS of 

equation (2.12) where binomial coefficients are found using the Pascal triangle. This 

algorithm would imply the use of inverse cumulative distribution method (Ross, 2007) in 

simulations of mortality dynamics and it works perfectly well if the size of the 

population is relatively small. However, for large populations, say when 𝑁𝑖 > 100, we 

have to operate with extremely small numbers (like 𝑞𝑖
𝑁𝑖 where 𝑞𝑖 < 1) as well as 

extremely large numbers (like 𝑁𝑖!) hitting in both cases the computer limitations 

associated with handling real and integer numbers.  

To overcome this difficulty we have used an alternative numerical algorithm which does 

not require equation (2.12). It is slow compared to the above algorithm but allows the 

consideration of populations of practically any size. If the number of individuals of age 𝑖 

is 𝑁𝑖 then in order to find 𝑁𝑖+1 we order the computer program to generate a set of 𝑁𝑖 

random numbers (each represented by a real number which is not less than zero and not 

more than one), i.e. one random number per each individual. Each of the generated 

random numbers is compared with the probability, 𝑞𝑖, 𝑞𝑖 = 𝑚𝑖/(1 + 0.5𝑚𝑖) where 𝑚𝑖 is 

defined by equation (2.3). The probability a random computer-generated number to be 

less than 𝑞𝑖 is equal to 𝑞𝑖. Therefore, every time when the random number is less than 𝑞𝑖 

we conclude that one individual dies. Comparing 𝑁𝑖 random numbers with 𝑞𝑖 lets us 

make a decision (dies or stays alive) on each of 𝑁𝑖 individuals and obtain the number of 

individuals 𝑁𝑖+1 who reach age 𝑖 + 1. This procedure can also be extended to consider 

heterogeneous populations. 

2.4.3. Fluctuations in the mortality dynamics in stochastic model 

We have checked how the stochasticity affects the dynamics of mortality, which is 

presumed to follow the Gompertz law. Figure 2.6 indicates that the amplitude of 

fluctuations depends on the model parameters such as the size of the population and its 

initial mortality. We can also see that fluctuations can appear and disappear in different 
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parts of the same mortality plot. The fluctuations are generally observed at early and 

advanced ages. The occurrence of the fluctuations in Figure 2.6 can be explained by 

equation (2.14), namely, we can claim that if the fluctuations in the mortality plot are 

due to stochastic effects, then they should become observable when the relative mortality 

error is high enough. Equation (2.14) indicates that this error is inversely proportional to 

the mortality rate and to the size of the population. This implies that deviations from the 

theoretical mortality data can be observed on two sides of the mortality patterns, at the 

initial ages where the mortality, 𝑚𝑖, is small and at advanced ages where the number of 

individuals, 𝑁𝑖, is small. In both cases the fluctuations become observable since the total 

number of deaths is relatively small. 

 

Figure 2.6: The mortality dynamics in a stochastic model of a homogeneous 

population. Implementation of stochasticity: the mortality rate (calculated according 

to the Gompertz law) is converted to a probability, 𝑞, for each individual to die. 

Whether the actual death event takes place or not is decided according to a computer-

generated random number. Each plot shows the mortality dynamics for three 

populations having different initial mortality rates (𝑚0 = 0.0001, 𝑚0 = 0.001 and 

𝑚0 = 0.01 shown by the dotted, dashed and solid lines respectively). Each panel 

corresponds to the different initial size of population: 106 on panel A, 105 on panel B 

and 104 on panel C. Each population has mortality coefficient, 𝛽 = 0.1. 

Equation (2.14) states that the relative mortality error should be above a certain threshold 

(𝑇ℎ) for the fluctuations in mortality of a population to become observable. Figure 2.7 

shows the graphs of the relative mortality error (dashed lines) calculated for the mortality 

trajectories (solid lines) presented in Figure 2.6B. An analysis of these graphs indicates 

that the threshold value, 𝑇ℎ, can be estimated by a number between 0.05 and 0.1 to 

reflect the transitions from observable to unobservable (and back) fluctuations on the 

mortality plots. As an example, the case of 𝑇ℎ = 0.06 is shown in Figure 2.7 where a 

horizontal solid black line represents this threshold. Intersections of the graphs of 

relative mortality error with this horizontal line correspond to the transitions from 

fluctuating to non-fluctuating behaviour in the mortality plots. 
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Figure 2.7: Correlation between the fluctuations in mortality dynamics and the 

relative mortality error. Three graphs of mortality trajectories from Figure 2.6B (solid 

lines) with the corresponding graphs of relative mortality error (dashed lines) are 

presented in three panels. When the relative mortality error is above the threshold (the 

dashed line is above the horizontal line) there are fluctuations in the mortality graphs, 

while when the error is below the threshold (dashed line below the threshold line), the 

fluctuations are not observed. Vertical lines indicate the ages when the error curves 

intersect the threshold line and the arrows show on what side of the vertical line the 

fluctuations are observed. 

In practice, the term 1 −𝑚𝑖 in the numerator of the expression for the relative mortality 

error in equation (2.14) can be omitted (replaced by 1, as 𝑚𝑖 is very small) at the 

transition point at young ages, and 𝑇ℎ = 0.06 would represent the reciprocal of the 

square root of the product 𝑁𝑖𝑚𝑖, 𝑇ℎ = 1/√𝑁𝑖𝑚𝑖 , or we could say that the young-ages 

transition takes place when 𝑁𝑖𝑚𝑖 = 1/𝑇ℎ
2 ≈ 300. The transition point at advanced age 

takes place when the mortality 𝑚𝑖 is not very small and therefore some estimate of the 

size of population at this transition point can be made. For example, assuming that the 

transition takes place when 𝑚𝑖 = 0.6 we get for the size of the population 𝑁𝑖 ≈ 180 (this 

is a case for the plot shown in Figure 2.7A, when the fluctuations for the advanced ages 

start at age 𝑖 = 41 for which the mortality 𝑚𝑖 = 0.6 and the number of individuals 𝑁𝑖 =

149). 

Figure 2.8 gives a few illustrations of the transition from non-fluctuating to fluctuating 

dynamics of mortality rate at advanced ages. The graph of mortality dynamics according 

to the Gompertz law is shown by the solid line while mortality in the stochastic model is 

shown by dashed line. Increase of the size of the population results in the disappearance 

of the fluctuations at early ages and further to the occurrence of fluctuations (the 

transition point) at progressively more advanced ages. Furthermore, despite the big 

differences in the initial sizes of the populations in all three shown simulations, the 

fluctuations start to become observable at the age represented by 150-180 individuals. 
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The fluctuations affect the mortality dynamics in a random and unpredictable way which 

makes the shapes of mortality graphs after the transition points to be considerably 

different in all presented simulations. 

 

Figure 2.8: Variations in the mortality dynamics due to stochastic effects. Plots of 

theoretical mortality (solid line) and actual mortality (dashed curve) for a population 

with initial mortality rate 𝑚0 = 0.15 and mortality coefficient 𝛽 = 0.033 are shown. 

The initial size of the population is 104 in panel A, 105 in panel B and 106 

individuals in panel C. 

2.4.4. Fitting models to the observation data  

Figure 2.4 demonstrates that the model of a heterogeneous population indeed reproduces 

the dynamics of observed mortality data very well. However the observation data has a 

feature which is not captured by the model, namely the fluctuations. The noisy 

background of mortality records is especially expressed at young and old ages. Many 

authors have treated the noise at old ages as a deviation from the exponential law 

(Vaupel et al., 1998) either by considering this deviation as a plateau on the graph or 

even as a decline in mortality (Partridge and Mangel, 1999). Figure 2.9A shows part of 

the data from Figure 2.1B which is related to the elderly ages (solid black line). This data 

represent period data for the Swedish population for the year 2007 obtained from the 

Human Mortality Database (http://www.mortality.org). Dashed lines on the same panel 

in Figure 2.9 give parts of the period data for a few other years (1994, 2001, 2009) which 

are taken from the same database.  The plots indicate that the mortality dynamics for all 

shown cases exhibit roughly the same growing pattern and in all cases the fluctuations 

appear after the age of 102. 

http://www.mortality.org/
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Figure 2.9: Plots of mortality dynamics for the advanced ages in period data for 

Swedish population (A) in the stochastic model (B). The solid black line on both 

panels is the plot of the mortality rate for the advanced ages of the Swedish population 

in the year 2007 (part of the data from Figure 2.1B). The red, blue and green dashed 

curves on panel A correspond to the period data on mortality for the Swedish 

population in 1994, 2001 and 2009. The red, blue and green dashed curves on panel B 

correspond to three simulations of mortality dynamics in the stochastic model for the 

different sets of random computer-generated numbers. All plots (period data and 

simulations) show the deviation from exponential growth in a very similar way, i.e. 

deviations are represented by fluctuations which start at age 102. Model parameters: 

𝑁90 = 18660, 𝑚90 = 0.172479, 𝛽 = 0.0926. 

In order to check whether these fluctuations can be explained by the stochasticity in the 

dynamics of mortality we have performed computer simulations. Each time, we used the 

same model parameters (initial size of the population, and Gompertz parameters in 

equation (2.3)) but seeded different sets of random numbers to reproduce death events. 

The initial mortality, 𝑚0, and initial size of the population in the model was chosen to fit 

the first data point (at age 90) for the Swedish data for year 2007 and the rate of ageing 𝛽 

to fit the slope of the data points. Figure 2.9B gives a few examples of computer 

simulated mortality dynamics (dashed lines) as compared with the actual data (black 

solid line). We can see that the simulations reproduce the data fairly well in a qualitative 

manner. However, the simulated mortality dynamics follows considerably different plots 

for different sets of random numbers generated by the computer. We can see that 

fluctuations on all presented plots (for simulated data as well as for the data taken from 

the database) take place after the age of 102 (when about 150 survivors are left in the 

population) and these fluctuations are the main reason for the deviation from the 

Gompertz dynamics. 
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2.5. Model combining the heterogeneity of population with 

stochastic effects 

 

Figure 2.10: Fitting the mortality data of the Swedish heterogeneous population 

with stochastic simulations. The blue circles represent the mortality data for the 

Swedish population from Figure 2.1B while red triangles represent the simulation 

data. The model combining heterogeneity (the version used in Figure 2.4B) and 

stochasticity (implemented in the same way as in Figure 2.6-Figure 2.9) has been 

used. The graph of the relative mortality error for the simulated data is shown by the 

dashed line, the threshold level (𝑇ℎ = 0.05) is shown by the horizontal line. Vertical 

lines indicate ages at which the error graph crosses the threshold level. They divide 

the plot into 3 domains: domains I and III where the relative mortality error is above 

the threshold line (the fluctuations in both data sets are observed) and domain II 

where the relative mortality error is below the threshold line and both data sets are 

relatively free from the noise. 

Up to now we have considered either heterogeneous or stochastic models. Now we can 

combine these two models to reproduce the entire set of mortality data for the Swedish 

population presented in Figure 2.1B. We have already modelled this data assuming that 

the Swedish population is heterogeneous and comprised of four subpopulations (Figure 

2.4B). Now we expand that model and introduce the stochastic effect to the mortality 

description of all four subpopulations. Figure 2.10 shows the results of this simulation. 

We see that the simulated data (red triangles) exhibit noise, which is very reminiscent of 

the noise in the real data (blue circles). The noise in both cases is enhanced for young 

and advanced ages. We have calculated the relative mortality error in simulations 
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(dashed line) and identified its threshold value (𝑇ℎ = 0.05 shown by the horizontal solid 

line) such that the fluctuations (noise) in the mortality are visible if the error is above this 

threshold. This is observed in two domains indicated by I (up to the age of 53) and III 

(above the age of 102) in the figure. The relative mortality error in the domain II 

(between the ages of 53 and 102) is less than the threshold and correspondingly the noise 

in the mortality data (both actual and simulated) is negligible in this domain. 

 

Figure 2.11: Average mortality rates with the confidence intervals in simulations as 

compared with the observation data. The blue circles represent the mortality data for 

the Swedish population from Figure 2.1B while the solid line represent the average 

curve of simulation data derived by combining heterogeneity (the version used in 

Figure 2.4B) and stochasticity. On average the simulations at each age are equal to 

the probability of death predicted by the model. The dashed lines represent the 95% 

confidence interval around the average, showing the dispersion of fluctuations across 

the lifespan.  

The analysis of the variability of fluctuations in the observed and simulated mortality 

patterns presented in Figure 2.10 have been performed using the estimates of relative 

errors. This analysis can also be done using the estimates of normal confidence intervals. 

To justify this analysis we will have to assume that binomially distributed mortality rates 

(this is definitely the case for simulated patterns) can be approximated by their normal 

distribution (and this is true when the size of the population is sufficiently large). Figure 

2.11 shows the average of simulations (solid line) which is equal to the probability of 

death, 𝑞𝑖, (calculated by using the four-subpopulation model that reproduces the 2007 

Swedish data) and its 95% confidence interval (dashed lines). The confidence intervals 
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show that the dispersion of fluctuations is bigger at young (before age 50) and very old 

ages (after age 100) while their dispersion is almost zero at ages between 50 to 100 

years. The sizes of confidence intervals in Figure 2.11 correlate with the values of 

relative errors in Figure 2.10 and lead to the similar conclusions concerning the age-

related variations of fluctuations in mortality patterns.  

2.6. Discussion 

Modelling the dynamics of human mortality has long been a focus of research. It could 

help understand the human ageing process and causes of mortality, possibly providing 

insights that may help to improve human health and to extend lifetime. Not surprisingly, 

a number of studies have assessed the impact of heterogeneity on the dynamics of 

mortality, in particular at later ages (Rossolini and Piantanelli, 2001, Vaupel et al., 1979, 

Vaupel, 2010). In this Chapter we have developed a mathematical model which lets us 

reproduce and analyse the mortality dynamics across the entire human life span. Our 

model combines heterogeneity of population with stochastic effects and the model 

parameters can be easily tuned so that the simulated data fits well the actual data on 

mortality dynamics, as shown in Figure 2.4, Figure 2.9 and Figure 2.10.  

We have shown that our model is capable of reproducing the actual data on human 

population mortality fairly well. We had to consider only five subpopulations to 

reproduce with sufficient accuracy the detailed period data for Swedish populations in 

1751 and 2007. Even though this is an underestimate of actual heterogeneity of human 

populations, it shows how a simple mathematical model can represent actual human 

mortality well. One intriguing observation from the values of model parameters is that 

the main subpopulation makes up over 99% of the whole population (Figure 2.4), 

meaning that in modern populations heterogeneity is actually relatively low. A 

comparison of model parameters for 1751 and 2007 data (Figure 2.5) shows that model 

parameters such as initial mortality, 𝑚0, and rate of ageing, 𝛽, have dramatically 

changed, which is not surprising since the conditions of life have also dramatically 

changed. A more interesting point is that initial fractions of subpopulations, 𝜌, have also 

changed considerably. This, most likely, indicates that advances in medicine and hygiene 

over the last 250 years have caused fewer individuals to be susceptible or to be exposed 

to diseases, and infectious diseases in particular, essentially shifting individuals across 

the subpopulation. This argument can be rephrased in the following way. Each of the 
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five considered subpopulations (say 1st level subpopulations) is also heterogeneous and 

composed of subpopulations (say 2nd level subpopulations). An improvement in life style 

over the last 250 years has caused for some of the 2nd level subpopulations to move 

across the 1st level subpopulations and contribute to the longer lasting fractions. This 

rearrangement has changed the fraction balance between the 1st level subpopulations. 

Our simulations and analysis indicate that the contributions of heterogeneity and 

stochasticity are different at different ages. The effect of heterogeneity is profound when 

fractions formed by subpopulations are far from being zero or one. Our model suggests 

that at early ages a small subpopulation with high initial mortality explains the decline in 

mortality as this subpopulation gradually disappears. Generally, with an increased age 

the faster-ageing subpopulations are eliminated and the population starts to act more-

and-more homogeneously as it would be composed by a single (having lowest mortality) 

subpopulation. 

The leading causes of death in infants are congenital malformations, disorders related to 

short gestation and low birth weight, and sudden infant death syndrome (Kung et al., 

2007). Therefore, a small subpopulation (the initial fraction comprised by the 1st 

subpopulation in the simulation shown in Figure 2.4B, 𝜌1 = 0.00266 which is 0.27% of 

the total population) with high initial mortality is in line with epidemiological data. On 

the other hand, it is not clear what the phenomenological differences between other 

modelled subpopulations are. Our preliminary simulations indicate that fitting the model 

to describe the mortality dynamics for males or for females will also require four 

subpopulations (roughly the same as in Figure 2.4B) in both cases. Whether the 

modelled subpopulations are associated with different social groups has to be analysed in 

a follow-up study.    

We also can identify a subpopulation (subpopulation 3 in Figure 2.4B) which lets us 

reproduce the mortality peak at about age 20. While this fits the data well, this 

subpopulation can be considered somewhat artificial because this mortality peak in the 

teenage years is likely due to behaviour rather than intrinsic biological properties of a 

subset of individuals. It is possible, in fact, that the increase in mortality in teenage years 

is age-specific (goes up and down at a specific age range) and cannot be modelled by 

Gompertz law. Nonetheless, we speculate that risk-taking behaviour in a subset of 

individuals could make up such a hypothetical subpopulation.  
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In line with the results obtained earlier (Vaupel et al., 1979, Rossolini and Piantanelli, 

2001, Vaupel, 2010) we conclude that the heterogeneity of a population is sufficient to 

explain the mortality plateaus observed at later ages. In addition, the size of the 

population declines with age and the effects of stochasticity become more pronounced. It 

seems that at later ages when the population is small the stochastic effects can explain 

the observed mortality plateaus as well as the high-amplitude fluctuations (high noise) in 

the mortality dynamics. Likewise, at earlier ages, when the number of death events is 

small, stochastic effects are also noticeable and cause the high-amplitude fluctuations in 

the mortality dynamics.   

In conclusion, the assumption that the populations are heterogeneous and the mortality 

dynamics of each subpopulation follows the Gompertz equation with different 

parameters can account for observed deviations of the mortality dynamics (for the entire 

life course) from the Gompertz law. We also found that stochastic effects are important 

when relatively few individuals contribute to mortality. Our demographic modelling 

across the lifespan combining the effects of heterogeneity and stochasticity was 

successfully tested in simulations of human mortality data from populations in Sweden 

and the US. 
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Chapter 3.  

Time-evolution of age-dependent 

mortality patterns in mathematical 

model of heterogeneous human 

population 

3.1. Summary 

The widely-known Gompertz law of mortality states the exponential increase of 

mortality with age in human populations. Such an exponential increase is observed at the 

adulthood span, roughly after the reproductive period, while mortality data at young and 

extremely old ages deviate from it. The heterogeneity of human populations, i.e. the 

existence of subpopulations with different mortality dynamics, is a useful consideration 

that can explain age-dependent mortality patterns across the whole life-course. A simple 

mathematical model combining the heterogeneity of populations with an assumption that 

the mortality in each subpopulation grows exponentially with age has been proven in 

Chapter 2 to be capable of reproducing the entire mortality pattern in a human 

population including the observed peculiarities at early- and late-life intervals. In this 

Chapter we fit this model to actual (Swedish) mortality data for consecutive periods and 

consequently describe the evolution of mortality dynamics in terms of the evolution of 

the model parameters over time. We find that the evolution of the model parameters 

validates the applicability of the compensation law of mortality to each subpopulation 

separately. Furthermore, this analysis indicates that the population structure changes so 
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that the population tends to become more homogeneous over time. Finally, our analysis 

of the decrease of the overall mortality in a population over time shows that this decrease 

is mainly due to a change in the population structure and to a lesser extent to a reduction 

of mortality in each of the subpopulations, the latter being represented by an alteration of 

the parameters that outline the exponential dynamics. 

