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Chapter 1

Introduction

A bifurcation of a dynamical system occurs when the parameter value of
a system changes such that it causes a sudden qualitative change in its
behaviour. Bifurcations occur in both continuous systems and discrete sys-
tems. I will only consider bifurcations in discrete systems.

Before studying bifurcation I will start by analysing the stability of ordinary
differential equations both linear and non-linear with an arbitrary constant
and look at how this constant affects the stability of stationary points. I
will then go on to study bifurcation theory.

In this project I will study the different types of bifurcations that can arise
in ordinary differential equations, the necessary conditions for each type of
bifurcation to occur and the normal form.

I will then go on to consider systems of ordinary differential equations.
Systems of ordinary differential equations can usually only be solved an-
alytically if the system is linear. I will look at the method for solving linear
systems as well as looking at the method of linearisation so that I can solve
non-linear systems analytically close to an equilibrium point. I will then
consider systems of ordinary differential equations with a parameter and
study Hopf bifurcation.
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Chapter 2

Definitions

Autonomous equation: dx
dt = f(x) is called an autonomous equation because

the differential equation does not explicitly depend on the independent vari-
able, here denoted t for time. This means that the equation is ’timeless’,
the solution will be the same regardless of when in time it occurs.

Equilibrium: A state in which the system does not change with time, in
particular the state variables remain constant.

Trajectory: A curve traced by the solution of a differential equation.

Phase portrait: A geometric representation of the set of trajectories of a
dynamical system in the phase plane.

Non-hyperbolic: An equilibrium point x∗ of dfdx = f(x) is called non-hyperbolic

if ∂f
∂x (x∗) = 0.

Bifurcation: A bifurcation of a dynamical system is a qualitative change
in its dynamics produced by varying parameters.
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Chapter 3

Ordinary Differential
Equations

Ordinary differential equations are functions of one independent variable and
its derivatives. Here I will look at how to find the stability of equilibrium
point of ODEs and how to determine the equilibrium’s stability.

3.1 Linear Equations

Consider the equation dx
dt = ax where a is a non-zero constant.

The solution is x = x0e
at. The equilibrium occurs at when dx

dt = 0 that
is when ax = 0 this happens when x = 0. Whether the equilibrium is stable
or unstable depends on whether ∂

∂x(ax) is positive or negative. In this case
that means it depends on whether the constant a is positive or negative.
Therefore there are two cases for the stability, when a < 0 and when a > 0.

If a > 0 then x → ±∞ when t → 0. For a > 0 dx
dt increases as ax in-

creases and dx
dt decreases as ax decreases, this means that the equilibrium

point is unstable.

If a < 0 then x → 0 when t → ∞. For a < 0 dx
dt decreases as ax in-

creases and dx
dt increases as ax decreases, this means that the equilibrium

point is stable.
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(a) a positive (b) a negative

Figure 3.1: Plot of rate of change for linear differential equation dx
dt = ax.

Arrows on the x-axis give direction of evolution of solution.

3.2 Non-linear Equations

With linear ordinary differential equations it is always possible to find an
analytic solution. However with non-linear equations there can be many
possible solutions, this results in more than one equilibrium. The simplest
non-linear equation is quadratic.

3.2.1 Quadratic right hand side

Consider the equation dx
dt = f(x) = ax(x−1), where a is a non-zero constant.

The equilibrium occurs when dx
dt = 0 this happens when either x = 0 or

x = 1. Therefore this equation has 2 equilibrium points x = 0 and x = 1.

To establish the stability of the equilibrium points we need to look at the
derivative of the right hand side at the equilibrium point. When the deriva-
tive of the right hand side is negative the equilibrium point is stable. When
the derivative is positive the equilibrium point is unstable.

Here f ′(x) = a(x − 1) + ax. Again, like the linear system, the stability
depends on the constant a.

When a > 0;

x = 0 f ′(x) = −a < 0 therefore the equilibrium point is stable.

x = 1 f ′(x) = a > 0 therefore the equilibrium point is unstable.
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When a < 0;

x = 0 f ′(x) = −a > 0 therefore the equilibrium point is unstable.

x = 1 f ′(x) = a < 0 therefore the equilibrium point is stable.

(a) a positive (b) a negative

Figure 3.2: Plot of rate of change for quadratic differential equation dx
dt =

ax(x− 1). Arrows on the x-axis give direction of evolution of solution.

3.2.2 Cubic right hand side

Consider the equation df
dt = f(x) = ax(x− 1)(x− 2)

The equation has equilibrium at x = 0, x = 1 and x = 2.

f ′(x) = 3ax2 − 6ax + 2a. Again the stability of these equilibrium point
depends on the sign of the constant a.

When a > 0;

x = 0 f ′(0) = 2a > 0 therefore the equilibrium point is unstable.

x = 1 f ′(1) = −a < 0 therefore the equilibrium point is stable.

x = 2 f ′(2) = 2a > 0 therefore the equilibrium point is unstable.