3.2. Introduction 

Mathematical modelling of biological processes such as longevity, ageing and mortality 

is of interest for many scientists working on various subjects including demography, 

biology, statistics and actuarial sciences. The event of death and the forces that cause it 

have puzzled and inspired many philosophers and scientists from the 17th century 

onwards. Great works such as those by Joseph Addison (1672-1719), Karl Pearson 

(1857-1936) and Benjamin Gompertz (1779-1865) give us insights on the development 

of the concept of mortality over the past few centuries (see (Turner and Hanley, 2010) 

for a review). Addison in his allegorical essay “The vision of Mirza” (Addison, 1711) 

imagined the human life as a walkthrough over a bridge, “the bridge of human life”, 

where hidden pitfalls open periodically and the people above them fall down and 

disappear, the forces causing death being then external. Almost two centuries after 

Addison, Pearson considered death as a random event and decomposed the entire 

mortality curve into five different phases, described by five different probability 

distributions (Pearson, 1897). Pearson’s concept can be represented with humans 

crossing the bridge of life, where at each one of the five stages, a marksman attempts to 

kill them. From one stage to the next the precision of the marksman’s weapon improves 

(five different precisions for the five different age groups) and consequently the chance 

of death increases. On the other hand, the work by Gompertz  (Gompertz, 1825) is of 

greater importance as he was the first who considered death to be caused by internal 

forces in organisms and proposed a model for the force of mortality. According to 

Gompertz, the mortality force increases in a geometrical progression within a wide age-

range of lifespan, that is from sexual maturity to considerably old ages.  

Graphically the actual mortality data generates patterns which have certain common 

features (shown in Chapter 2) as well as some quantitative differences as compared to 

different cohorts and periods. A typical mortality pattern (Figure 3.1) originates from the 

initial mortality at age zero, falls down to a minimum point (approximately at the age of 
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10), increases to a local maximum (around the age of 25), then slightly decreases or 

remains constant and after the age of 35-40 advances exponentially satisfying the 

Gompertz law. At extreme old ages (above the age of 100) there is no common evidence 

on how the mortality curve behaves as the reported observations are controversial and 

provided with different explanations (Greenwood and Irwin, 1939, Olshansky, 1998, 

Gavrilov and Gavrilova, 2011). Various statements made about the mortality dynamics 

at old ages include the mortality levelling-off or so-called “late-life mortality plateau” 

(Economos, 1979, Mueller and Rose, 1996, Curtsinger et al., 2006), the late-life 

mortality deceleration (Depoid, 1973, Horiuchi and Wilmoth, 1998, Thatcher et al., 

1998, Gavrilov and Gavrilova, 2001), the decline (Kannisto et al., 1994, Vaupel et al., 

1998) or fluctuations at advanced ages (Avraam et al., 2013). 

 

Figure 3.1: Mortality rates for the Swedish population in the period 1900 (panel A) 

and 2000 (panel B) presented in a semi-logarithmic scale. The data are taken from 

the Human Mortality Database, http://www.mortality.org. 

The high initial level of mortality is due to the fact that new-borns are not particularly fit 

for the new environment they are born into and therefore, a relatively high proportion of 

them are not able to survive. As the forces of mortality due to environmental factors 

decrease, death rates decline. Mortality starts then to increase at the age of 10. One can 

state that mortality should increase exponentially from this age. However in actual 

mortality data the exponential increase of mortality is observable only after the ages of 

35-40 (Figure 3.1) as between the ages 10 and 35 it overlaps with a local maximum on 

the mortality curve. This local maximum is apparent at the reproductive period of 

lifespan and is commonly called “the accidental hump” as it is related to the external 

causes of deaths (mainly accidents and maternal deaths) due to the risky behaviour of 

young adults. 

http://www.mortality.org/
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Many studies have focused on the analysis of exponential increase of mortality in the 

range of ages 30 and above. By comparing parameters describing the exponential 

dynamics for data taken for different human societies it was found that in developed 

countries initial mortality, 𝑚0, is lower while the mortality coefficient, 𝛽, is higher than 

these parameters describing data for less developed countries. This phenomenon, namely 

the inverse relationship between initial mortality and mortality coefficient appears to be 

fundamental (confirmed by all available data) and is the “compensation law” or 

“compensation effect” (Gavrilov and Gavrilova, 1979, Gavrilov and Gavrilova, 1991) 

which was described in Chapter 1. 

A number of mathematical models have been proposed to analyse mortality dynamics 

and explain its deviations from the exponential law at early and late life intervals. Some 

models postulate that a few different processes take place in the population and affect its 

mortality dynamics (Heligman and Pollard, 1980, Thiele, 1872), while others analyse the 

impact of population heterogeneity on the dynamics of mortality (Vaupel et al., 1979, 

Vaupel and Yashin, 1985a). The model that we have developed in Chapter 2 based on 

the assumption that the mortality dynamics is indeed underlined by an exponential law 

and deviations from this law are due to the heterogeneity of human populations (Avraam 

et al., 2013). We have shown that the observed age-specific mortality patterns can be 

reproduced in a model of heterogeneous population consisting of a few (up to four) 

subpopulations each following the exponential law over all ages.  

Time evolution of mortality dynamics in human populations is of great scientific interest 

and has practical implementations especially for actuaries, who use extrapolation 

methods to project mortality trends in order to estimate future life expectancy (Booth 

and Tickle, 2008, Pitacco, 2004), and to price several longevity products. An example of 

mathematical study of this evolution can be found in (Gaille, 2012), where the analysis 

of the evolution of the parameters of two conventional models (Heligman-Pollard and 

Lee-Carter) is used to forecast the Swiss mortality rates and to study the impact of 

longevity on Swiss pension funds. Mathematical analysis of the evolution of mortality 

dynamics could also be useful for demographers (to derive inferences on the population 

variance) and for biologists (to understand genetics underlying the evolutionary process 

of ageing). 
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In this Chapter we aim to describe the evolution of mortality dynamics as time evolution 

of the parameters in the model of a heterogeneous population so that we could gain 

insights in the processes governing mortality reductions over the past century. In Section 

3.3 we present a simpler form of the model described in Chapter 2 and in Section 3.4 we 

present the used mortality data. In Section 3.5 we fit the model to various mortality data 

(cut at a certain age or including/excluding the extrinsic death factors) for consecutive 

periods and analyse the evolution of the model parameters. The results demonstrate that 

the population’s structure is altered through time and a relative homogenization of the 

population occurs, explaining an important part of mortality reductions during the 20th 

century. The analysis also indicates that changes in the initial mortality and mortality 

coefficient of the exponential law for all subpopulations are in line with the 

compensation law. Discussion of presented results is provided in Section 3.6. 

3.3. Mathematical model 

In this Chapter we use the model proposed in Chapter 2, where a human population is 

considered as heterogeneous and composed of a number of subpopulations. The 

subpopulations are assumed to obey an exponential law but differ in their mortality 

parameters. The mortality of the entire population is modelled as a mixture of weighted 

exponential terms. The weights represent the relative sizes (fractions) of the 

subpopulations; they depend on age 𝑥 and their sum is equal to unity at any age. 

Assuming that the entire population consists of 𝑛 subpopulations, the total mortality rate 

is expressed as: 

 𝑚𝑥 =∑𝜌𝑗,𝑥𝑚𝑗,𝑥

𝑛

𝑗=1

=∑𝜌𝑗,𝑥𝑚𝑗,0𝑒
𝛽𝑗𝑥

𝑛

𝑗=1

 (3.1) 

where 𝜌𝑗,𝑥 = 𝑁𝑗,𝑥/∑ 𝑁𝑗,𝑥
𝑛
𝑗=1  is the fraction or proportion representing the size, 𝑁𝑗,𝑥, of 

the j-th subpopulation with respect to the whole population size, ∑ 𝑁𝑗,𝑥
𝑛
𝑗=1 , at age 𝑥, and 

𝑚𝑗,𝑥 is the exponential function for the j-th subpopulation with initial mortality 𝑚𝑗,0 and 

mortality coefficient 𝛽𝑗. Equation (3.1) expresses the mortality rate of the entire 

heterogeneous population at age 𝑥 within a cohort (with 𝑁𝑗,𝑥 representing person-years) 

or time-period with the assumption that the population is stationary and its size and age-

structure do not change over time.   
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3.4. Data 

In this Chapter we used two series of datasets. The first series represents the Swedish 

mortality (combined for males and females) for a period-interval of one century 1900 – 

2000, provided by the Human Mortality Database (http://www.mortality.org). These 

datasets provide single age mortality rates resulting from all causes of death. The second 

series of datasets is from the World Health Organization (WHO), which maintains a 

comprehensive cause-of-death mortality database (http://www.who.int). This database 

provides the sizes of mid-year populations and number of deaths by cause for various 

countries over the last 50 to 60 years. We obtained data for Sweden (males’ population) 

from 1951 to 2010. The data are generally divided into five-year age-groups. Thus, our 

database is composed of nineteen groups, the first for infants less than one year old, a 

second for children aged one to four, thereafter in groups of five years, ending with the 

group aged 85 and above. The database of the WHO needs to be adjusted in order to 

analyse data consistently over time (proportional distribution of the number of deaths of 

unknown age; adjustments due to the changes of the International Classification of 

Diseases (ICD) over time (Table 3.1)). Details on these adjustments can be found in 

(Gaille and Sherris, 2011) and (Arnold (-Gaille) and Sherris, 2013). This database allows 

us to distinguish between extrinsic mortality and intrinsic mortality. 

Causes of death 
ICD 7 

(1951-1968) 

ICD 8 

(1969-1986) 

ICD 9 

(1987-1996) 

ICD 10 

(1997-2010) 

External causes A138-A150 A138-A150 B47-B56 V00-Y89 

Infectious and  

parasitic diseases 
A001-A043 A001-A044 B01-B07 A00-B99 

Table 3.1: International Classification of Diseases (ICD) codification. The 

classification is regularly reviewed and updated and consequently it has evolved from 

ICD 7 in the 1950’s to ICD 10 which is used nowadays. 

To justify our interest in the relative impacts of intrinsic and extrinsic factors to mortality 

dynamics we refer to the original Gompertz work where he mentioned two different 

mortality groups: a first mortality group related to chance, without previous disposition 

to death or deterioration; a second mortality group referring to deterioration, or an 

increased inability to withstand destruction (Gompertz, 1825). Today, the distinction is 

usually made between intrinsic and extrinsic causes of death, the intrinsic causes being 

http://www.mortality.org/
http://www.who.int/
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related to Gompertz’s inability to oppose destruction. More specifically, the extrinsic 

causes of death represent external or environmental factors that produce death, while the 

intrinsic causes of death represent biological forces that lead to death, namely ageing or 

senescent (Makeham, 1867, Carnes and Olshansky, 1997, Shryock et al., 1975). 

Makeham (Makeham, 1867) suggested that the Gompertz law will fit much better with 

mortality due to biological causes (intrinsic causes). It is therefore interesting in our 

exponential modelling approach to apply our model to intrinsic causes of death. The 

extrinsic causes of death usually include the external causes of death (such as accidents, 

homicide and suicide) and the infectious and parasitic diseases, even if some studies 

recommend the inclusion of some other causes (see e.g. the classifications in (Carnes et 

al., 2006) and a review in (Carnes and Olshansky, 1997)). The WHO database allows us 

to analyse the mortality pattern excluding these extrinsic causes of death and then to 

focus on the mortality dynamics due to intrinsic mortality. Table 3.1 provides the ICD 

codes for the extrinsic causes we excluded. 

3.5. Results 

In this section we fit the model proposed in Section 3.3 to the data described in Section 

3.4 in order to describe time-dependence of mortality patterns in terms of the evolution 

of the model parameters. In order to better capture the direction of the trend of each 

parameter over time, the evolution of each parameter is displayed with the most 

representative trendline within the examined time range. Two different monotonic 

functions (linear and exponential) are compared through the BIC (which, in the case of 

these two functions, works in the same way as 𝑅2) statistics. These two functions were 

chosen due to their interpretability with respect to the compensation effect of mortality, 

as further explained in the following sections. 

We start our analysis with data which can be fitted by a model comprising a small 

number of subpopulations and proceed with the analysis of more-and-more complete 

datasets. In Section 3.5.1 we consider the Swedish data for ages 40+, which is fitted by a 

one-subpopulation (homogeneous) model. In Section 3.5.2 we extend the considered 

data by including ages 20+ which are best fitted by a model comprising two 

subpopulations. In Section 3.5.3 we consider mortality data for all ages but excluding 

extrinsic death factors which are also best fitted by a model comprising two 

subpopulations. In Section 3.5.4 we consider the complete mortality dataset for Sweden 



 

56 

 

which has a best fit to a model comprising four subpopulations. Moving from a smaller 

to a larger number of subpopulations we make a comprehensive analysis of the evolution 

of the model parameters. This analysis reveals two effects that take place in the 

population through time that are compensation and homogenization, which are 

summarized in Sections 3.5.5 and 3.5.6 respectively. 

3.5.1. Evolution of mortality parameters for ages 40+ 

As mentioned earlier the exponential increase of mortality with age is evident in the 

mortality pattern at adulthood span after the reproductive period. It follows that the 

mortality data from age 40 are best fitted by a model of homogeneous population. Our 

analysis shows that at the beginning of the century, the data for ages 40+ slightly diverge 

from a pure exponential growth. An example is the 1900 period dataset shown in Figure 

3.2A. For those data, the BIC criterion indicates that a two-subpopulation model (BIC =

−184.73) fits the data better than the homogeneous model (BIC = −164.08). On the 

other hand, more recent data indicate a stronger merge to the exponential growth and 

therefore the homogeneous model fits the data better than that involving two 

subpopulations. For example, the BIC numbers for homogeneous and two-subpopulation 

models fitting the data shown in Figure 3.2B are −319.88 and −319.07 respectively. It 

is therefore evident that the fit of the homogeneous model to the data for consecutive 

years gets better over time (one can read it by comparing panels A and B in Figure 3.2). 

This is mainly due to the extended impact that the accidental hump had on the mortality 

pattern at the beginning of the 20th century (Figure 3.2A). At that time the number of 

deaths caused by external factors, such as accidents, was considerably larger (as a result 

of poor education, inadequate transportation system, unsafe labour environment, lack of 

contraceptives, etc.) and therefore the accidental hump had a larger amplitude and 

impacted a wider age range. Over time the magnitude of the accidental hump decreased 

and at present it affects a smaller range of age groups. It is not surprising that some 

studies predict that the accidental hump will be less noticeable and even probably 

disappear in the coming years (Gaille, 2012). Despite this observation, we only consider 

the model of homogeneous population (described by the exponential law) to fit the 

Swedish data from age 40 for consecutive years, in order to be consistent in our first step 

and to study the evolution of mortality parameters. 
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Figure 3.2: Homogeneous model (solid line) fitted to the 1900 (panel A) and 2000 

(panel B) period Swedish data (dots) from age 40 and above. The mortality 

parameters as estimated by the Least Squares Method are: 𝑚0 = 0.000189, 𝛽 =
0.0818 for panel A and 𝑚0 = 0.000015, 𝛽 = 0.1033 for panel B. 

As the mortality patterns evolve over time, the model parameters that provide the best fit 

to the actual data at different periods change. Figure 3.3 presents the evolution of the 

mortality parameters estimated by fitting the homogeneous model (as represented by the 

simple Gompertz function) to the Swedish mortality rates from age 40 and for every five 

years over the periods 1900 to 2000. The initial mortality shows an exponentially 

decreasing trend over time (Figure 3.3A) while the mortality coefficient a linearly 

increasing trend (Figure 3.3B). The decline of initial mortality is of no surprise, 

especially in developed countries where medicine and hygiene levels have improved 

rapidly over the last century. On the other hand the increase in the mortality coefficient 

is harder to explain. This observation is the phenomenon known as the compensation law 

of mortality which was described in Chapter 1. 

The inverse relationship between the mortality parameters of the modelled homogeneous 

population is shown in panel A of Figure 3.4. This plot confirms that a high initial rate of 

mortality is associated with a low mortality coefficient. It is apparent that there is a linear 

relationship between the logarithm of 𝑚0 and parameter 𝛽 (this relationship is given by 

equation (1.4)). From equation (1.4) it follows that if the mortality coefficient is an 

increasing linear function of time (like the trendline in Figure 3.3B), then the initial 

mortality declines exponentially (like the trendline in Figure 3.3A). From equation (1.4) 

we can also estimate the target lifespan, 𝑋 (the age at which the last survivor dies) and 

the target mortality rate, 𝑀 (the mortality at which the last survivor dies). 
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Figure 3.3: Evolution of the parameters of the homogeneous model fitted to the 

Swedish mortality rates from age 40, for the periods 1900 to 2000 with five-year 

intervals. Panel A shows an exponentially decreasing trend for the initial mortality 

and panel B - a linearly increasing trend for the mortality coefficient. In both plots the 

parameters are presented by dots and the trendlines by solid lines. Error bars 

represent the standard deviations of estimated parameters. 

In panel B of Figure 3.4, the trajectories of the homogeneous model fitted to the Swedish 

data at four different years are plotted in the same semi-logarithmic plot. The mortality 

convergence is evident. The coordinates of the intersection point to which mortality 

trajectories are converging represent the target lifespan and target mortality rate. With a 

pure form of the compensation effect, all the exponential trajectories should cross that 

point. Even if the mortality trajectories do not cross strictly at one specific point within 

the area formed around the error bars of the point (𝑋,𝑀) the compensation effect is still 

valid in its weak form. The error bars of 𝑋 and 𝑀 represent the standard deviations of 

their values as estimated by the method described in (Reed, 1989). The mortality 

trajectories that fit the Swedish data above age 40 for different years should theoretically 

intersect at the point (𝑋 = 103.6 ± 6.1,𝑀 = 0.791 ± 0.463) with a pure compensation 

effect. The coordinates (𝑋 and 𝑀) of this point define (as stated by equation (1.4)) the 

trendline (shown as a solid line) in panel A of Figure 3.4. 

This first analysis showed that the compensation effect is evident in the Swedish 

population for ages above 40 when different periods are compared, although it is in its 

weak form. We are now interested in studying this effect for a wider age range and for 

heterogeneous populations, that is when a population is composed of a set of 

subpopulations. 
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Figure 3.4: Compensation effect in 40+ mortality dynamics. Panel A shows the 

inverse relationship between the parameters of the fitted homogeneous model to the 

Swedish mortality rates for ages 40+ for the period data in the interval 1900-2000. 

The relationship between the logarithm of the initial mortality and the mortality 

coefficient is shown to be linear. Panel B shows the convergence of the exponential 

functions fitted to the Swedish data for ages 40+ and for different periods. Both plots 

are set in a semi-logarithmic scale. 

3.5.2. Evolution of mortality parameters for ages 20+ 

It appears that a two-subpopulation model is the best fit for Swedish mortality data 

which are cut at age 20. The mortality pattern above age 20 includes a part of the 

accidental hump (usually a piece of its right tail) and the exponential rise of mortality at 

older ages. There is a local minimum in between these two parts and therefore two 

subpopulations should be involved to reproduce the mortality pattern observed above 

age 20. Figure 3.5 presents examples of mortality data and fitted models for 1900 and 

2000. The mortality dynamics of the two subpopulations are shown by dashed lines 

while the mortality of the entire population as calculated by equation (3.1) is shown by 

the red solid curve. The first subpopulation having higher initial mortality is frailer than 

the other and thus is producing decline in mortality at the right tail of the accidental 

hump while the second subpopulation is responsible for the exponential growth of the 

entire population mortality after the reproductive period. For clarity and consistency 

purposes, in this thesis the first subpopulation represents the one with the highest initial 

mortality level (𝑗 = 1), the second is the one with the second highest initial mortality 

level (𝑗 = 2), etc. 

An interesting observation from Figure 3.5A is that the heterogeneous model explains 

the decline of mortality at advanced ages observed in 1900 (local maximum at age ~98). 

This behaviour is observed when the mortality trajectories of the two subpopulations are 

crossing and a considerable number of individuals of the frailest subpopulation (the 
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subpopulation having the highest initial mortality) are still alive at that point. The 

mortality cross-section (or crossover as called in (Vaupel and Yashin, 1985a) occurs 

when one of the subpopulations has a lower mortality rate than the other subpopulation 

at younger ages, but higher at older ages. The two mortality trajectories of the 

subpopulations fitted to the Swedish 1900 period data (Figure 3.5A) cross each other at 

age 83, that is when 104 individuals of the first subpopulation (0.78% of the total 

population) are still alive at that age, while few of them remain alive at the local 

maximum age (age 98). For the 2000 period data (Figure 3.5B) the trajectories cross at 

age 84. The only individual of the frailest subpopulation alive at that age (0.002% of the 

total population at age 84) dies a couple of years after the point of intersection and 

therefore we don’t observe the decline of mortality at advanced ages on this panel. 

Another observation from Figure 3.5 is about the constant mortality of the frailest 

subpopulation in panel B. For that particular period, the frailest subpopulation with zero-

slope (𝛽1 = 0) appears to be optimal. This happens due to the constraint we set in the 

model, namely, that the mortality coefficients can’t be negative. Without this constraint 

the best fitted models can involve negative mortality coefficients, which means that the 

models incorporate a process opposite to senescence. Thus here and later, some of our 

best fits will have a mortality coefficient equal to zero for the frailest subpopulation. 

The time-evolution of mortality parameters in the model of a heterogeneous population 

fitted to the Swedish data for ages above 20 is shown in Figure 3.6. The initial mortality 

rate 𝑚1,0, parameter 𝛽1 and initial fraction 𝜌1,0 of the first (frailest) subpopulation are 

shown in panels A, C and E respectively. Similarly the evolution of mortality parameters 

of the second (most robust) subpopulation is shown in panels B, D and F. Although the 

parameters are widely dispersed and presented results contain high standard errors, the 

shown trendlines reliably indicate the direction of trends. 

Figure 3.6 indicates that the inverse relationship between the initial mortality rate and the 

mortality coefficient is observed for both subpopulations. We therefore conclude that the 

compensation law holds for each subpopulation, although in the first subpopulation it is 

reversed as compared to that in the second subpopulation. Indeed, in the most robust 

(second) subpopulation the initial mortality declines over time while its mortality 

coefficient increases (similar results as in Section 3.5.1). At the same time the initial 

mortality of the frailest (first) subpopulation increases while its mortality coefficient 

decreases. 
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Figure 3.5: Heterogeneous model fitted to mortality data for ages 20+. A two-

subpopulation model is fitted to Swedish (males and females) data (dots) for the 

periods 1900 (panel A) and 2000 (panel B). Dashed lines represent the mortality rates 

of each subpopulation (exponential functions) while the solid (red) curve is the 

mortality of the whole population as described by the model of heterogeneous 

population. The model parameters as estimated by the Least Squares Method are for 

panel A: 1st  subpopulation 𝑚1,0 = 0.01742, 𝛽1 = 0.0278, 𝜌1,0 = 0.28411 and 2nd  

subpopulation 𝑚2,0 = 0.000063, 𝛽2 = 0.0951, 𝜌2,0 = 0.71589 and for panel B: 1st 

subpopulation 𝑚1,0 = 0.09361, 𝛽1 = 0, 𝜌1,0 = 0.03114 and 2nd  subpopulation 

𝑚2,0 = 0.000015, 𝛽2 = 0.10377, 𝜌2,0 = 0.96886. 

It is also interesting to note on Figure 3.6 that the frailest subpopulation shows an 

important volatility especially for more recent years, when this subpopulation does not 

considerably affect the population mortality pattern above age 20. Specifically, the 

fraction of the frailest subpopulation becomes very small (close to zero) from around 

1960. Thus, the mortality of the entire population is mainly reflecting the mortality of the 

most robust subpopulation. The parameter values of the frailest subpopulation do not 

have an important impact on the entire population mortality schedule, and thus, a wide 

range of parameter values provides a good fit. 

A new and interesting observation related to the structure of heterogeneous populations 

can be drawn from panels E and F in Figure 3.6. The fraction 𝜌1,0 of the frailest 

subpopulation declines exponentially over time while the fraction 𝜌2,0 of the most robust 

subpopulation increases accordingly. The frailest subpopulation represented 0.28% of 

the total population in 1900, while it only represented 0.03% in 2000. The population is 

then becoming more homogeneous over time. This important observation will be further 

discussed in the upcoming sections. 
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Figure 3.6: Evolution of the parameters of a two-subpopulation model fitted to the 

Swedish mortality rates for ages 20+. Panels A, C and E show evolution of 

parameters (initial mortality (𝑚0), mortality coefficient (𝛽) and initial fraction (𝜌0)) 

associated with the first subpopulation while the panels B, D and F – with the second. 

The circle points with error bars correspond to the model parameters and their 

standard deviations as estimated by the Least Squares Method and the solid curves 

show trendlines for the evolution of the parameters over time.    

3.5.3. Evolution of mortality parameters for all ages excluding the 

extrinsic causes of death 

As mentioned in Section 3.4, the causes of death can be grouped into two categories: 

intrinsic and extrinsic. The intrinsic causes are related to the inability of biological 
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organisms to oppose destruction. Makeham (Makeham, 1867) suggested, among others, 

that the Gompertz law fits much better with mortality due to biological causes, this 

section focuses on the evolution of mortality due to intrinsic causes. Since the extrinsic 

causes of death include the external causes of death, the local maximum in the adulthood 

period (at approximately age 20 for the Swedish data in Figure 3.1), that is, the 

accidental hump is removed. Results in this section are based on mortality rates for 

Swedish males found on the WHO website, as mentioned in Section 3.4. 

 

Figure 3.7: Heterogeneous model fitted to mortality data which exclude extrinsic 

causes of death. A two-subpopulation model is fitted to Swedish male data (dots) for 

the periods 1951 (panel A) and 2010 (panel B). Dashed lines represent the mortality 

rates of each subpopulation (exponential functions) while the solid curve is the 

mortality of the whole population as described by the model of heterogeneous 

population. The model parameters as estimated by the Least Squares Method are for 

panel A: 1st subpopulation 𝑚1,0 = 0.99013, 𝛽1 = 0, 𝜌1,0 = 0.03324 and 2nd 

subpopulation 𝑚2,0 = 0.000062, 𝛽2 = 0.0908, 𝜌2,0 = 0.96676 and for panel B: 1st 

subpopulation 𝑚1,0 = 0.97567, 𝛽1 = 0, 𝜌1,0 = 0.00395 and 2nd subpopulation 

𝑚2,0 = 0.000014, 𝛽2 = 0.103, 𝜌2,0 = 0.99605. 

Figure 3.7 presents observed Swedish male mortality (dots) excluding extrinsic causes of 

deaths for the periods 1951 (panel A) and 2010 (panel B). The high level of infant 

mortality reflects mainly the deaths due to severe birth defects, malformations, preterm 

births, the sudden infant death syndrome, etc. Therefore the mortality trajectory drops 

down to a minimum point and after the age of 10 increases exponentially. Thus, by 

excluding the accidental hump we observe that the exponential rise of mortality becomes 

apparent at the early stage of human life, just after age 10, and the pattern of mortality 

has a single minimum at that age. Therefore, a model of a heterogeneous population 

composed of two subpopulations should be sufficient to reproduce the actual data. Our 

studies show that a two-subpopulation model is indeed commonly a best fit for these 

data, although in some cases BIC values indicate that three-subpopulation models are 
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more accurate. In this section we will fit all the consecutive periods with the two-

subpopulation model for consistency. In the two-subpopulation model (see Figure 3.7), 

the mortality dynamics of the first subpopulation explains the high infant mortality and 

the mortality decline at young ages, while the second subpopulation describes the 

exponential rise of mortality after the age of 10.  

The second subpopulation represents a bigger proportion of the total population than the 

first subpopulation. The first subpopulation has usually a zero-slope coefficient and a 

high initial mortality, close to 1. Thus, the first-subpopulation individuals die at the very 

young ages due to the high level of initial mortality. By the age of 10, the first 

subpopulation is completely eliminated. Consequently, after the age of 10, the mortality 

rate of the entire population increases exponentially according to the mortality dynamics 

of the second subpopulation.  

The time evolution of parameters of the two-subpopulation model is shown in Figure 

3.8. The fitted model parameters are presented with circle points with error bars, while 

the solid lines represent trendlines. We found that while the model parameters 𝑚1,0 and 

𝛽1 describing the first subpopulation do not show any trend, the evolution of the other 

model parameters follows a trend. Although the estimation of model parameters comes 

with considerably large error bars the trendlines can be reliably approximated by linear 

or exponential functions. The frailest subpopulation has a zero-constant mortality 

coefficient (Figure 3.8C) and an approximately constant (slightly decreasing) initial 

mortality (Figure 3.8A). The second subpopulation has an exponentially decreasing 

initial mortality (Figure 3.8B) and an exponentially increasing mortality coefficient 

(Figure 3.8D). The fraction of the first subpopulation declines exponentially over time 

(Figure 3.8E), while the fraction of the second subpopulation is increasing accordingly 

(Figure 3.8F). The first subpopulation can be considered as static, with a constant initial 

mortality and a constant mortality coefficient. Only its proportion to the entire 

population is changing over time. An analysis of the compensation effect requires then 

an analysis of the mortality dynamics for the second subpopulation only. 

Similarly to the case of the 20+ data shown in Figure 3.6 we observe the decline of the 

initial mortality rate of the second (most robust) subpopulation and the increase of its 

parameter 𝛽 and thus the inverse relationship between the two parameters is again 

observed, reflecting the compensation law of mortality. 
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Figure 3.8: Evolution of the parameters of a two-subpopulation model fitted to the 

Swedish male mortality rates for all ages and excluding extrinsic causes of death. 

Panels A, C and E show evolution of parameters (initial mortality (𝑚0), mortality 

coefficient (𝛽) and initial fraction (𝜌0)) associated with the first subpopulation while 

the panels B, D and F – with the second. The circle points (with error bars) give the 

model parameters as estimated by the Least Squares Method and the solid curves 

show trendlines for the evolution of the parameters over time. 

As in the previous section, the heterogeneity in human populations is decreasing. The 

fraction 𝜌1,0 declines over time and tends to zero while the fraction 𝜌2,0 converges to 1. 

This could be interpreted as a reduction in the number of vulnerable new-borns who fail 

to survive in the new environment. This reduction can be viewed as a consequence of 

hygiene, medical and lifestyle improvements, etc. Since these individuals are no longer 

affected by fatal diseases at early ages, they are transferred to the most robust 
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subpopulation and thus add to the mortality dynamics in the same way as other 

individuals in the most robust subpopulation. 

The decrease in human heterogeneity leads to a very interesting observation: the decline 

in mortality rates of the entire population is partly due to the decreasing proportion of the 

population related to the first subpopulation. Indeed, the change over time in the 

structure of the population, that is the change in the fractions of the first and second 

subpopulations, explains most of the mortality decline of the entire population. Most of 

the past mortality decline is thus not due to a decline in the mortality of each 

subpopulation (reflected with changes in the mortality parameters), but due to a change 

in the structure of the population. This result will be further discussed in the following 

sections. 

3.5.4. Evolution of mortality parameters for all ages including all 

causes of death 

In this section we will consider the model of heterogeneous populations as fitted to the 

mortality data on the entire age range including all causes of death. Swedish data for 

1900-2000 have been used, as in Sections 3.5.1 and 3.5.2. According to BIC values a 

model consisting of four subpopulations is typically a best fit for these data as shown in 

Chapter 2. Figure 3.9 shows the fitted model for the first and the last periods under 

observation, that are 1900 (panel A) and 2000 (panel B). 

The first subpopulation (with the highest initial mortality) describes the high infant 

mortality of the entire population and the deep mortality decline over the first few years. 

The second subpopulation has an impact on mortality in the age range from two (when 

first subpopulation is almost gone) to 10 when this subpopulation has also practically 

vanished. The third subpopulation describes the accidental hump which occurs due to the 

accidental mortality for young adult males and the accidental in addition to maternal 

mortality for young adult females. The last subpopulation (with the lowest initial 

mortality but the biggest initial size) explains the exponential mortality trajectory of the 

entire population after the reproductive period. 

Figure 3.9 illustrates that the parameters of the four subpopulations are changing over 

time. Indeed, the points of intersections and the slopes of the dashed lines are different in 

panels A and B. Details are provided in Figure 3.10, where the time evolution of each 
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parameter is shown. The plot has four columns, each column presenting the parameters 

of one subpopulation. 

 

Figure 3.9: Heterogeneous model fitted to mortality data including extrinsic causes 

of death. A four-subpopulation model is fitted to Swedish (males and females) 

mortality rates (dots) for the periods 1900 (panel A) and 2000 (panel B). Dashed lines 

represent the mortality rates of each subpopulation (exponential functions) while the 

red solid curve is the mortality of the whole population as described by the model of 

heterogeneous population. The model parameters as estimated by the Least Squares 

Method are for Panel A: 1st subpopulation 𝑚1,0 = 1.50935, 𝛽1 = 0, 𝜌1,0 = 0.09936, 

2nd subpopulation 𝑚2,0 = 0.31023, 𝛽2 = 0.10653, 𝜌2,0 = 0.0536, 3rd subpopulation 

𝑚3,0 = 0.01229, 𝛽3 = 0.05188, 𝜌3,0 = 0.17929 and 4th subpopulation 𝑚4,0 =
0.00009, 𝛽4 = 0.09065, 𝜌4,0 = 0.66775 and for Panel B: 1st subpopulation 𝑚1,0 =
1.69434, 𝛽1 = 0, 𝜌1,0 = 0.00331, 2nd subpopulation 𝑚2,0 = 0.02771, 𝛽2 =
0.61132, 𝜌2,0 = 0.00028, 3rd subpopulation 𝑚3,0 = 0.00103, 𝛽3 = 0.23672, 𝜌3,0 =
0.0045 and 4th subpopulation 𝑚4,0 = 0.000017, 𝛽4 = 0.10179, 𝜌4,0 = 0.99191. 

Figure 3.10 shows that the initial mortality of the first subpopulation increases while the 

initial mortalities of the other three subpopulations decrease over time (provided linear 

trends are not particularly accurate but confidently indicate the increasing/decreasing 

behaviour of data).  The mortality coefficient of the first subpopulation (parameter 𝛽1) is 

zero for almost all years. Since the parameter 𝛽1 only affects the first few years of life, 

its value does not significantly influence the mortality pattern of the entire population 

(any value of the mortality coefficient combined with high level of initial mortality can 

reproduce the sharp initial decline of the mortality pattern). The mortality coefficients of 

the other three subpopulations (parameters 𝛽2, 𝛽3 and 𝛽4) increase (approximately 

linearly) over time, which (taking into account the decrease in the initial mortality) 

confirms the validity of the compensation law of mortality for the last three 

subpopulations.  
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Figure 3.10: Evolution of the parameters of the four-subpopulation model fitted to 

Swedish mortality for each year over the periods 1900-2000. Each of column shows 

evolution of parameters (initial mortality (𝑚0), mortality coefficient (𝛽) and initial 

fraction (𝜌0)) associated with one of the subpopulations. The dot points (with error 

bars) give the model parameters as estimated by the Least Squares Method and the 

solid curves show trendlines for the evolution of the parameters over time. 

Figure 3.10 also reveals a very interesting observation, namely damped oscillations of 

initial mortality, 𝑚4,0, and mortality coefficient, 𝛽4, for the fourth subpopulation. These 

oscillations can reflect the effect of periodically changing external (e.g. climatic) factors 

on the mortality of the population, while their damping may indicate the evolution of the 

population’s resistance to these factors. Finally, the homogenisation effect is also shown 

in Figure 3.10. As in previous sections, the most robust subpopulation (fourth 

subpopulation) is continuously growing and becoming a more important fraction of the 

total population, while the initial fractions of the first three subpopulations decline 

exponentially over time. At the year 1900, the proportion of the main subpopulation was 

67% of the total population while this proportion increased to 99% in the year 2000.  
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3.5.5. Compensation effect 

 

Figure 3.11: Compensation effect in heterogeneous models. The coordinates of 

coloured markers give the target lifespan and target mortality for each subpopulation 

of each model considered in Sections 3.5.1-3.5.4. The rhombus (red) marker 

corresponds to the homogeneous population fitted to the Swedish mortality from age 

40 and above. The two triangle markers (red and blue) correspond to the 

subpopulations of the two-subpopulation model representing the Swedish mortality 

from age 20 and above. The two square markers (red and green) correspond to the 

subpopulations of the two-subpopulation model fitted to the Swedish male mortality 

excluding the extrinsic causes of death. The four circle markers correspond to the four 

subpopulations of the model fitted to the entire Swedish dataset. The colour used to 

draw a marker is the same for the subpopulations in different models having an 

impact in the same age interval: green is for infant mortality, black for child mortality, 

blue for the accidental hump and red for the exponential growth of mortality after the 

reproductive period. Error bars representing the standard deviations for the 

coordinates of the marker representing the most robust subpopulation in four-

subpopulation model are shown. Error bars for the three other subpopulations of this 

model cannot be shown since they are smaller than the size of markers used in the 

figure. Sample mortality trajectories are presented in each intersection point of the 

four-subpopulation model to show the convergence of mortality at these points. 

The inverse relationship between the time evolution of the initial mortality and the time 

evolution of the mortality coefficient was observed in previous sections for most 

subpopulations. A complementary phenomenon is the convergence of the mortality 

trajectories for each subpopulation. This convergence is manifested by the intersection of 

mortality trajectories (see Figure 3.4B) which, in the ideal case (a pure form of 

compensation effect), takes place in the same point for all trajectories, the coordinates of 

this point giving the target lifespan and target mortality, i.e. the age and the level of 
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mortality at which the last survivors in the subpopulation of interest die (Strehler and 

Mildvan, 1960, Strehler, 1978, Yashin et al., 2000, Gavrilov and Gavrilova, 1979, 

Gavrilov and Gavrilova, 1991, Gavrilov and Gavrilova, 2006). The target lifespans for 

the individuals of each subpopulation are found through the Strehler and Mildvan 

correlation (equation (1.4)). The target lifespans resulting from the preceding four 

sections are estimated as:  

1. For homogeneous population fitting the Swedish data above age 40 (Section 

3.5.1): 103.6 years;  

2. Two subpopulations reproducing the Swedish mortality patterns for ages above 

20 (Section 3.5.2): 16.7 and 106 years respectively;  

3. Two subpopulations reproducing the Swedish male mortality patterns excluding 

the extrinsic mortality (Section 3.5.3): 0.2 and 102.6 years respectively;  

4. Four subpopulations representing Swedish entire mortality schedule (Section 

3.5.4): 0.3, 3.5, 12.9 and 106.8 years respectively.  

Figure 3.11, showing the points of intersections for mortality trajectories of different 

subpopulations on the plane mortality/lifespan, summarizes these results. The 

intersection points are given by markers whose colours are the same for the “same” 

subpopulations in the four fitted models which can be distinguished by the shape of the 

markers: triangles for the two subpopulations representing the Swedish mortality at age 

20+; squares for the two subpopulations reproducing the Swedish male mortality 

excluding the extrinsic death factors; circles for the four subpopulations reflecting the 

Swedish mortality for all ages and causes. For example, the first subpopulation of the 

model representing Swedish mortality at age 20+ explains the decline of mortality in the 

right tail of the accidental hump and thus, the intersection point for it has the same 

colour (blue) as the point for the third subpopulation of the four-subpopulation model 

which is also responsible for the accidental hump. Similarly the lifespan of the first 

subpopulation, reflecting the Swedish male mortality excluding the extrinsic causes of 

death, explains the sharp initial decline in the mortality pattern, and thus the intersection 

point for it has the same colour (green) as the point for the first subpopulation in the 

four-subpopulation model for Swedish mortality (green square and green circle points 

respectively in Figure 3.11). Finally the red colour represents the exponential rise of 

mortality after sexual maturity and thus the homogeneous population representing the 

Swedish mortality for age 40 and above is shown by the red rhombus, the second 
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subpopulation of the model representing the Swedish mortality at age 20+ is shown by 

the red triangle, while the second subpopulation reflecting the Swedish male mortality 

excluding the extrinsic causes of death is represented by the red square point, and the 

fourth subpopulation in the four-subpopulation model is represented by a red circle 

point. Samples of hypothetical mortality dynamics for each subpopulation of the four-

subpopulation model are given by dashed lines. 

The most interesting observation from Figure 3.11 is that the markers of the same colour 

are located close to each other. Thus, the four models studied in Sections 3.5.1-3.5.4, 

even if they were applied to different age ranges and datasets, provide similar results by 

indicating the existence of almost identical subpopulations. Therefore, the target lifespan 

for the total population in Sweden is reflected through the target lifespan for the most 

robust subpopulation (which appears in all four models) and thus lies between ages 102 

and 107.    

3.5.6. The role of homogenization in the evolution of mortality 

dynamics 

Previous results lead to the following crucial conclusion: the reduction of mortality over 

time is not only affected by the change of mortality dynamics in each subpopulation but 

it is also a consequence of the change in the structure of the population. In Figure 3.12 

the patterns formed by the model fitted to the 1900 (solid red curve) and 2000 (solid blue 

curve) Swedish data are shown in the same semi-logarithmic plot. The dashed blue curve 

in between them depicts an artificial pattern that is produced with the model composed 

by four subpopulations, using the initial mortalities and mortality coefficients obtained 

by fitting the 1900 period data and the initial fractions of the subpopulations reproducing 

the 2000 period data. It is then apparent that a reduction of mortality within one century 

is a result of  

1. the alteration in population structure, that are changes in subpopulation’s fractions, 

especially at young ages (difference between solid red and dashed blue curves in 

Figure 3.12) and  

2. the alteration of the exponential dynamics of the subpopulations, that are changes in 

initial mortalities, 𝑚𝑗,0 and mortality coefficients, 𝛽𝑗 (difference between dashed 

blue and solid blue curves in Figure 3.12).  
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Looking at Figure 3.12 we can also conclude that the decrease in mortality at younger 

ages is mostly due to the homogenization of the population while at older ages is entirely 

due to changes in the mortality parameters of the most robust subpopulation. 

 

Figure 3.12: Reduction in the Swedish mortality rates within one century (from 

1900 to 2000). The patterns formed by the four-subpopulation model fitted to the 1900 

(red solid curve) and 2000 (blue solid curve) Swedish mortality rates are plotted in a 

semi-logarithmic plot. The dashed blue curve indicates an artificial pattern formed by 

the four-subpopulation model with the initial mortalities and mortality coefficients 

estimated by fitting the 1900 period data and the fractions estimated by fitting the 

2000 data.  

3.6. Discussion 

Investigations of human mortality dynamics have practical implementations as they may 

help to find ways to increase our lifespan. These investigations also have a fundamental 

value as they help to understand biological processes and genetics underlying the process 

of ageing. One of the important ways to conduct such investigations is represented by 

mathematical modelling. Various assumptions have to be made to design a mathematical 

model, especially if one aims to model all relevant features observed in the mortality 

pattern of the entire lifespan. One of the commonly used assumptions is that a population 

is heterogeneous and composed of several subpopulations having different mortality 

dynamics (Rossolini and Piantanelli, 2001, Vaupel, 2010). The possible interpretation of 

the model parameters is extremely important to conduct deeper analyses and for 

forecasting purposes (Booth and Tickle, 2008). The time evolution of the parameters of a 
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model fitted to several observed periods provides then important insights in potential 

future evolutions. Such studies have been performed using various models of mortality 

dynamics (McNown and Rogers, 1989, McNown and Rogers, 1992, Lee and Carter, 

1992, Bell, 1997, Tabeau et al., 2001, Felipe et al., 2002, Gaille and Sherris, 2011, 

Gaille, 2012, Njenga and Sherris, 2011).  

In this Chapter we have analysed the evolution of the parameters in the model of 

heterogeneity of human populations where each subpopulation follows an exponential 

law of mortality (Avraam et al., 2013). We fitted the model to four different datasets. 

First, the homogeneous exponential law was fitted to Swedish mortality rates for ages 

above 40 for the periods 1900 to 2000. Second, the model of heterogeneous population 

with two subpopulations was fitted to the Swedish mortality rates for ages 20 plus. 

Third, the two-subpopulation model was fitted to Swedish male mortality rates over the 

entire lifespan, excluding deaths due to extrinsic factors, for the periods 1951 to 2010. 

Fourth, the model of heterogeneous population with four subpopulations was fitted to the 

entire lifespan dataset of the Swedish population for the periods 1900-2000. Our model 

fitting approach results in four main findings. 

The first remarkable observation concerns the model used, that is the best fit to the 

mortality dynamics for the most complete mortality data is given by the four-

subpopulation model. The novel result associated with this model is given by the second 

subpopulation which distinguishes the impact of child mortality from infant mortality to 

the entire mortality pattern. Occurrence of the subpopulation which counts for the child 

mortality makes our model different from other notable models (such as Heligman-

Pollard) where the mortality dynamics is commonly decomposed to only three stages 

corresponding to early childhood, accidental mortality and late-life adulthood. 

Second, our model does not capture the “late-life mortality plateau” which was reported 

by many researches as described in the Introduction section. We have fitted the model to 

each year within the 20th century and only a few of the fits have captured the mortality 

deceleration at older ages. It turns out that the deviations in mortality dynamics from the 

exponential increase at older ages are not always significant enough to be captured by 

our model. As we use the BIC for evaluation of how the model fits the data, the best fit 

becomes very sensitive to the number of subpopulations in the model. For example five-

subpopulation model is worse than four-subpopulation as it has more model parameters 
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although in terms of standard error it fits data better. To analyse the dynamics of 

mortality at old ages it is more appropriate to consider a shorter range of ages for 

example 80+. We have checked and confirm that the best fit for this range of ages is 

commonly given by two subpopulations and the model reproduces mortality deceleration 

around the age of 100 (see Chapter 4).  

Third, the compensation law of mortality is confirmed at the subpopulation level. The 

inverse relationship (negative correlation) between the mortality parameters is shown 

with the reduction of the initial mortality and the increase of the mortality coefficient 

over time in almost all subpopulations. The only exception is regarding the frailest 

subpopulation, which has an approximately constant initial mortality and a constant 

mortality coefficient. The frailest subpopulation, namely the subpopulation with the 

highest initial mortality rate, represents a small proportion of the entire population and 

disappears after a couple of years (the individuals belonging to that subpopulation die a 

few years after their birth). Therefore, except for the very young ages, this subpopulation 

has a negligible impact on the mortality pattern. It is also interesting to note by 

comparing Figure 3.6 and Figure 3.8 that the evolution of the parameters of the two-

subpopulation model for ages above 20 (Section 3.5.2) is similar in many ways to the 

evolution of the parameters of the two-subpopulation model excluding the extrinsic 

causes of death (Section 3.5.3). It is related to the fact that in both models, the most 

robust subpopulation explains the exponential rise of mortality over the adulthood period 

in the entire population and the frailest subpopulation describes a decline in the mortality 

pattern at young ages. Indeed, in the two-subpopulation model for ages 20+, the frailest 

subpopulation represents the decline forming the right tail of the accidental hump 

(Figure 3.5), while in the two-subpopulation model excluding extrinsic mortality, the 

frailest subpopulation is responsible for the initial decline of mortality at very young 

ages (Figure 3.7). 

Our forth main finding is the homogenization of the population over time. Indeed, we 

have shown that the fractions of all subpopulations except for the most robust decline 

over time. We have found that the fraction of the most robust subpopulation gradually 

increases being equivalent to 67% of the total population in 1900 and 99% in 2000 for 

the Swedish data. The homogenisation we report here is related to the evolution of 

mortality in developed countries and does not directly reflect the variations in genotype 

in the population. It rather reflects the fact that in course of time, with improvements in 
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medical service and life conditions, the variations in genotype of people become less 

important in terms of their duration of life. Contemporary genetic studies (Cavalli-Sforza 

and Feldman, 2003) indicate that the genetic variability in human populations is 

increasing over time. This increase is rather explained by the fact that the mortality is 

gradually reducing and therefore not all of those who recently survive and give offspring 

(i.e. bring diversity into a gene pool) would be able to do so in the past.  

In a view of the outlined above finding we can state that the mortality decrease over the 

last century can be decomposed into two components: first, a mortality decline due to 

changes in the structure of the population or its homogenization (decrease from the red 

solid curve to the blue dashed curve in Figure 3.12) and second, a decrease due to a 

mortality reduction in the subpopulations (decline from the blue dashed curve to the blue 

solid curve in Figure 3.12), which is reflected with a change in the mortality parameters 

of each subpopulation. The implications are remarkably important for potential future 

mortality improvements: once the homogenization process is over, that is the mortality 

of the entire population will only reflect the mortality of the healthiest subpopulation, the 

potential for future decrease in mortality will be relatively small compared to what we 

observed over the last century. New developments in mortality forecasting approaches 

should consider this aspect to avoid overestimation of future mortality improvements.  

To conclude, the above findings can be used in a future work to further enhance our 

methodological approach. It would be of great interest to fit a mortality surface (rather 

than a line) over the plane given by two variables: age and time (see Chapter 4). Fitting a 

surface is a difficult task requiring further assumptions about its structure. This structure 

can now be postulated as based on the assumptions that the evolutions of initial 

mortality, 𝑚0, is represented by a linear function while the evolution of mortality 

coefficient, 𝛽, by an exponent. This approach would allow us to obtain further results on 

the mortality structure of human populations, and thus could confirm, enhance and 

develop further the results presented in this Chapter. 
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Chapter 4.  

On the heterogeneity of human 

populations as reflected by mortality 

dynamics 

4.1. Summary 

The heterogeneity of human populations is a common consideration in describing and 

validating their various age-related features. Heterogeneity, in particular, amongst other 

factors, is used to explain the variability of mortality rates across the lifespan and 

deviations from an exponential growth at young and very old ages. The mathematical 

model that combines the population heterogeneity with the assumption that the mortality 

of each constituent subpopulation increases exponentially with age, has been shown to 

successfully reproduce the entire mortality pattern across the lifespan as well as its 

evolution over time. Furthermore, the analysis of time-evolution of the mortality pattern, 

performed by fitting the model to actual data of consecutive periods, confirms the 

applicability of the compensation law of mortality to each subpopulation and concludes 

on the evolution of the population towards homogenisation. 

In this Chapter we aim to show that the heterogeneity of human populations is not only a 

convenient consideration for fitting mortality data but is indeed the actual structure of the 

population as reflected by the dynamics of its mortality over age and time. In particular, 

we demonstrate that the model of heterogeneous populations fits mortality data better 

than most of the other models if the data are taken for the entire lifespan and better than 
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all other models if we consider only old ages. Also, we show that the model can 

reproduce seemingly contradicting observations in late-life mortality dynamics namely 

deceleration, levelling-off and mortality decline. Assuming that heterogeneity is 

reflected in genetic variations within the population, using Swedish mortality data for 

20th century we show that the homogenisation of the population, observed in the model 

fits, can be associated with the evolution of allele frequencies. 

4.2. Introduction 

One of the central problems in ageing-related studies is the understanding of processes 

which underlie senescence and revealing the biological functions which deteriorate in 

organisms over the course of their lifespan. Ageing is associated with the acceleration of 

mortality expressed by the exponential increase of mortality rate over age, as described 

by the Gompertz law. The Gompertz law represents a fundamental mortality law and 

was verified by demographic observations across different countries, different time 

periods, and even different species (Gavrilov and Gavrilova, 1991). The analysis of 

available data on mortality rates for various diseases also indicates that for most diseases 

there is a considerably wide age range where the mortality rate also increases 

exponentially (Jones, 1956, Finch, 1994). 

The exponential growth of mortality is not observed at young (before sexual maturity) 

and extremely old ages. Many researchers consider the exponential law of mortality to 

be “natural” while the deviations from it need to be explained. The observation that the 

exponential law of mortality does not apply at older ages was first made by Gompertz. In 

his 1825 paper, Gompertz stated that “The near approximation in old age, according to 

some tables of mortality, leads to an observation, that if the law of mortality were 

accurately such that after a certain age the number of living corresponding to ages 

increasing in arithmetical progression, decreased in geometrical progression, it would 

follow that life annuities, for all ages beyond that period, were of equal value; for if the 

ratio of the number of persons living from one year to the other be constantly the same, 

the chance of a person at any proposed age living to a given number of years would be 

the same, whatever that age might be;” recognising that the probability of surviving (and 

consequently, the mortality rate) levels-off at extremely old ages. 
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The divergence of mortality from its exponential increase at extremely old ages is 

generally accepted as valid by the majority of biologists and bio-demographers 

(Greenwood and Irwin, 1939, Olshansky, 1998, Gavrilov and Gavrilova, 2011) although 

some data do not support this observation (see for example (Gavrilova and Gavrilov, 

2014)). Furthermore, existing data on mortality dynamics at advanced ages are so 

controversial (Olshansky, 1998) that performed studies have not given a definite answer 

on what mathematical function (logistic, quadratic, etc) can describe the data at those 

ages (Gavrilov and Gavrilova, 2001, Kannisto et al., 1994, Pham, 2011).  

The absence of a definite explanation for the trend of mortality at very old ages renders 

the analysis of oldest-old mortality as an essential topic of demography. Raw mortality 

data are usually statistically noisy at extreme old ages as the number of survivors is 

small. The stochastic effects at very old ages are often seen as fluctuations in mortality 

dynamics (Avraam et al., 2013). On the other hand, different observations have been 

made for the trends of mortality behind these fluctuations. The late-life mortality slow-

down phenomenon describes the divergence of mortality from the exponential law at 

very old ages. Late-life mortality slow-down could be associated with (a) an increase in 

late-life mortality at a slower rate than its exponential increase during the adulthood 

period, called deceleration (Depoid, 1973, Horiuchi and Wilmoth, 1998, Thatcher et al., 

1998), (b) a levelling-off, commonly called the mortality plateau, which is the saturation 

of mortality trajectory on a constant horizontal rate asymptote to a certain limit 

(Economos, 1979, Mueller and Rose, 1996, Curtsinger et al., 2006) or (c) a decline of 

mortality with increasing age (Kannisto et al., 1994, Wilmoth, 1995). The late-life 

mortality slow-down was observed for human (Greenwood and Irwin, 1939, Bebbington 

et al., 2014) as well as non-human populations (Carey et al., 1992, Pletcher and 

Curtsinger, 1998, Economos, 1979, Economos, 1980). 

The deviations in mortality from the exponential law, at young and older ages, segregate 

the analysis of mortality into two parts. The first part attempts to explain the biological 

processes underlying the exponential law, and the second part tries to explain the causes 

of deviations from the exponential law that are observed at young and extremely old 

ages. Mathematical verifications of the exponential law have been performed from 

different points of view ranging from a population genetic theory of ageing 

(Charlesworth, 1994) to the application of reliability theory to ageing and longevity 

(Gavrilov and Gavrilova, 2001).  
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The evolutionary theories that were proposed to explain ageing, and to answer the 

question of why organisms grow old and die, are mostly based on the assumption of a 

loss of selective significance of phenotypes developing during post-reproductive ages 

(Hamilton, 1966, Charlesworth, 2000, Rose et al., 2007). One such theory, first 

introduced by Medawar, is known as the mutation accumulation theory (Medawar, 1946, 

Medawar, 1952). Medawar’s hypothesis states that gene alleles or mutations that are 

neutral at early life but deleterious at later life, escape natural selection and are 

transferred to the next generation before their deleterious effects become evident. Such 

mutations can therefore accumulate in the population by a genetic drift and reveal 

themselves via the diseases associated with the post-reproductive period. Another 

evolutionary theory, named the antagonistic pleiotropy, states that genes, with beneficial 

effects early in life but with deleterious actions later in life, could be favoured by 

selection and accumulate in the population (Williams, 1957). The theory of disposable 

soma, proposed by Kirkwood (Kirkwood, 1977, Kirkwood and Holliday, 1979), 

postulates that organisms have a limited amount of energy and that specific gene 

mutations save energy for reproductive aspects by reducing the amount of energy used 

for maintenance, leading to non-reproductive damages. Ageing is therefore a result of 

the accumulation of damages that are not repaired by the organism (Kirkwood and 

Austad, 2000). These hypotheses take for granted the fact that the length of the 

reproductive period itself may depend on a number of genetic determinants associated 

with environmental and population factors. 

Other attempts (not based on evolutionary theories) to explain the Gompertz law include 

work by Strehler and Mildvan, who related mortality to inadequate responses of the 

organism to energy demands and showed that the exponential increase of mortality is 

associated with a linear decrease of vitality (where vitality was defined as the capacity of 

an individual to resist damage) (Strehler and Mildvan, 1960), work by Sacher and 

Trucco, who analysed the role of stochastic and homeostatic forces (Sacher and Trucco, 

1962, Yashin et al., 2000), and a study by Shklovskii who modelled the exponentially 

rare escape of abnormal cells from immunological response (Shklovskii, 2005). 

Furthermore, Gavrilov and Gavrilova have applied the reliability theory to explain 

ageing and the Gompertz law by considering age-related failure kinetics of systems 

(machines) and their components (Gavrilov and Gavrilova, 2001). They have shown that 

the rate of machines’ failure as a function of age can reproduce the known mortality laws 
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(Gompertz law, compensation effect, late-life deceleration) and therefore the reliability 

theory can be used to explain biological ageing.  

Many mathematical models have been introduced to reproduce the observed mortality 

patterns (Gompertz, 1825, Makeham, 1860, Thiele, 1872, Siler, 1979, Heligman and 

Pollard, 1980). Some of them are designed to generate mortality patterns over the entire 

lifespan while others aim to reproduce a specific part of those patterns. For example, a 

function that outlines an inverse relationship between mortality and age, is used to 

generate the decline of mortality at very young ages (De Beer and Janssen, 2014) 

whereas the logistic-type and quadratic functions are used to create the late-life mortality 

plateau and the late-life mortality decline, respectively (Gavrilov and Gavrilova, 2001, 

Kannisto et al., 1994, Pham, 2011). A number of studies consider populations to be 

heterogeneous and model their mortality dynamics by assuming that the population is 

comprised of cohorts (subpopulations) such that the members of each cohort, at a given 

age, face the same probability of death (Vaupel and Yashin, 1985a, Vaupel et al., 1979, 

Manton et al., 1986). The concept of heterogeneity was used in Chapter 2, to model the 

dynamics of mortality and explain their deviations from the exponential growth at young 

and very old ages (see also (Wrigley-Field, 2014, Chen et al., 2013, Drapeau et al., 2000, 

Steinsaltz, 2005)). 

Since the model of heterogeneous populations, introduced in Chapter 2, turned to be 

extremely useful for analysis of mortality data, there arises a question of whether this 

model reflects the real structure of the population and, if yes, what quality underlies the 

heterogeneity? This Chapter is devoted to the above question. We start by comparing the 

mortality model of heterogeneous populations with a wide-range of other commonly 

used parametric models and show that it is one of the best models when judgements are 

made on the basis of the quality of fit to observed data. We then show that the model can 

explain the apparent controversial observations for old-age mortality (deceleration, 

mortality plateau and decline) which are not in contradiction with one another, but 

reflect a similar and coherent process underlined by the heterogeneity of populations. 

Finally, we tackle the problem of the nature of a population’s heterogeneity. Although 

the heterogeneity of populations can be conditioned by various factors such as disparities 

in life-style, environmental and other socio-economic conditions, the responses to 

environmental factors are largely shaped by an organism’s genetic landscape. Particular 

gene polymorphisms may be more important in terms of increasing an organism’s fitness 
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risks with age and would affect the dynamics of an organism’s ageing and mortality. In 

this Chapter we check whether the population dynamics of putative gene variations can 

be aligned with the modelled dynamics of suggested distinct subpopulations required for 

representation of the global dynamics of mortality of integrated human population. We 

assume that individuals belonging to different subpopulations differ by genotype and 

have differential resistance to environmental perturbations. Changes in the environment 

would favour different subpopulations in different contexts and their resultant 

differential mortality may have an impact on the dynamics of the mortality characteristic 

for a population in a given time period. In Chapter 3 it was shown that the evolution of 

mortality dynamics in Sweden over the 20th century was for two reasons: changes in 

mortality dynamics of subpopulations, and changes in the structure of populations as 

represented by the fractions made by subpopulations (homogenisation of the population). 

While changes in the mortality dynamics of subpopulations are most likely driven by 

environmental changes (Black et al., 2010, Ahmad et al., 2000), the change in the 

population structure can be explained in terms of population dynamics. Based on the 

difference in mortality dynamics of subpopulations (and assuming that the difference is 

due to a single gene) we have calculated their relative fitnesses and confirmed that this 

allows for an explanation and accurate reproduction of the homogenisation process of 

populations. 

This Chapter is structured as follows. In Section 4.3 we introduce different mathematical 

models for mortality and describe the technique used for an evaluation of allele 

frequency dynamics in population genomics. We then show that the model of a 

heterogeneous population is one of the best models for fitting actual mortality data over 

the entire lifespan (Section 4.4.1) or for ages over 80 (Section 4.4.2). We emphasise that 

it can explain controversial data on late-life mortality (Section 4.4.3). Finally, we show 

in Section 4.4.4 that the homogenisation of the heterogeneous population as revealed by 

the evolution of mortality data in Sweden over the 20th century can be explained by 

changes in allele frequency due to different fitnesses corresponding to different 

subpopulations. We conclude with a discussion of the obtained results and provide 

further arguments on genotypic differences between subpopulations having different 

mortality dynamics in Section 4.5. 
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4.3. Mathematical modelling 

In this section we give a description of a few popular models (most of them were 

introduced in Chapter 1) which are commonly used for fitting mortality data (these 

models later will be compared with each other in terms of their fits to a given set of 

data). For the scope of this analysis, we use so-called “parametric” models that are 

models expressing mortality rates across the lifespan with fixed (i.e. time-independent) 

parameters. We exclude therefore the models that consider also the time dependency of 

mortality patterns such as the notable Lee-Carter model. The description of parametric 

models is followed by a description of the method of calculating the force of natural 

selection in a population of diploid organisms which is later used for the analysis of the 

evolution of heterogeneous populations.      

4.3.1. Models of mortality 

Exponential functions: Gompertz, Makeham and Weibull 

The first developed parametric model and the one that remains the most notable in 

literature is the Gompertz model (Gompertz, 1825). The Gompertz model which became 

a universal law describes the exponential increase of mortality with age in a significant 

portion of lifespan (from sexual maturity to extremely old ages). According to the 

Gompertz law, the central death rate at age x, 𝑚𝑥, is given by 

 𝑚𝑥 = 𝛼𝑒𝛽𝑥 , (4.1) 

where 𝛼 is the initial mortality rate (scale parameter) and 𝛽 is the rate of change of 

mortality with age (shape parameter). It is remarkable that the Gompertz law does not 

only hold for human populations but also for many other biological species (Gavrilov 

and Gavrilova, 1991).  

An extension of the Gompertz law is the Makeham model (Makeham, 1860), which 

represents the death rate as the sum of an age-dependent component (the Gompertz 

function) describing deaths due to age-related diseases or disorders, and an age-

independent component (a constant 𝛾) describing deaths due to external factors such as 

accidents or certain infectious diseases: 
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 𝑚𝑥 = 𝛾 + 𝛼𝑒
𝛽𝑥. (4.2) 

A third exponential parametric model is the Weibull model (Weibull, 1939) which 

expresses the mortality rate as a power function of age: 

 𝑚𝑥 = 𝛼𝑥
𝛽 . (4.3) 

According to these three exponential models, mortality rates diverge to infinity as age 

tends to infinity. The difference in concavity or convexity of these functions, and the 

difference in their initial values when 𝑥 = 0 (𝑚0 = 𝛼 for Gompertz, 𝑚0 = 𝛾 + 𝛼 for 

Makeham and 𝑚0 = 0 for Weibull), distinguish them in terms of their usage. The 

Gompertz and Makeham models are generally used to describe the mortality of 

biological species while the Weibull function is widely used to describe the ageing and 

failure rate of technical systems and devices (Weibull, 1951, Le Bras, 2008). 

Logistic functions: Perks, Beard and Kannisto 

The logistic-type functions which shape sigmoid curves are commonly used in the 

analysis of mortality dynamics at older ages. These curves saturate, reaching a horizontal 

asymptote, and can therefore produce the late-life mortality plateau (Perks, 1932, 

Kannisto, 1992). The general form of a logistic curve is expressed as a four-parameter 

function: 

 𝑚𝑥 = 𝛾 +
𝛼𝑒𝛽𝑥

1 + 𝛿𝑒𝛽𝑥
, (4.4) 

which is known as the Perks model. 

Different variations of logistic function can be used in order to reduce the number of 

parameters. A three-parameter logistic function is formed by setting 𝛿 = 𝛼 in equation 

(4.4) or the three-parameter function introduced by Beard (Beard, 1971) by setting 𝛾 =

0. Also, a simple two-parameter logistic function used by Kannisto (Kannisto, 1992) is 

formed by setting  𝛾 = 0 and 𝛿 = 𝛼 in equation (4.4).  

The logistic function in equation (4.4) saturates asymptotically to 𝛾 + 𝛼/𝛿 as age 

increases while the Beard function tends to the constant 𝛼/𝛿. The Kannisto model has an 

asymptote equal to one and this model is used in a common procedure for the 
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construction of life tables in order to smooth the noisy death rates observed at ages 80 

and above (Thatcher et al., 1998). 

The Gompertz and Makeham models could be considered as special cases of equation 

(4.4). If 𝛿 = 0, equation (4.4) is transformed into the Makeham model and if 𝛾 = 𝛿 = 0 

– into the Gompertz law. However, in both these models, the mortality rate tends to 

infinity as age increases which is in contrast to the logistic-type functions and due to the 

elimination of the denominator from the logistic form.  

Michaelis-Menten kinetics 

Michaelis-Menten kinetics are an outcome of a well-known model in biochemistry that 

describes the dynamics of catalysed reactions (Michaelis and Menten, 1913). The 

kinetics are represented by an equation which describes the saturation of a reaction rate 

when the substrate concentration is increasing. The Michaelis-Menten equation has also 

been used to model several other processes, for example, Monod who was working in 

the field of environmental engineering used this equation to model the growth rate of 

microorganisms as a function of the nutrient’s concentration (Monod, 1949). In this 

Chapter, we suggest using the Michaelis-Menten equation (disregarding its parameters 

and variables terminology) to fit mortality data and to be compared with other 

asymptotic mortality functions that reproduce the mortality levelling-off at very old ages 

(i.e. the logistic-type functions). Following the form of the Michelis-Menten equation, 

the mortality at age 𝑥 can be expressed as: 

 𝑚𝑥 = 𝛼 exp (
𝛽𝑥

1 + 𝛾𝑥
). (4.5) 

Exponential-Quadratic function 

An exponential-quadratic function (known also as the Coale-Kisker model) is usually 

used to fit mortality data and show the deceleration of mortality rate and its decline at 

very old ages (Coale and Kisker, 1990). The exponential-quadratic function is given by 

 ln(𝑚𝑥) = 𝛼 + 𝛽𝑥 + 𝛾𝑥2, (4.6) 

where for a concave down parabola with a maximum point, 𝛾 should be less than zero. 

Heligman-Pollard model 
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Heligman-Pollard model (Heligman and Pollard, 1980) is an eight-parameter function 

that can reproduce mortality patterns of the entire lifespan with sufficient accuracy. The 

model was originally formulated for the ratio of death and survival probabilities (𝑞𝑥/𝑝𝑥) 

and composed of three terms where the first term reflects the sharp decline of mortality 

at childhood, the second reflects the accidental hump that is observed during the 

reproductive period (ages 15-40), and the third term (which is a Gompertz function) 

reflects the exponential increase of mortality at post-reproductive ages: 

 
𝑞𝑥
𝑝𝑥
= 𝐴(𝑥+𝐵)

𝐶
+ 𝐷𝑒−𝐸(log(𝑥)−log (𝐹)) 

2
+ 𝐺𝐻𝑥 . (4.7) 

The last term of the Heligman-Pollard model is usually modified to the logistic form 

𝐺𝐻𝑥/(1 + 𝐺𝐻𝑥) to allow the saturation of mortality at extremely old ages. In this 

Chapter, we use the Heligman-Pollard model to fit actual mortality rates (which are best 

approximated by the central death rate, 𝑚𝑥) instead of the ratio 𝑞𝑥/𝑝𝑥.  

Model of heterogeneous population 

Mathematically, the model of a heterogeneous population, which postulates the 

exponential mortality dynamics for constituent subpopulations, expresses the mortality 

rate 𝑚𝑥 at age 𝑥, as a sum of weighted exponential terms: 

 𝑚𝑥 =∑𝜌𝑗,𝑥𝑚𝑗,𝑥

𝑛

𝑗=1

=∑𝜌𝑗,𝑥𝛼𝑗𝑒
𝛽𝑗𝑥

𝑛

𝑗=1

=∑𝜌𝑗,𝑥𝑚𝑗,0𝑒
𝛽𝑗𝑥

𝑛

𝑗=1

 (4.8) 

where the sub-index 𝑗 indicates the 𝑗-th out of 𝑛 subpopulation,  𝑚𝑗,𝑥 is the central death 

rate at age x of subpopulation 𝑗, 𝛼𝑗 is the initial mortality rate of the 𝑗-th subpopulation, 

and 𝛽𝑗 is its mortality coefficient which gives the rate of change of mortality with age 

(Avraam et al., 2013, Avraam et al., 2014). The weights 𝜌𝑗,𝑥 are fractions formed by 

each subpopulation 𝑗 at age 𝑥 in the entire population, and their sum is equal to unity at 

all ages. Finally, the mortality rate at age 0 of the subpopulation 𝑗 is equal to 𝛼𝑗 and thus 

we have the relation 𝑚𝑗,0 = 𝛼𝑗, which leads to the last term in equation (4.8).  

4.3.2. Model of natural selection 

Natural selection is an evolutionary process taking place within a population and states 

that individuals with certain heritable traits have the ability to survive and reproduce 
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offspring more often than individuals’ deficient in those traits. Since these traits are 

heritable, the proportion of individuals carrying genotypes that express these traits is 

gradually increasing over time. Hence, natural selection similarly to the other primary 

evolutionary forces (mutation, migration and genetic drift) causes changes in allele 

frequencies in a population. The ability of any individual to pass genes to the next 

generation is determined by fitness. The more likely an individual is, to survive and live 

long enough to mate and reproduce, the higher their fitness is. A measure of fitness can 

be given by an average number of offspring that are born from parents of a given 

genotype (Futuyma, 2013). Selection is therefore conditioned by the variation of fitness 

between different genotypes. A simple model of natural selection that counts the 

frequencies of alleles (and subsequently the number of individuals with specific 

genotypes) over discrete generations is described in this section. 

A diploid gene with alleles 𝐴 and 𝐵 splits the population into three groups of individuals 

having three distinct genotypes: 𝐴𝐴, 𝐴𝐵 or 𝐵𝐵. The notations 𝑝 and 𝑞 are used to denote 

the frequencies of alleles 𝐴 and 𝐵 respectively and the notations 𝑃, 𝑄 and 𝑅 are used to 

define the frequencies of genotypes 𝐴𝐴, 𝐴𝐵 and 𝐵𝐵, where 𝑝 + 𝑞 = 1 and 𝑃 + 𝑄 + 𝑅 =

1. After a single step of random mating the frequencies of the three genotypes are 𝑃 =

𝑝2, 𝑄 = 2𝑝𝑞 and 𝑅 = 𝑞2 satisfying the Hardy-Weinberg equilibrium (Hartl and Clark, 

2007). Each allele frequency can also be expressed in terms of genotype frequencies. In 

other words the frequency of an allele is equal to the frequency of homozygote genotype 

formed by two duplicates of that allele plus half of the frequency of the heterozygote 

genotype (𝑝 = 𝑃 +
1

2
𝑄 and 𝑞 = 𝑅 +

1

2
𝑄).   

The absolute fitness of each genotype (denoted as 𝑤𝐴𝐴, 𝑤𝐴𝐵 and 𝑤𝐵𝐵 accordingly) is 

considered here by the average number of offspring produced by the individuals who 

carry this genotype. Relative fitness, i.e. the fitness of one genotype relative to that of 

another, is given by the ratio of their absolute fitnesses. Since this study deals with 

human populations, certain assumptions, i.e. organisms are diploid, reproduction is 

sexual and mating is random, are assured. It is also assumed that neither mutations or 

gene flows take place, and that stochastic effects due to genetic drift are negligible (the 

population size is large enough). Based on these assumptions the following formulas for 

the change of allele frequencies from generation 𝑖 to generation 𝑖 + 1 can be derived: 
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 𝑝𝑖+1 = 𝑃𝑖+1 +
1

2
𝑄𝑖+1 =

𝑤𝐴𝐴𝑝
2 +𝑤𝐴𝐵𝑝𝑞

𝑤̅
, (4.9) 

 𝑞𝑖+1 = 𝑅𝑖+1 +
1

2
𝑄𝑖+1 =

𝑤𝐵𝐵𝑞
2 +𝑤𝐴𝐵𝑝𝑞

𝑤̅
 (4.10) 

where the denominator in both fractions is the normalised factor 𝑤̅ = 𝑤𝐴𝐴𝑝
2 +

2𝑤𝐴𝐵𝑝𝑞 + 𝑤𝐵𝐵𝑞
2 (Hartl and Clark, 2007), representing the average number of children 

per individual in the population of interest. The changes in genotype frequencies 

between two subsequent generations are shown in Table 4.1. 

Genotype 𝐴𝐴 𝐴𝐵 𝐵𝐵 

Frequency of 

genotype at 

generation 𝑖 
𝑃 = 𝑝2 𝑄 = 2𝑝𝑞 𝑅 = 𝑞2 

Absolute 

fitness 
𝑤𝐴𝐴 𝑤𝐴𝐵 𝑤𝐵𝐵 

Frequency of 

genotype at 

generation 

𝑖 + 1 

(
𝑤𝐴𝐴𝑝

2 +𝑤𝐴𝐵𝑝𝑞

𝑤̅
)

2

 2(
𝑤𝐴𝐴𝑝

2 +𝑤𝐴𝐵𝑝𝑞

𝑤̅
)(
𝑤𝐵𝐵𝑞

2 +𝑤𝐴𝐵𝑝𝑞

𝑤̅
) (

𝑤𝐵𝐵𝑞
2 +𝑤𝐴𝐵𝑝𝑞

𝑤̅
)

2

 

Table 4.1: Recurrence relation of genotype frequencies between two consecutive 

generations in a diploid genetics model with random mating. 

4.4. Results 

In this section, the mortality models described in Section 4.3.1 are fitted to actual 

mortality data of the entire lifespan in Section 4.4.1 and data from very old ages (above 

age 80) in Section 4.4.2, and comparisons between the fits of the models are performed. 

In Section 4.4.3 the study focuses on mortality at very old ages and shows that the model 

of a heterogeneous population can reproduce and explain various old-age mortality 

observations, namely deceleration, plateau and decline. In Section 4.4.4 the evolution of 

mortality dynamics in a heterogeneous population and specifically the homogenisation 

of this population over time is derived from the changes in genotype frequencies in 

successive generations through the process of natural selection. 
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4.4.1. Comparing mortality models by fitting data over the entire 

lifespan 

The model of heterogeneous populations with different numbers of subpopulations as 

well as the Gompertz, Makeham, Perks and Heligman-Pollard models are fitted to period 

mortality data over the entire lifespan for the total (males and females) Swedish 

population. The Bayesian Information Criterion (BIC) values as calculated by fitting the 

models to the 2000-2010 period Swedish mortality data are shown in Figure 4.1. The 

model that gives the lowest BIC value provides the best fit to the data. The values in 

Figure 4.1 indicate that Gompertz, Makeham and Perks models are the weakest models in 

terms of data fitting. The model of heterogeneous populations gets better with an increase 

in the number of subpopulations from two to four but any further increase in the number 

of subpopulations does not result in significant improvements. One can see that the 

Heligman-Pollard model fits the data over the entire lifespan better than all other models 

including the model of heterogeneous populations (except for the 2010 period data for 

which both models provide fits with approximately the same accuracy). The actual fits of 

the four-subpopulation and Heligman-Pollard models to the 2004 period Swedish death 

rates are shown in Figure 4.2. 

 

Figure 4.1: BIC values for different mortality models fitted to the Swedish mortality 

data for the period 2000-2010. The fits by Gompertz, Makeham, Perks and Heligman-

Pollard models and the fits by the model of heterogeneous populations consisting of 

two to six subpopulations are shown 
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The Heligman-Pollard model fits the age-dependent mortality patterns very accurately 

since it imposes a pre-defined mortality pattern. Indeed the Heligman-Pollard model 

divides the mortality pattern into three distinct components observed over the past 

century, namely infant, accidental and adult mortality. On the other hand, the model of 

heterogeneous populations is more abstract, since it does not impose any pre-specified 

pattern: it assumes that the most basic feature of biological populations is their 

heterogeneity and all peculiarities of population mortality dynamics are conditioned by 

interplay between mortalities of subpopulations. Subpopulations in turn are 

homogeneous and their mortality dynamics simply follow the exponential law. The 

model can then be adapted to any dataset and can reproduce very different mortality 

curves. This flexibility allows (i) to fit mortality data very well for any part of the 

lifespan (see for example Section 4.4.2 on old ages), (ii) to reproduce different and 

potentially controversial observed mortality patterns (see Section 4.4.3 for an example 

related to old-age mortality) and (iii) to capture any new and thus unexpected mortality 

features (for example the reduction of external causes of death may result in the 

elimination of the accidental hump (Gaille, 2012)).  

 

Figure 4.2: 2004 Swedish mortality data fitted by the model of a heterogeneous 

population composed of four subpopulations (panel A) and the Heligman-Pollard 

model (panel B). The dots represent the observed central death rates, while the 

dashed curves in panel A indicate the exponential mortality dynamics of each 

subpopulation in the model of a heterogeneous population and in panel B - the 

dynamics of the three components of the Heligman-Pollard model. Note that the plots 

are given in semi-logarithmic scale. 

4.4.2. Comparing mortality models by fitting data of ages beyond 80 

In this section we focus on mortality at very old ages (above age 80) and analyse the 

phenomenon of late-life mortality divergence from the exponential dynamics. For this 
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analysis we use the models designed for old-age mortality described in Section 4.3.1. All 

these models were fitted to period Swedish data for ages 80-110. The data were averaged 

for four-decade periods between the years 1970 and 2010. This adjustment allowed 

smoothing of the data by removing fluctuations. The BIC values calculated by fitting the 

models to the data are shown in Table 4.2. 

Model Equation 
Number of 

parameters 
BIC 𝐥𝐢𝐦

𝒙→∞
𝒎𝒙 

Gompertz 𝑚𝑥 = 𝛼𝑒
𝛽𝑥 2 -151.731 ∞ 

Makeham 𝑚𝑥 = 𝛾 + 𝛼𝑒
𝛽𝑥 3 -148.297 ∞ 

Weibull 𝑚𝑥 = 𝛼𝑥
𝛽 2 -161.819 ∞ 

Heterogeneous 

2-subpopulations 
𝑚𝑥 =∑𝜌𝑗,𝑥𝑚𝑗,0𝑒

𝛽𝑗𝑥

2

𝑗=1

 5 -167.380 ∞ 

Heterogeneous 

3-subpopulations 
𝑚𝑥 =∑𝜌𝑗,𝑥𝑚𝑗,0𝑒

𝛽𝑗𝑥

3

𝑗=1

 8 -154.080 ∞ 

Perks 𝑚𝑥 = 𝛾 +
𝛼𝑒𝛽𝑥

1 + 𝛿𝑒𝛽𝑥
 4 -150.755 𝛾 +

𝛼

𝛿
 

3-parameter 

Logistic 𝑚𝑥 = 𝛾 +
𝛼𝑒𝛽𝑥

1 + 𝛼𝑒𝛽𝑥
 3 -127.547 𝛾 + 1 

Beard 𝑚𝑥 =
𝛼𝑒𝛽𝑥

1 + 𝛿𝑒𝛽𝑥
 3 -154.189 

𝛼

𝛿
 

Kannisto 𝑚𝑥 =
𝛼𝑒𝛽𝑥

1 + 𝛼𝑒𝛽𝑥
 2 -122.069 1 

Michaelis-

Menten 
𝑚𝑥 = 𝛼𝑒

𝛽𝑥/(1+𝛾𝑥) 3 -158.714 𝛼𝑒𝛽/𝛾 

Exponential-

Quadratic 𝑚𝑥 = 𝑒
𝛼+𝛽𝑥+𝛾𝑥2 3 -149.078 

0 

(for 𝛾 < 0) 

Table 4.2: Comparison of BIC values for several parametric models fitted to the 

average 1970-2010 Swedish data for ages beyond 80. All model parameters are 

assumed to be greater than or equal to zero except for the parameters 𝛼 and 𝛾 in the 

exponential-quadratic model where they are assumed to be negative. 
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The logistic-type models (Perks, 3-parameter logistic, Beard and Kannisto) and the 

Michaelis-Menten-type model show convergence to a certain limit as age increases and 

are therefore suitable to explain the late-life mortality deceleration and the existence of 

mortality plateaus. The exponential-quadratic model can generate a concave down 

parabola and therefore explains the decline of mortality at old ages. The exponential 

models by Gompertz, Makeham and Weibull fail to explain the late-life mortality slow 

down, because the death rates expressed by these functions tend to infinity as age 

increases. Even if the subpopulation mortality rates also diverge as age tends to infinity, 

the model of heterogeneous populations appears to be the only model which, due to 

interplay between subpopulations, can reproduce all observations (deceleration, plateau 

and decline) in mortality it later life. 

From the results shown in Table 4.2, one can conclude that the model of a heterogeneous 

population composed of two subpopulations provides the best fit to the mortality data at 

old ages. For the averaged Swedish data, the mortality curve generated by the model of a 

heterogeneous population increases exponentially, asymptotically to the level of the 

dynamics of the frailest subpopulation between ages 80 and 90, then decelerates to reach 

the level of the dynamics of the most robust subpopulation and then keeps increasing 

exponentially at that level (Figure 4.3A).  

 

Figure 4.3: Model of heterogeneous populations fitted to average 1970-2010 death 

rates for ages over 80 for Swedish (A), Norwegian (B) and Japanese (C) 

populations. The dots represent the observed central death rates, while the 

exponential mortality dynamics of the subpopulations are shown by the dashed lines 

and the mortality dynamics of the entire population are shown by the black solid lines. 

Note that the plots are shown on a semi-logarithmic scale.  

Similar results and conclusions have been derived by fitting the models presented in 

Table 4.2 to the death rates of ages 80+ for other developed countries, including Norway 

(Figure 4.3B) and Japan (Figure 4.3C). Interestingly, the Japanese data are better fitted 
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by the three-subpopulation model. The trajectory of mortality that fits the Japanese data 

increases exponentially along the level of the frailest subpopulation then decelerates for 

a couple of years, then re-accelerates and finally declines after the age of 108. On the 

basis of the analysis presented in Figure 4.3 we conclude that different observations on 

mortality dynamics at extremely old ages can be explained by the heterogeneity of 

populations, which is further developed in the following section. 

4.4.3. Late-life mortality slow down due to population heterogeneity 

Heterogeneity suggests that late-life mortality slow down is a result of the variation in 

robustness between sub-cohorts having a significant number of survivors at old ages. In 

addition, heterogeneity permits us to explicate the three different observations in late-life 

mortality, namely the deceleration, the saturation and the decline of mortality rates. 

Figure 4.4 shows that the simple model of a heterogeneous population composed of only 

two subpopulations can reproduce all these observations. In Figure 4.4A the frailest 

subpopulation (i.e. the subpopulation that dies out fastest) is the one that has the highest 

mortality rate at age 80, 𝑚1,80 = 0.08, and the highest mortality coefficient, 𝛽1 = 0.11, 

as compared to the most robust subpopulation that has a mortality at age 80 of 𝑚2,80 =

0.04, and a mortality coefficient of 𝛽2 = 0.09. The variation in the proportions of the 

two subpopulations determines the formation of the three different late-life phenomena. 

For example, if the fraction of the frailest subpopulation at age 80 in Figure 4.4A is 

𝜌1,80 = 0.5, then the overall mortality of population shows a deceleration, if 𝜌1,80 =

0.88 - a plateau and if 𝜌1,80 = 0.98 - a decline. 

A mortality cross-section, shown in Figure 4.4B, occurs when one of the subpopulations 

has a lower mortality rate than the other at younger ages, but higher at older ages (i.e. it 

is more robust initially but becomes frailer after a cross-section). In particular, the 

theoretical subpopulations presented in Figure 4.4B have mortality rates at age 80 and 

mortality coefficients 𝑚1,80 = 0.09, 𝛽1 = 0.07 and 𝑚2,80 = 0.04, 𝛽2 = 0.15 

respectively. The fractions 𝜌2,80 = 0.2, 0.5 and 0.8 for the subpopulation with the lowest 

mortality rate at age 80 are used to reproduce deceleration, plateau and decline 

respectively. 
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Figure 4.4: Theoretical trajectories (solid curves) of old-age (80-110) mortality 

dynamics for a heterogeneous population composed of two subpopulations. 

Variations in relative sizes of the subpopulations permit the reproduction of all three 

observations for late-life mortality: deceleration, plateau and decline. Once the 

individuals of the frailest subpopulation die out the mortality of the entire population 

follows the exponential dynamics of the most robust subpopulation. In panel A the 

frailest subpopulation remains the same one over ages, while in panel B the frailest 

subpopulation before age 90 becomes the most robust one from age 90. Note that the 

plots are shown on a semi-logarithmic scale. 

The mortality trajectories presented in Figure 4.4 illustrate that apparently controversial 

observations in mortality dynamics for old ages are not necessarily in contradiction with 

each other and can be explained by the heterogeneity of populations. 

4.4.4. Evolution of mortality dynamics: homogenisation and natural 

selection 

In Chapter 3 the model of a heterogeneous population consisting of four subpopulations 

was used to study the evolution of Swedish death rates over the 20th century. In this 

model, the first subpopulation is used to reproduce the initial decline of mortality for 

infants, the second - the mortality at childhood, the third - the accidental mortality during 

reproductive period and the fourth - the exponential (Gompertz) growth of mortality at 

adult span (see Figure 4.2A). The analysis of mortality evolution, as examined by using 

this model, showed that the parameters which characterise the mortality dynamics of 

each subpopulation evolve through time displaying two remarkable features. The first is 

the confirmation of the compensation effect for each evolving subpopulation and the 

second is the homogenisation of the entire population manifested by the reduction in the 

initial fractions of the first three subpopulations (that are also the smallest 

subpopulations) and an increase in the initial fraction of the fourth subpopulation (from 

67% at the beginning of the 20th century to 99% at its end). 
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An alternative way to examine the evolution of Swedish mortality dynamics over the 

20th century is to modify the model of heterogeneous populations by making parameters 

time-dependent and fitting the model to the entire set of mortality data over age and time 

so that the fit will be represented on a three-dimensional surface. The death rates for ages 

0 to 100 and for the one-century period (101 years from 1900 to 2000) compose a dataset 

of 10201 points. On the other hand, the four-subpopulation model has 12 parameters of 

which 11 are independent (the condition that the sum of the fractions 𝜌𝑗,𝑥 at each age is 

equal to unity reduces by one the number of free parameters). Each of the 11 parameters 

is assumed to change linearly or exponentially over time according to the trendlines 

found in Chapter 3. Each linear or exponential trend is characterised by two parameters 

(a scale and a shape parameter) and therefore the modified time-dependent model has 22 

free parameters. Thus, this approach requires the estimation of the values of only 22 

parameters in order to fit the 10201 data points while the approach that was used in 

Chapter 3 requires estimation of the values of 11 unknown parameters to fit 101 data 

points for each period (or in other words, 1111 unknown parameters in total to fit the 

10201 data points). 

The 3-dimensional surface that is reproduced by fitting the modified model to age- and 

time-related Swedish data is shown in Figure 4.5D. The initial mortalities 𝑚𝑗,0 and the 

mortality coefficients 𝛽𝑗 for each subpopulation j are assumed to change linearly over 

time as shown in Figure 4.5A and Figure 4.5B respectively. The negative correlation 

between the initial mortality and the mortality coefficient in each subpopulation indicates 

the validation of the compensation law of mortality. The initial fractions of the four 

subpopulations are assumed to change exponentially over time (Figure 4.5C). The 

phenomenon of homogenisation is evident as the initial fraction of the most robust 

subpopulation (red line in Figure 4.5C) increases over time and dominates at the end of 

the century, while the fractions of the other three subpopulations decrease and these 

subpopulations almost disappear by the end of the century. The most robust 

subpopulation has the smallest initial mortality rate, and more individuals belonging to 

this subpopulation survive to more advanced ages compared to the individuals from the 

other subpopulations. 
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Figure 4.5: Time-evolution of mortality dynamics in the mathematical model of 

heterogeneous population. The model of a heterogeneous population composed of 

four subpopulations is modified to contain time-dependent parameters and is used 

to fit Swedish death rates for ages 0 to 100 and for the entire 20th century period 

(1900-2000). The resulting fitted surface of the modified model to the age- and 

time-related Swedish data is shown in panel D. The initial mortalities and the 

mortality coefficients of subpopulations are assumed to change linearly over time 

(fits are shown in panels A and B respectively) while their initial fractions change 

exponentially (shown in panel C). Note that the plot in panel A is shown on a semi-

logarithmic scale.  

Further examination of the results shown in Figure 4.5 indicates that all individuals from 

the first two subpopulations, reflecting infant and child mortality, die before sexual 

maturity and the reproductive period and therefore they do not leave offspring. The other 

two subpopulations have individuals that survive till reproductive age and consequently 

leave offspring who contribute to the next generation. However, the most robust 

subpopulation contributes relatively more and if we assume that these two 

subpopulations differ by genotype, the evolution of their initial fractions can be 

explained by natural selection. This problem is addressed in the following part of our 

study, namely we assume as a simplification, that the third and fourth subpopulations 

differ by a single gene (which has two alleles) and check whether the change in the 
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fractions of these subpopulations follows the changes in allele frequencies over 

generations under the force of natural selection. 

We use the model for evolution of allele frequencies in diploid organisms as described in 

Section 4.3.2 and assume that alleles 𝐴 and 𝐵 indicate two distinct traits related to 

mortality dynamics. Choosing from two possibilities we pick up on an assumption that 

the allele 𝐴 is dominant and therefore the heterozygotes 𝐴𝐵 have the same mortality-

related phenotype as the homozygotes 𝐴𝐴. Furthermore, the individuals carrying 

genotypes 𝐴𝐴 and 𝐴𝐵 are assumed to belong to the third subpopulation while individuals 

with 𝐵𝐵 genotype belong to the fourth. To calculate Darwinian fitness, we make the 

following simple assumptions concerning the reproductive behaviour of the individuals 

who make up the population: (1) reproductive behaviour does not depend on genotype 

(note that mortality depends on genotype and makes the fitness genotype specific); (2) 

reproductive age is set from the age of 20 to the age of 40; (3) within this age interval, 

reproduction takes place with the constant probability, 𝜙, at any age (i.e. it is the same 

for both subpopulations and independent of age). We believe that by using these 

assumptions we can obtain a relatively good approximation of the spreading process of a 

favourite allele in the population due to its effect on mortality only, and thus the 

dynamics of the relative sizes of two subpopulations. For a more precise analysis, one 

can adjust the model assumptions by taking into account real fertility related data, the 

age dependence of reproduction probability, and by specifying the reproductive age-

interval more accurately (which is different for males and females). However, here we 

prefer to keep the model as simple as possible and leave various extensions to the 

framework, which we are introducing here, for future studies. 

Based on the above assumptions we can calculate the absolute fitnesses of individuals 

that belong to the third and the fourth subpopulations which will be denoted by 𝑤3 (=

𝑤𝐴𝐴 = 𝑤𝐴𝐵) and 𝑤4 (= 𝑤𝐵𝐵) respectively. Fitnesses can be evaluated based on the 

mortality dynamics and expressed as functions of the parameters that describe the 

exponential mortality dynamics of these two subpopulations as shown in Table 4.3. In 

this table, 𝑁𝑗,0 represents the number of individuals in subpopulation 𝑗 at age 0. 

The absolute and relative fitnesses of subpopulations are found using their initial 

mortalities and mortality coefficients which are obtained by fitting the heterogeneous 

model with four subpopulations to the Swedish period data. The estimated initial 
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fractions of two subpopulations (third and fourth), which are involved in reproduction, 

for the period 1900 (starting point of the examined time-interval) are normalised to have 

a sum equal to one (since we do not consider subpopulations 1 and 2 which are not 

involved in reproduction) and are then used to calculate the frequencies of alleles 𝐴 and 

𝐵 (or values of 𝑝 and 𝑞) in 1900. 

Subpopulation 3rd 4th 

Genotypes 𝐴𝐴 + 𝐴𝐵 𝐵𝐵 

Initial fraction 𝜌3,0 = 𝑃 + 𝑄 = 𝑝
2 + 2𝑝𝑞 𝜌4,0 = 𝑅 = 𝑞

2 

Absolute 

fitness 
𝑤3 = 𝜙 ∑ 𝑁3,0 exp(

𝑚3,0

𝛽3
(1 − 𝑒𝛽3𝑥))

40

𝑥=20

 𝑤4 = 𝜙 ∑ 𝑁4,0 exp(
𝑚4,0

𝛽4
(1 − 𝑒𝛽4𝑥))

40

𝑥=20

 

Relative 

fitness 
𝑤3/𝑤4 1 

Table 4.3: Genotype frequencies and fitnesses in terms of the model parameters. 

The absolute fitness of individuals belonging to each subpopulation is calculated 

by the sum of the number of survivors during the theoretical reproductive period 

(ages 20 to 40) multiplied by a probability to reproduce, 𝜙, which is assumed to 

be age-independent and constant for all individuals. Note that since the initial 

mortality and mortality coefficient of each subpopulation change over time, the 

absolute and relative fitnesses also change over time. 

Possessing all of the above considerations and the equations that describe the flow of 

alleles due to selection (equations (4.9) and (4.10)), the changes of genotype frequencies 

over generations are calculated presuming that each generation corresponds to 25 

calendar years totalling four generations per century. Following this, changes in 

genotype frequencies are compared with the evolution of the initial fractions of the 

model of heterogeneous populations over the 20th century. The outcome of this analysis 

is shown in Figure 4.6. Thus, assuming that the difference in mortality dynamics of two 

subpopulations is conditioned by a difference in a single gene and taking an average 

value of relative fitness (black dashed line in Figure 4.6A), we calculate how the relative 

fractions of the subpopulations (corresponding to 𝐴𝐴 + 𝐴𝐵 genotype frequency for 

subpopulation 3 and 𝐵𝐵 genotype frequency for subpopulation 4, black lines in Figure 

4.6B) evolve due to natural selection. We can state that the obtained result is surprisingly 

close to the changes of the fractions (red triangles and blue dots in Figure 4.6B) in the 

best-fit model reported in Chapter 3. The significance of this result is that it serves as a 

self-consistency test for the model of heterogeneous populations. 
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Figure 4.6: Population homogenisation as a consequence of natural selection. The 

relative fitnesses of individuals belonging to the third (blue circles) and the fourth (red 

triangles) subpopulations, as calculated according to the formulas in Table 4.3, are 

shown in panel A. The relative fitness of the third subpopulation varies from year to 

year with an average value of 0.27 (black dashed line) over the entire century. This 

average value is used to calculate the changes in genotype frequencies due to natural 

selection as shown in panel B (black circles), over four generations (each lasting 25 

calendar years as indicated by the vertical lines in panel B). Calculated genotype 

frequencies are interpolated linearly (solid lines connecting circles in panel B) within 

each generation to be comparable with the normalised initial fractions of the third 

(blue circles) and the fourth (red triangles) subpopulations modelled to fit the Swedish 

data for the period 1900 to 2000. 

Our further calculations have shown that dividing the century into three or five 

generations (i.e. the time interval between generations is 33 or 20 years respectively) 

does not significantly change the genotype frequencies observed in Figure 4.6B. 

(frequencies decrease/increase by about 15%). Averaging fitnesses of subpopulations 

over each generation rather than over the entire century, does not significantly change 

the obtained results either (note that in the model, where the evolving population is 

discretised into generations, consideration of fitnesses for each year or for any intervals 

shorter than the duration of the generation does not make sense).  

4.5. Discussion 

The aim of the study presented in this Chapter was to show the flexibility of the model 

of mortality in heterogeneous populations, its ability to model very different mortality 

patterns and its appealing interpretation of the peculiarities in mortality dynamics by the 

heterogeneous structure of human populations. This was done in a few steps. In the first 

step we compared this model with a number of other parametric models which were used 

to fit actual mortality data. We found (Sections 4.4.1 and 4.4.2) that the model of 
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heterogeneous populations provides the best fit to mortality data for old (over 80) ages 

and also provides the second best fit for the data over the entire lifespan. In the second 

step we demonstrated (Section 4.4.3) that contrary to other considered models, the model 

of heterogeneous population can reproduce and explain controversial observations in 

late-life mortality (deceleration, plateau and decline). In the third step we assumed that 

population heterogeneity reflects the genetic variation between subpopulations, and 

showed (Section 4.4.4) that the natural selection model based on differential mortality 

can explain and quantitatively reproduce the homogenisation of the Swedish population 

within a one-century period. Based on these results, we conclude that heterogeneity, 

beyond its convenient use in reproducing characteristics of age-structured populations, 

has a fundamentally inherent role in understanding the mortality dynamics across the 

lifespan and the evolution of these dynamics over time. 

The model of Heligman-Pollard is shown to have an excellent fit for the mortality data 

over the entire lifespan. It is however important to note that our model of heterogeneous 

populations is very different in nature from the Heligman-Pollard model. While the 

Heligman-Pollard model imposes a pre-defined mortality pattern, the model of 

heterogeneous populations allows the mortality pattern to be adapted to the fitted data. 

Both models are thus extremely useful in different contexts. The Heligman-Pollard 

model is better for forecasting purposes, as it avoids projecting unrealistic patterns far 

into the future. However, as a wide variety of mortality patterns can be modelled using a 

different number of subpopulations, the model of heterogeneous populations allows us to 

capture new and unexpected patterns, providing a greater flexibility in data modelling. In 

addition to this, in the model of heterogeneous populations the model parameters do not 

lose their interpretation in demographic terms, even with an increase in the number of 

parameters in the model. This flexibility is important for data analysis as mortality 

patterns evolve through time due to several factors (medical improvements, changes in 

life-style conditions, biological evolution, etc) and this can be modelled as some 

subpopulations die out and some new ones become more pronounced in a quantitative 

sense. Furthermore, mortality dynamics of subpopulations change over time and these 

changes can be discovered via fitting procedures.  

The introduction of subpopulations with different mortality characteristics can easily be 

justified on the basis of biological and medical observations. Certain diseases tend to 

follow others due to strong associations at genetic and cellular levels, and connections at 
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the cellular level get amplified at the population level when a number of diseases emerge 

as comorbid (Hidalgo et al., 2009, Barabasi et al., 2011, Chmiel et al., 2014). 

Susceptibility to a particular disease may stratify a part of population to having a 

particular dynamic of age-related accumulation of other associated diseases, and 

consequently a specific dynamic of mortality. To some extent this process is related to 

one described in the reliability theory (Gavrilov and Gavrilova, 2001), where age-related 

failure kinetics will be different for particular human physiological systems and their 

components, and will have a different impact on different human subpopulations. More 

studies are required on accumulation trends for particular diseases with an emphasis on 

mortality curves on one hand, and underlying genomic factors on the other. We believe 

that the complex structure of human populations in respect to evolving disease patterns 

in different age-groups will be revealed from these studies and more evidence will be 

available for refining the mathematical models. Having this knowledge we may be able 

to understand and better predict mortality dynamics in complex human populations by 

using a pallet of primary disease-associated genomic markers. 

Our analysis of the evolution of allele frequencies (under the assumption that genomic 

differences are responsible for the difference in mortality rates between subpopulations) 

has indicated that the homogenisation of the Swedish population in the 20th century can 

be explained by the selection process in favour of a particular subpopulation better fitted 

to a changing environment during the studied period. The force of selection as calculated 

on the basis of mortality-related heterogeneity of the population is known as the force of 

mortality selection (Wrigley-Field, 2014). To provide an intuitive explanation of this 

force we note that the individuals belonging to frail subpopulations tend to die at 

younger ages (and more frequently before the reproductive ages) than ones from more 

robust subpopulations. Therefore frail subpopulations leave less offspring than more 

robust subpopulations. Consequently, the proportion of individuals belonging to more 

robust subpopulations increases through generations. Although we do not aim to propose 

a fully-specified and completely realistic evolutionary model, we show that using very 

simple assumptions we can relate the evolution of the heterogeneous structure of 

populations to genetics and natural selection. Thus this Chapter paves the way for many 

potential extensions regarding genetics and evolutionary theories. 

There are many studies indicating that the currently observed increase in longevity is 

primarily associated with environmental changes (GBD 2013 Mortality and Causes of 
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Death Collaborators, 2015). In order to link this statement with our results on the 

evolution of allele frequencies, we would suggest considering the following hypothetical 

scenario. Consider the population carrying a gene with two alleles 𝐴 and 𝐵. There are 

three different kinds of individuals: 𝐴𝐴, 𝐴𝐵 and 𝐵𝐵 in this population for which we can 

assume the same pattern of mortality and reproduction (three identical subpopulations) 

so that the genetic structure of this population is in equilibrium. Now assume that due to 

some environmental change the mortality of individuals carrying 𝐵𝐵 is reduced. If this 

reduction hits the reproductive period, the frequency of 𝐵 will tend to increase which 

will result in a change to the structure of the population and to gradual change in its 

mortality dynamics causing an increase in longevity. If the initial frequency of allele 𝐴 is 

small then a jump in mortality patterns in cohort data should be observed with no further 

evolution. Contrary to this, if the initial frequency of allele 𝐵 is small, then the jump will 

be replaced by a gradual evolution, associated with an increase of allele 𝐵 frequency. 

Obviously the period data should show a gradual evolution of mortality patterns in both 

cases.  

In this Chapter we focus on two subpopulations whose mortality dynamics evolve 

differently (in response to the same environmental changes) and this shows a change in 

the overall mortality pattern. Mortality patterns of both subpopulations change over the 

20th century but for our analysis we have averaged the characteristics of the 

subpopulations by taking their average fitness. Thus we have reduced our analysis to the 

following idealised case: environmental change has happened on or before 1900 and this 

has changed the mortality patterns for subpopulations 3 and 4. The latter causes the 

changes in fitnesses of subpopulations, follow up gradual changes in the population 

structure and consequently lead to gradual increase in longevity. We do not address the 

question of why mortality of subpopulations changes in a certain way (in response to 

environmental changes), but taking these changes as granted we confirm that the change 

in the structure of populations (represented by fractions of subpopulations) correlates 

with the evolution of frequency of the hypothetical allele.  

The surprising part of this result is the time scale of the process: the selection process 

causes significant changes to take place in the population within one century (over four 

generations). In the model we have assumed that there is no difference in the 

reproductive behaviour of individuals belonging to different subpopulations and thus the 

difference in fitnesses is only conditioned by the difference in mortality patterns of the 
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subpopulations, namely by their initial mortalities and mortality coefficients. As these 

parameters are time dependent, the relative fitnesses of subpopulations also change over 

time. In our study illustrated in Figure 4.6, we have ignored the fact that the fitnesses of 

the subpopulations evolve over time and used the average fitnesses over the entire 

century to calculate changes during four generations. This was done for two reasons: (1) 

to illustrate the process in a very simple case when the fitnesses do not change over time 

and (2) to properly account for variations in fitnesses from year to year, we would have 

to give up the idea of discrete generations and design a much more sophisticated model 

(i.e. design a virtual population). 

An interesting question concerning the evolution of subpopulations analysed in Figure 

4.6, concerns the relationship between them in the 19th century. Our preliminary study 

shows that subpopulation 3 (which is almost extinct by the end of the 20th century) had a 

higher relative fitness for most of the 19th century as its mortality rate was lower than 

that of the fourth subpopulation and as a consequence the fraction of subpopulation 3 

was rather increasing in the 19th century (and then decreased in the 20th century).  

In this Chapter we have presented a very simple, almost caricature, natural selection 

model to compare its outcome with the evolution of subpopulations in the fits of 

heterogeneous model to mortality data. We believe that our work will stimulate the 

development of more realistic models based on genetics and natural selection. However, 

surprisingly close correspondence between the time evolution of the subpopulation in the 

model of heterogeneous populations and the evolution of genome frequencies can 

already be highlighted on the basis of our simple model. This finding naturally paves the 

way for many interesting research questions and future research studies, such as the 

impacts of the environment on mortality changes. Indeed, the sharp reduction in overall 

mortality during the 20th century and especially the dramatic decline of premature (infant 

and child) mortality in almost all countries is mainly a result of environmental changes 

and improvements (Black et al., 2010, Ahmad et al., 2000) and to a lesser extent to 

biological evolution.  

In our model framework, we do not explicitly account for environmental factors. Each 

subpopulation reacts in its own way to the environmental changes, and the mortality 

pattern of each subpopulation (here the scale and shape parameters of their exponential 

dynamics shown in Figure 4.5A and Figure 4.5B) evolves differently over time. 
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Therefore, we should further explore the effects of environmental changes on mortality 

dynamics of heterogeneous populations (that would be reflected in the evolution of the 

model parameters), on reproductive success, reproduction windows and duration of 

lifespan (interesting results can be found in (Stearns et al., 2010, Pettay et al., 2007)). 

Another potential extension of this work is associated with the consideration of the 

heritability of phenotypic mortality-related traits which are affected by genetic variations 

and environmental factors. Future research could also involve deeper consideration of 

the age-dependent fertility rate, male-female ratio, wider or narrower reproductive 

periods and changes over time including time-dependent fitnesses. More complex 

models of natural selection taking into account the effect of more than one gene 

polymorphism and naturally occurring splits in frequencies of different gene variants are 

to follow. In addition, the effects of in and out migration, mutations and genetic drift 

could be examined. Finally an extensive literature exists on biological ageing and its 

potential relation to some longevity genes. Linking this stream of research with the 

model proposed in this study could reveal new mortality modelling tools and improve 

our knowledge on mortality and longevity matters. 
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Chapter 5.  

Discussion 

5.1. Summary of the main findings 

In this study we developed a mathematical model to analyse mortality data in human 

populations. The model was used for the analysis of mortality dynamics across the 

lifespan (Chapter 2) and for the analysis of the evolution of mortality patterns across the 

20th century (Chapter 3). It has also been used to investigate whether heterogeneity is a 

convenient consideration in developing descriptive models that precisely reproduce 

mortality patterns, or indeed if it reflects the real structure of mortality dynamics in 

human populations (Chapter 4). 

Chapter 1 provided an introduction to the subject of the thesis where we outlined the 

basic mortality-related observations and several mathematical approaches that have 

previously been performed to model the dynamics of mortality. We also stated our 

motivation which was the development of a mathematical model that considered two 

important characteristics: the heterogeneity of populations and the exponential dynamics 

of mortality. Following this introduction, we illustrated the development of the model 

and its features in Chapter 2. We demonstrated how the variations in model parameters 

affect mortality dynamics in heterogeneous populations and showed that a completed set 

of age-specific mortality data can be reproduced fairly well by a model comprising four-

subpopulations. In Chapter 2, we also analysed the influence of stochastic effects on the 

dynamics of mortality and shown that this influence is significant at young and very old 

ages when only a few individuals contribute to mortality. The outcomes of Chapter 2 

indicate that the deviations from the exponential law at young ages can be explained by 
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the heterogeneity of populations, while those for old ages can be viewed as fluctuations 

and explained by stochastic effects. 

In Chapter 3 we fitted the model to Swedish data of consecutive periods over the 20th 

century in order to analyse the evolution of mortality dynamics in terms of the evolution 

of model parameters. This analysis displayed two interesting outcomes; (i) the 

applicability of the compensation effect for each subpopulation separately and (ii) the 

change in population structure towards homogenisation at the end of the 20th century. 

Based on these two outcomes we show that the decrease of overall population mortality 

over time is primarily a result of homogenisation of the population (change in the 

relative sizes of subpopulations) and secondly, this is a result of the reduction in 

mortality dynamics for each constituent subpopulation (change in scale and shape 

parameters of exponential components in the model). 

In Chapter 4 we compared the fits to a given set of data obtained by using different 

parametric mortality models including the model of heterogeneous populations. We 

show that the model of heterogeneous populations fits mortality data better than most of 

the other models if the data are taken for the entire lifespan and better than all other 

models if we consider only old ages. We also demonstrated that the model can explain 

controversial observations in late-life mortality, namely deceleration, levelling-off and 

mortality decline. Furthermore in Chapter 4, we considered that population heterogeneity 

reflects the genetic variation between subpopulations, and show that the homogenisation 

of the Swedish population within the 20th century can be quantitatively reproduced by a 

model of population genetics that describes the changes in allele frequencies over 

generations. Based on these results we concluded that heterogeneity, beyond its 

convenient mathematical usage in reproducing and explaining several characteristics of 

age-structured populations, has a fundamental, inherent role on mortality processes, and 

on the evolution of mortality over time. 

The strengths (including advantages and further applications) and limitations of the 

model are discussed in Section 5.2. In Section 5.3 we propose some ideas for future 

work and we conclude the thesis in Section 5.4. 
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5.2. Analysis of the model 

The model that we have introduced and used for this research has several advantages 

compared to other models of mortality. One of them is that its parameters have simple 

demographic interpretations which makes the modelling results easy to analyse and 

useful for understanding age and time specific observations related to mortality. We have 

demonstrated that this model can be used as an efficient mathematical tool for the 

analysis of mortality data and the exploration of biological or demographical processes 

that underlie ageing and mortality. 

A simple version of the model, for a population composed of only four subpopulations, 

was shown to precisely reproduce a set of mortality data of the entire lifespan, explaining 

the deviations of mortality from exponential growth, at young and very old ages (as 

shown in Chapter 2). The model can also generate different (and mutually contradicting) 

observations of mortality (late-life deceleration, levelling off and mortality decline) at 

advanced ages and therefore population heterogeneity can explain and verify the 

existence of these phenomena (as shown in Chapter 4). By fitting the model to 

consecutive period data we analysed the changes in model parameters over time and 

made interesting observations concerning mortality evolution. The two main outcomes 

of this analysis are the validation of the compensation effect for each constituent 

subpopulation and the homogenisation of the (Swedish) population over the 20th century 

(as shown in Chapter 3).  

The formulation of our model allows for the consideration of any number of 

subpopulations required to reproduce a dataset, without the model parameters losing 

their demographic meanings and avoiding any over or under parameterisation of the 

model. This flexibility is important as the mortality patterns evolve over time and any 

gained or lost feature of a pattern can be modelled not only by changes in characteristics 

of subpopulations but also by change in the number of subpopulations, i.e. by the 

inclusion or exclusion of subpopulations. 

The statistical method used in our study (see the description of fitting procedure in 

Section 1.3.2) was appropriate for the specific formulation of the model we used and 

does not lead to any faulty conclusions. One important point is that the log 

transformation of mortality rates reduces the variability of errors (residuals) while 

another is that the highly precise “fits” obtained from this model make the variability 
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almost constant at all ages, indicating that the errors are approximately homoscedastic. 

Also, the estimated residuals are approximately normally distributed and therefore the 

method used does not cause any significant biases to the estimates. The Quantile-

Quantile (Q-Q) plots in Figure 5.1 show linearity of the residuals estimated by fitting the 

four-subpopulation model to Swedish mortality data (Figure 5.1B) suggesting that the 

errors are normally distributed while this is not the case when the data are fitted by 

Gompertz function representing a homogeneous population (shown in Figure 5.1A). This 

confirms that the Least Squares method used for the estimation of parameters of the 

heterogeneous population model gives results as accurate as those that can be derived 

from the Maximum Likelihood method. 

 

Figure 5.1: Normal Quantile-Quantile plots. The Q-Q plot for the residuals estimated 

by fitting a homogeneous Gompertz model (panel A) and a four-subpopulation model 

(panel B) to 2007 Swedish mortality rates.    

While applying our fitting procedure for estimating unknown parameters, we set a few 

constraints to the ranges of the parameters’ values (as mentioned in Chapter 3) in order 

to avoid any misleading results. For example, a negative mortality coefficient (i.e. 

negative value for a parameter 𝛽𝑗) could result in a better fit to a dataset (according to 

goodness-of-fit measurements) but would represent an unrealistic process opposite to 

senescence and therefore is set to take only positive values. We consider these 

constraints as a limitation of the model and we therefore suggest an alternative approach 

for future work that includes the development of a new mortality model that does not 

consider population heterogeneity but uses the formulation of the superposition of 
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exponential terms (see this idea and other plans for future work in Section 5.3). Despite 

this limitation which is further discussed in Section 5.2.3, the model of heterogeneous 

populations can be used to express the rate of mortality at continuous ages (Section 

5.2.1) and can also be applied to other mortality-related measurements such as 

probability density and survival function (Section 5.2.2). 

5.2.1. Continuous model of mortality in a heterogeneous population 

In the continuous model, age is defined by a real number 𝑥 (continuous age) rather than 

by the integer number 𝑖. For continuous age 𝑥, the force of mortality, 𝜇(𝑥), of a 

homogeneous population is defined by equation (1.2). Substituting the Gompertz law in 

the LHS of equation (1.2) and solving the differential equation, results in 

 𝑁(𝑥) = 𝐴𝑒−(𝜇0/𝛽)𝑒
𝛽𝑥
, (5.1) 

where the constant of integration 𝐴 is equal to 𝑁0 = 𝑒
𝜇0/𝛽 as estimated by the initial 

condition  𝑁(𝑥 = 0) = 𝑁0. This means that the expression for the population size 𝑁 at 

age 𝑥 depends on the initial mortality, 𝜇0 and the mortality coefficient 𝛽: 

 𝑁(𝑥) = 𝑁0𝑒
(𝜇0/𝛽)(1−𝑒

𝛽𝑥). (5.2) 

In a heterogeneous population, formula (5.2) is used to describe the size of each 

subpopulation at age 𝑥. Therefore, the subscript 𝑗 is added in each parameter. As a result, 

the mortality of the entire population in continuous age is expressed by 

 
𝜇(𝑥) =

∑ 𝜇𝑗(𝑥)𝑁𝑗(𝑥)
𝑛
𝑗=1

∑ 𝑁𝑗(𝑥)
𝑛
𝑗=1

=
∑ 𝜇𝑗,0𝑒

𝛽𝑗𝑥𝑁𝑗,0𝑒
(𝜇𝑗,0/𝛽𝑗)(1−𝑒

𝛽𝑗𝑥)𝑛
𝑗=1

∑ 𝑁𝑗,0𝑒
(𝜇𝑗,0/𝛽𝑗)(1−𝑒

𝛽𝑗𝑥)𝑛
𝑗=1

. 
(5.3) 

By solving equation (5.3) at integer values of age (𝑥 = 𝑖), equation (2.8) is found, 

providing a link between the dynamics of mortality for both the continuous and discrete 

models. 

5.2.2. Application of the model to probability density and survival 

function 

The consideration of heterogeneity in human populations can be used for the derivation 

of models for other mortality-related variables that exist in human life tables. Such 
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variables are the number of survivors and the number of deaths at age 𝑥. In this section, 

the models of probability density and survival function for heterogeneous populations 

are developed in continuous time. 

In a homogeneous population, 𝑆(𝑥 + Δ𝑥) denotes the probability of an individual 

surviving at age 𝑥 + Δ𝑥 (usually called survival function) and is calculated as the 

difference between the probability of surviving at age 𝑥 and the probability of dying 

between ages 𝑥 and 𝑥 + Δ𝑥: 

 𝑆(𝑥 + Δ𝑥) = 𝑆(𝑥) − 𝑆(𝑥)𝜇(𝑥)Δ𝑥 (5.4) 

 ⇒
𝑆(𝑥 + Δ𝑥) − 𝑆(𝑥)

Δ𝑥
= −𝜇(𝑥)𝑆(𝑥). (5.5) 

The limit of LHS of equation (5.5) when Δ𝑥 tends to 0, is the derivative of 𝑆(𝑥) with 

respect to 𝑥: 

 lim
Δ𝑥→0

𝑆(𝑥 + Δ𝑥) − 𝑆(𝑥)

Δ𝑥
=
𝑑𝑆(𝑥)

𝑑𝑥
, (5.6) 

and therefore equation (5.5) can be rewritten as the differential equation 

 
𝑑𝑆(𝑥)

𝑑𝑥
= −𝜇(𝑥)𝑆(𝑥). (5.7) 

The solution of the differential equation (5.7), when the force of mortality 𝜇(𝑥) follows 

the Gompertz law, is 

 𝑆(𝑥) = 𝐴𝑒−(𝜇0/𝛽)𝑒
𝛽𝑥
, (5.8) 

where the constant of integration is 𝐴 = 𝑒𝜇0/𝛽 (given by initial condition 𝑆(𝑥 = 0) = 1). 

Multiplying the survival function (equation (5.8)) with the initial size of population 𝑁0 

we get the number of surviving individuals at age 𝑥 (which is the same expression as 

equation (5.2)). As a result, the number of survivors of a heterogeneous population at 

age 𝑥 is given by: 

 𝑁(𝑥) = 𝑁0𝑆(𝑥) = 𝑁0∑𝜌𝑗,0 exp(
𝜇𝑗,0
𝛽𝑗
(1 − 𝑒𝛽𝑗𝑥))

𝑛

𝑗=1

. (5.9) 
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The probability density function 𝑓(𝑥) of a heterogeneous population is derived similarly. 

The probability 𝑞(𝑥) of an individual dying by age 𝑥 is the complement of the 

probability of surviving at the same age (i.e 𝑞(𝑥) = 1 − 𝑆(𝑥)) and therefore the 

probability density function is obtained by differentiating the cumulative distribution 

function 𝑞(𝑥) with respect to 𝑥: 

 𝑓(𝑥) = 𝑞′(𝑥) = 𝜇0 exp(𝛽𝑥 −
𝜇0
𝛽
(𝑒𝛽𝑥 − 1)) . (5.10) 

By multiplying the probability density function with the initial size of the population, we 

get the theoretical distribution of deaths across the lifespan, Δ𝑁(𝑥) = 𝑁0𝑓(𝑥). 

The distribution of deaths across lifespan, in a heterogeneous population composed of 𝑛 

subpopulations, is given by the sum of the number of deaths of individuals from each 

subpopulation: 

 Δ𝑁(𝑥) =∑𝑁𝑗,0𝑓𝑗(𝑥)

𝑛

𝑗=1

= 𝑁0∑𝜌𝑗,0𝜇𝑗,0 exp(𝛽𝑗𝑥 −
𝜇𝑗,0
𝛽𝑗
(𝑒𝛽𝑗𝑥 − 1))

𝑛

𝑗=1

. (5.11) 

The models described above are fitted to datasets of different mortality-related 

measurements of the 2010 period Swedish population, taken from the Human Mortality 

Database. The fitting procedure described in Chapter 1 is applied to death rates, number 

of deaths and number of survivors by using equations (5.3), (5.11) and (5.9) respectively. 

The BIC values indicate that the best fit to the observed number of deaths and survivors 

is obtained with a model composed of four subpopulations.  

Consequently, the analysis shows that the assumption of population heterogeneity 

provides mathematical models that fit the mortality-related data better than a model of a 

homogeneous population. On the other hand, the three attempts to fit mortality-related 

data of the same population do not give the same values for the model parameters. The 

model of mortality in heterogeneous populations with optimal parameter values is able to 

reproduce the mortality pattern for the entire lifespan, since using the logarithm of 

mortality rates during the fitting procedure we increase the weight of young ages. The 

other two models (equations (5.9) and (5.11)) provide parameters that minimize the 

residuals mainly across adulthood, since the differences between theoretical values and 

observations at young and extremely old ages are negligible. Besides, the theoretical 
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relationships between equations (2.8), (5.3), (5.9) and (5.11) are only valid for cohort 

data with no migration where the number 𝑁𝑖+1 of surviving individuals at age 𝑖 + 1 in 

year 𝑡 is equivalent to the number of surviving individuals at age 𝑖 in year 𝑡 − 1 minus 

the number of individuals who died at age 𝑖 in year 𝑡 − 1, 𝑁𝑖 − Δ𝑁𝑖. However, since we 

do not fit cohort data but period data, and since the Swedish population is subject to 

migration flows, this relationship does not hold, partly explaining the observed 

differences between the values of the parameters of the three fitted models. 

 

Figure 5.2: The model of a heterogeneous population fitted to the 2010 Swedish 

mortality data. A: The mortality model of a heterogeneous population composed of 

four subpopulations is fitted to observed mortality rates. B: The density function of a 

heterogeneous population composed of four subpopulations is fitted to actual numbers 

of deaths and C: The survival function of a heterogeneous population composed of 

four subpopulations is fitted to actual numbers of survivors. D: Different fits of the 

four-subpopulation model to mortality rates: the solid (red) curve represents the 

mortality pattern resulting from the model fitted to the mortality rates (same pattern as 

in panel A) while the dotted (green) and dashed (blue) curves show the mortality 

pattern resulting from the model fitted to the numbers of deaths and the numbers of 

survivors, respectively. 

The mortality rates of the entire population resulting from the model applied to the three 

different sets of Swedish data are shown in Figure 5.2D. The dotted and dashed curves 

indicate that the parameters obtained by fitting the number of deaths and survivors, fail 
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to accurately model the peculiarities of mortality patterns at early and extremely old 

ages. However both curves create a smooth dip at around age 75 and thus better capture 

the mortality pattern at adult ages compared to the curve of mortality obtained by fitting 

mortality rates (solid curve in Figure 5.2D). 

5.2.3. Limitations of the model 

We have shown that the model can explain the main characteristics of mortality 

dynamics across the lifespan and can provide interesting observations on the time-

evolution of population mortality. However, a limitation in the fitting procedure should 

be mentioned as this could otherwise lead to unrealistic outcomes. As described in 

Chapter 2, each subpopulation is characterised by three parameters, the initial fraction 

𝜌𝑗,0, the initial mortality 𝑚𝑗,0 and the mortality coefficient 𝛽𝑗. The sum of the fractions 

𝜌𝑗,𝑖 at each age 𝑖 is equal to unity. Then, for a heterogeneous population consisting of 𝑛 

subpopulations, the fitting procedure estimates the values of  3𝑛 − 1 unknown 

parameters. These estimations are obtained by setting some constraints to the parameters, 

in order to avoid values with unrealistic meanings (for example to avoid negative values 

for initial mortality or negative values for initial fractions). These constraints are: (a) the 

mortality coefficients are non-negative, (b) the initial mortalities are positive (c) the 

initial fractions can take any value from 0.00001 to 1 − 0.00001 ∙ (𝑛 − 1) in order to 

have at least one individual in each subpopulation initially (within a theoretical initial 

entire population of 100000 individuals) and (d) the sum of the initial fractions is equal 

to one.  

Using these constraints we observed that in some cases the best fit to the data is given by 

a four-subpopulation model where the frailest subpopulation has a mortality coefficient 

equal to zero (see for example Figure 3.7 and Figure 3.9). This implies a non-ageing 

process however all the individuals of that subpopulation die within the first few years of 

life due to the high level of initial mortality. To avoid the zero value of one of the 

mortality coefficients, the fitting procedure can be repeated by ignoring the constraint for 

non-negative 𝛽𝑗. Removing this constraint, we get a slightly improved fit to the data 

(according to the BIC) with the frailest subpopulation having a negative mortality 

coefficient (negative slope). In that case, the fraction of the frailest subpopulation tends 

to a constant value with increasing age and saturates as age tends to infinity. This 

saturation means that some individuals of that subpopulation are “immortal” (they never 



 

113 

 

die) which is unrealistic. Two fits of the model of heterogeneous populations (without 

using restrictions for the Gompertz slopes) to mortality data of the Swedish population 

and to the intrinsic mortality of the French male population, are shown in Figure 5.3A 

and B respectively. The fit to the French male data results in the conclusion that the 

frailest subpopulation has a number of “immortal people”. For an entire set of mortality 

data, the occurrence of “immortal people” in the frailest subpopulation is observed in 

cases when mortality at advanced ages significantly declines (a local maximum at those 

ages exists instead of fluctuations). In that case, the negative slope of the frailest 

subpopulation is sharper than the negative slope shown in Figure 5.3A, and is 

responsible for creating a maximum at older ages.  

 

Figure 5.3: Fitting the model of heterogeneous populations to actual mortality data 

using Least Squares Method without constraints in the parameters. A: The model of 

heterogeneous population consisting of four subpopulations was used to fit the 

Swedish 2007 Period data (𝐵𝐼𝐶 = −336.99). B: The model of heterogeneous 

population consisting of two subpopulations was used to fit the French Male 1990 

data which excluded external causes of deaths (𝐵𝐼𝐶 = −74.50). In both plots the 

actual data are denoted by circle points, the mortality of the total population by the 

red-solid curve and the mortality of the consisting subpopulations by black-dashed 

lines. 

The reference to “immortal people” is unrealistic for biological populations and therefore 

these conclusions indicate that the concept of heterogeneous populations fails to model 

mortality when restrictions for the parameters are not taken into account. However, 

mathematically the mixture of exponential terms with no restrictions on the parameters 

accurately fits an entire set of mortality data. For that reason, a new model of mortality, 

with a similar structure as the model of heterogeneous populations, could be developed 

without considering the heterogeneity but taking into account other mechanisms 

underlying ageing and mortality. The new model would express mortality rate as a 

superposition of exponential terms with negative and positive slopes and therefore will 
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be able to accurately reproduce patterns of mortality. This idea and other plans for future 

work are discussed in the next section. 

5.3. Directions for future research 

We are planning to extend the work described in this thesis in two main directions. 

Firstly, we want to extend the approach used in Chapters 2-4 to analyse mortality data 

for different death causes associated with different diseases. This would provide further 

insights concerning the nature of mortality dynamics in human populations that can be 

beneficial for medicine and health service practical use and regulations. Secondly, we 

want to launch a series of studies to investigate the nature of exponential law of 

mortality using different model approaches. The extension of our research will be 

conducted in four different approaches described in the following four sections.  

5.3.1. Analysis of mortality data for different causes of death 

The techniques and procedures used in this thesis could be repeated for the analysis of 

mortality data (available from http://www.who.int/ and http://www.cdc.gov/) for 

different (intrinsic) causes of death in developed countries. This would enable us to 

study the structure of mortality patterns as related to specific causes of death and its 

evolution over time. In this way, the numbers and weights of subpopulations that would 

reproduce mortality patterns from illnesses related to different organ systems (i.e. 

circulatory, respiratory, digestive, etc.) could be examined. The evolution of mortality 

patterns related to each kind of disease over the last century could be also analysed. 

Comparing any upcoming results with the results presented in this thesis, we would be 

able to confirm how the heterogeneous structure of the population (as related to its total 

mortality dynamics) is related to its structures associated with different types of diseases 

for different period data over the 20th century. The study of population heterogeneity 

could also be extended by a functional analysis of the ageing-defining genes predicted in 

Genome-Wide Association Studies (GWAS) (Walter et al., 2011). 

5.3.2. Modelling interactions between different causes of death 

The analysis of mortality data for different types of diseases could be extended by the 

study of correlations between them. In particular, we could investigate whether 

interactions between diseases can explain correlations between observed shapes of 

http://www.who.int/
http://www.cdc.gov/
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mortality curves for considered diseases. A main goal for this research would be to 

determine to what extent particular shapes of mortality curves for considered diseases 

are affected by the interactions between them and whether these interactions can explain 

why overall mortality follows the Gompertz law. For this study, a discrete type model 

based on consideration of a set of events (corresponding to illness from particular 

diseases) which take place over the lifespan could be developed. We would introduce 

probabilities of these events taking place and probabilities of each event causing death. 

Using this model would enable us to check how different hypotheses related to the 

interactions between diseases affect the mortality dynamics over age. The proposed 

interactions would reflect the fact that an individual already affected by an illness, is 

more vulnerable and more susceptible (has larger probability) to get another disease than 

a “healthy” person. We would consider stochastic (e.g. Poisson) processes to model 

these interactive events with a probability that the occurrence of every next event is 

affected by past events. In particular, we would check the model assumptions against the 

conventional laws of mortality (Gompertz law, compensation effect and late-life 

mortality deceleration).  

Our preliminary results indicate that relatively simple rules of interactions between 

“theoretical” diseases can result in a mortality curve represented by modifications of the 

Gompertz law (i.e. exponent multiplied by age or exponent divided by age) which in 

some cases fits mortality data even better than the exponent. This could be observed if 

we consider that the probability of an individual having 𝑛 diseases at age 𝑥 is given by 

the Poisson distribution 

 𝑃(𝑛, 𝑥) =
1

𝑛!
(𝜆𝑥)𝑛𝑒−𝜆𝑥, (5.12) 

where 𝜆 is the rate of one disease per unit of age. An average of 𝛿 diseases cause the 

death of the individual and therefore the force of mortality is given by 

 𝜇(𝑥) = ∑𝑃(𝑛, 𝑥)

∞

𝑛=0

(𝛿𝑛) = 𝛿∑
𝑛

𝑛!
(𝜆𝑥)𝑛𝑒−𝜆𝑥

∞

𝑛=0

. (5.13) 

By using the Taylor's expansion ∑
𝑘𝑛

𝑛!

∞
𝑛=0 = 𝑒𝑘 we can show that for constant 𝜆 the force 

of mortality is a linear function of age (i.e. 𝜇(𝑥) = 𝛿𝜆𝑥). If 𝜆 is an age-dependent 

function, 𝜆 = 𝑓(𝑥), then the mortality is given by 𝜇(𝑥) = 𝛿𝑓(𝑥)𝑥. This can be further 



 

116 

 

extend to more complicated functions if 𝜆 depends on age, 𝑥, and on number of diseases, 

𝑛. 

The “diseases” here may correspond to events of physiological decay of different tissues 

and organs that may have different dynamics of ageing, but that do interact and affect the 

integrated organism’s function and the probability of death. We would align our 

modelling predictions with an analysis of tissue specificity with an expression of the 

known ageing-related genes in different organism’s tissues and an analysis of the known 

population polymorphisms in these genes. Analysis of the existing GWAS data on 

genetic associations of rates of ageing in human and in dogs would help to approximate 

a level of heterogeneity of the populations in respect to ageing-related mutations. 

Analysis of a functional crosstalk between the defined genes would be performed to 

identify groups of mutations with potentially similar phenotypical outcomes and to re-

evaluate approximate levels of real population heterogeneity in respect to ageing 

dynamics. The examples of one-mutation dependence of ageing dynamics come from the 

analysis of ageing mutants in Caenorhabditis elegans and we would expect a decreasing 

homogeneity of effect of one mutation in respect to ageing phenotypes from dogs to 

human, and potentially decreasing weights of sub-populations with the similar ageing 

phenotype. GWAS studies can be also extremely useful for disclosing and explaining 

interplays between different causes of death (Tsai et al., 2012). 

5.3.3. Modelling the impact of reproductive period on mortality 

dynamics 

A disease or a deleterious mutation that is manifested early in the lifespan (before the 

reproductive period) has a low probability of passing to the next generation while those 

manifested after the reproductive period can accumulate in a population. These 

considerations are central for evolutionary theories of ageing which, despite a certain 

progress (Kirkwood, 1977, Williams, 1957, Medawar, 1946), have struggled to answer 

the key questions related to fundamental mortality laws. Here we want to develop a 

computational model which will describe the evolution of mortality dynamics in a virtual 

population as affected by the reproductive period. In the model we will consider a 

number (say, one hundred thousand) of entities representing living organisms. Each 

entity is characterised by its age and number of heterozygous mutations it carries. At 

each time step the entity gets older and with some probability (depending on its 
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genotype) dies. When it is in the reproductive age it mates (with some probability) and 

leaves an offspring. The offspring carries new mutations, for example, with a probability 

of mutations proportional to the age of the parents if we assume that the mutations in 

germ cells occur with a constant rate. We will only consider genes for which at least one 

allele causes disease and affects mortality. We will run the program for a number of 

generations to see how mortality dynamics evolves in the population and how they are 

affected by the parameters defining the reproductive age, the effect of mutations on the 

mortality rate and an age-dependence of the probability of new mutations. In the basic 

version of this model we will assume that all one-mutation dependent outcomes are 

independent and there are no interactions between them. We anticipate that in the case of 

no interactions between diseases, mortality will increase slower than it is described by 

the Gompertz law. We will further extend the model with various hypotheses (see 

Section 5.3.2) related to interactions between mutations/diseases in order to find 

conditions when the Gompertz law will hold. In this way, we can try to identify 

mechanisms underlying universal mortality laws. The computational model could also 

verify and extent the analysis performed in Chapter 4.  

The outcomes of this study would be compared with the outcomes of other evolutionary 

theories of mutation accumulation and antagonistic pleiotropy (Charlesworth, 2000, 

Rose et al., 2007, Medawar, 1946, Williams, 1957). This study would also be extended 

by the examination of a model of homozygous species. The results obtained using this 

computational model would be verified on mortality data for pure breeds of domestic 

animals such as dogs (Kraus et al., 2013) or age-/stress-/mutation-related mortality data 

on different strains of C. elegans (Stroustrup et al., 2013). 

5.3.4. Development of mechanistic models for mortality dynamics   

An explanation of the Gompertz law could be based on the observation that the 

exponential function (describing the Gompertz law) occurs naturally as a mathematical 

solution of the equation 𝑑𝜇/𝑑𝑥 = 𝛽𝜇. This equation is based on an assumption that the 

rate of change in the force of mortality is proportional to the force of mortality. 

However, there is not any universal biological justification so far to explain that 

proportionality. Ideally, the development of a mathematical model based on assumptions 

about the dynamics of physiological and biological processes that affect mortality rates 
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and is able to biologically verify these processes, and accurately reproduce the observed 

mortality patterns, could address this problem.  

However, in this particular case we would act the other way around. We know that 

mortality data can be represented as a mixture of exponents. Solutions of systems of 

linear differential equations are also often represented by a superposition of exponents. 

Therefore, the mortality data for intrinsic causes of death (superposition of two 

exponents) can appear as a solution of a coupled system of two differential equations. 

The two variables in the model should be associated with the physiological states (i.e. 

vulnerability to diseases and ability to recover) of each individual in a population. Such 

model can easily be fit to mortality data for intrinsic causes of death and even extended 

to reproduce the total mortality dynamics (see Figure 5.4). The advantage of this model 

is that it allows negative exponentiation in the solution (which is forbidden in the 

heterogeneous model since it can result in immortality). 

In our preliminary work we developed the model by denoting 𝑢 the process of “illness” 

and 𝑣 the process of “recovery”. We consider that the rate of change of illness increases 

with probability 𝑎 over age 𝑥, because if an individual is ill then there is a probability 

that they will get more ill. The rate decreases by probability 𝑏 as a sick individual could 

recover, and finally the rate increases by probability 𝑐, which is the probability that the 

individual was healthy and becomes ill. Mathematically, this change is expressed by the 

differential equation: 

 
𝑑𝑢

𝑑𝑥
= 𝑎𝑢 − 𝑏𝑢 + 𝑐𝑣. (5.14) 

Similarly, the rate of change of recovery with age increases with probability 𝑏 if the 

individual was ill and recovers, and decreases by probability 𝑐 if the individual was 

healthy and gets ill: 

 
𝑑𝑣

𝑑𝑥
= 𝑏𝑢 − 𝑐𝑣. (5.15) 

The system is then converted to a single second order differential equation of variable 𝑢, 

by elimination. The reduction to one equation is achieved by substituting equation (5.15) 

into the first derivative of equation (5.14) with respect to 𝑥. The solution of the 2nd order 

ODE is the superposition of two exponents: 
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 𝑢(𝑥) = 𝑐1𝑒
𝜆1𝑥 + 𝑐2𝑒

𝜆2𝑥, (5.16) 

where 𝑐1 and 𝑐2 are constants and 𝜆1 and 𝜆2 are the eigenvalues having opposite signs 

(as the probabilities 𝑎, 𝑏 and 𝑐 are always positive). A proportion 𝛿 of diseases leads the 

individual to death and therefore the force of mortality is 𝛿𝑢(𝑥). Hence,  

 𝜇(𝑥) = 𝛿𝑢(𝑥) = 𝐶1𝑒
𝜆1𝑥 + 𝐶2𝑒

𝜆2𝑥 , (5.17) 

where 𝐶1 = 𝛿𝑐1 and  𝐶2 = 𝛿𝑐2. The constants can be calculated by using the initial 

conditions 𝜇(0) = ∫ 𝐶1𝑒
𝜆1𝑥 + 𝐶2𝑒

𝜆2𝑥
1

0
𝑑𝑥  and 𝜇′(10) = 0 (as the minimum point of 

mortality pattern exist at age 10).  

The accidental hump can be modelled by including an extra cause of death, the 

accidents, by using a Poisson process. In other words, the probability of dying at age 𝑥 

after 𝑘 accidental events is given by 

 𝑃(𝑘, 𝑥) =
(𝜆𝑥)𝑘

𝑘!
𝑒−𝜆𝑥, (5.18) 

where parameter 𝜆 is the expected number of events that occur per unit of age. Then, the 

mortality is expressed as the sum of intrinsic (equation (5.17)) and extrinsic (equation 

(5.18)) death factors: 

 𝜇(𝑥) = 𝐶1𝑒
𝜆1𝑥 + 𝐶2𝑒

𝜆2𝑥 + 𝐶3
(𝜆𝑥)𝑘

𝑘!
𝑒−𝜆𝑥 (5.19) 

where 𝐶3 is the fraction of individuals in the population that are dying due to accidents. 

The fit of equation (5.19) to actual mortality data is shown in Figure 5.4. 

The presented model requires a proper biological justification which in turn would 

provide appropriate interpretations for the model coefficients and parameters. Various 

nonlinear interactions between considered variables can be analysed by modifications of 

the basic model. The model can also be extended (by considering a separate set of 

variables to describe the dynamics of each disease) for investigation of the interplay 

between the main death factors (circulatory system, cancer, respiratory system, external, 

infectious and parasitic diseases and other causes) to the overall dynamics of mortality. 

By applying this model to different period data we can draw conclusions about the 

evolution of the interactions between different death factors over time. 
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Figure 5.4: Fitting the model of illness-recovery to the 2007 Swedish mortality rates. 
The force of mortality as given by equation (5.19) is shown by the red-solid curve 

while the straight dashed lines indicate the superposition of two inversely directed 

exponents and the curved dashed line the Poisson distribution term.  

5.4. Conclusion 

This thesis is devoted to the analysis of mortality dynamics over age and time by means 

of mathematical modelling. The model that we have developed and used is based on two 

main assumptions: the heterogeneity of human populations and the exponential mortality 

dynamics in each of the constituent subpopulations. On the basis of our analysis we 

make a few broad conclusions about the mortality-related structure of heterogeneous 

populations across the lifespan and their evolution over time and on the effect of 

selective processes on the population mortality dynamics. The model that we have 

developed links the heterogeneity of populations and the exponential age-specific growth 

of mortality, as described in Chapters 2 and 3, and is proven to be an efficient tool for 

analysing the dynamics of mortality across the lifespan and its alterations over time. 

Also, as we have shown in Chapter 4, our model not only allows accurate fits to actual 

mortality data but explains fundamental features of population mortality.  

Using mathematical modelling techniques to analyse the dynamics of mortality we have 

reached the premise of the thesis and we have presented a significant work that matches 

the scope and the motivation stated in introduction. The major conclusions of this 
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research are: (a) the heterogeneity of human populations can explain the deviations of 

mortality from its exponential increase at young and very old ages, (b) deviations of 

mortality from the exponential increase at very old ages can be seen as fluctuations and 

explained by stochastic effects, (c) heterogeneity can explain controversial observations 

of late-life mortality (the deceleration, the levelling-off and the decline), (d) the 

evolution of mortality described by the evolution of parameters of the model of 

heterogeneous populations confirms the validation of compensation effect in each 

subpopulation, (e) the mortality-related structure of a heterogeneous population changes 

over time and for the Swedish population those changes caused its homogenisation 

within the 20th century, (f) the decrease of the overall mortality within the 20th century is 

primarily a result of homogenisation of the population and secondly of the reduction of 

mortality dynamics in constituent subpopulations, (g) if heterogeneity reflects the 

genetic variation, then common models of population genetics can explain the changes 

in the mortality-related structure of populations that occur over time.   

The outcomes of this research could be beneficial for researchers representing a number 

of disciplines within academia and may also be potentially beneficial to public and 

private sectors. On one hand, mathematical modelling of mortality rates is of great 

interest in order to analyse the dynamics of mortality and the processes underlying 

ageing in biological populations. On the other hand, it has many practical 

implementations in actuarial sciences (pension funds, life-insurance companies, 

government's financial and economic policies) where extrapolation methods are used for 

the projection of mortality trends in order to estimate future life expectancy and to price 

several longevity products. In particular, the analysis of evolution of mortality dynamics 

over time is commonly used for forecasting future mortality patterns and studying the 

impact of longevity on pension funds. 

An extension of this study should explore the biological and genetic factors of the 

processes underlying ageing and the fundamental role of heterogeneity on the dynamics 

of mortality. Outcomes of mortality and longevity related studies should result in the 

development of solid tools to support the goal of building a general theory of mortality 

and ageing. Such a theory would affect many medical implementations and health 

service regulations. This indeed will be achieved if scientists understand what fails in the 

organisms with age in order to potentially contribute to the prevention, delay and 

treatment of those changes (for example, to delay some inevitable age-related diseases or 
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to prevent some interactions between them). We anticipate that the presented work, and 

any potential results derived with the implementation of work described in our future 

plans, will be beneficial to the development (in the long-run) of a theory of ageing and 

will be of interest to a wide range of researchers and practitioners working in different 

academic fields as well as in the public and commercial private sector.  
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