When a < 0;
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x = 0 f ′(0) = 2a < 0 therefore the equilibrium point is stable.

x = 1 f ′(1) = −a > 0 therefore the equilibrium point is unstable.

x = 2 f ′(2) = 2a < 0 therefore the equilibrium point is stable.

(a) a positive (b) a negative

Figure 3.3: Plot of rate of change for cubic differential equation df
dt = ax(x−

1)(x− 2). Arrows on the x-axis give direction of evolution of solution.

Non-linear differential equations can have many equilibria, the stability of
each equilibrium point alternates, and so if you know the stability of one
equilibrium point you can work out the stability of all the other points with-
out further calculation, provided all of the equilibriums are non-hyperbolic.
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Chapter 4

Fold Bifurcation

Here we will consider non-linear differential equations with a parameter. I
will consider how the parameter c affects stability. The value of the c for
which the equilibrium is non-hyperbolic, that is ∂f

∂x (x, c) = 0, is called a
bifurcation point.

4.1 Example

Consider the equation

dx

dt
= f(x, c) = x(x− 1) + c

where c is a parameter.

The equilibrium occurs when dx
dt = 0 that is x2 − x + c = 0 this can be

solved using the quadratic equation giving;

x =
1±

√
(−1)2 − 4c

2
=

1

2
±
√

1

4
− c

Therefore there are two equilibrium points. The equilibrium points only
exist when c < 1

4 due to the square root.

To analyse the stability of the equilibrium points we need to look at ∂f
∂x

at these points.

∂f
∂x

(
1
2 +

√
1
4 − c, c

)
= 2

(
1
2 +

√
1
4 − c

)
− 1 = 2

(√
1
4 − c

)
> 0.

Therefore this equilibrium point is unstable and only exists when c < 1
4 .

When c = 1
4 , ∂f

∂x = 0 this means the equilibrium is non-hyperbolic.
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∂f
∂x

(
1
2 −

√
1
4 − c, c

)
= 2

(
1
2 −

√
1
4 − c

)
− 1 = −2

(√
1
4 − c

)
< 0.

Therefore this equilibrium point is stable and exists when c < 1
4 . When

c = 1
4 the equilibrium is non-hyperbolic.

The equilibrium point is non-hyperbolic at (x, c) = (1
2 ,

1
4) at this point

bifurcation occurs and both equilibrium points disappear. This is fold bi-
furcation.

Figure 4.1: Bifurcation Diagram for fold bifurcation on dx
dt = ax(x− 1) + c.

The dashed line represents an unstable equilibrium and the solid line a stable
equilibrium. The arrows give direction of evolution of solution.

4.2 Normal form

To find a general way to describe fold bifurcation it is useful to bring equa-
tions to the normal form. Once the equations are in normal form there
is only four possible options for the orientation and stability. All equations
that have fold bifurcation can be transformed into one of these normal forms.

Consider the equation;
dx

dt
= f(x, c)

Assume x∗ is an equilibrium value and c∗ is a bifurcation value.

This means f(x∗, c∗) = 0 and ∂f
∂x (x∗, c∗) = 0.

To anaylse the equilibrium and bifurcation point we need to analyse the
normal form.
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If we introduce x̃ = x − x∗ and c̃ = c − c∗. The equilibrium now occurs
at x̃ = 0 and the bifurcation now occurs at c̃ = 0.

Because the new ODE has equilibrium at (0, 0) we can use the Maclaurin
expansion, which is the Taylor series expansion of a function about (0, 0).
Because f ′(0, 0) = 0 we need only expand the function up to second order
terms.

The Maclaurin expansion;

f(x̃, c̃) = f(0, 0)+
∂f

∂x̃
(0, 0)x̃+

∂f

∂c̃
(0, 0)c̃+

∂2f

∂2x̃
(0, 0)

x̃2

2
+
∂2f

∂x̃∂c̃
(0, 0)x̃c̃+

∂2f

∂2c̃
(0, 0)

c̃2

2

Because f(0, 0) = 0 and ∂f
∂x̃ (0, 0) = 0 the equation becomes

f(x̃, c̃) = fc̃c̃+ fx̃x̃
x̃2

2
+ fc̃c̃

c̃2

2
+ fx̃c̃x̃c̃

f(x̃, c̃) = fc̃c+
1

2
fx̃x̃x̃

2 +
1

2
fc̃c̃c̃

2 + fx̃c̃x̃c̃

Now we can complete the square.

f(x̃, c̃) = fc̃c̃+
1

2

(√
fx̃x̃x̃+

fx̃c̃√
fx̃x̃

c̃

)2

+

(
1

2
fc̃c̃ −

f2
x̃c̃

fx̃x̃

)
c̃2

c̃ is small therefore c̃2 is negligible and so can be ignored. This allows me
to remove the third term. I could also remove everything involving c̃2 from
the second term however keeping them will not affect the normal form but
will slightly improve accuracy and so I shall keep the second term as it is.
This leaves us with;

f(x̃, c̃) = fc̃c̃+
1

2

(√
fx̃x̃x̃+

fx̃c̃√
fx̃x̃

c̃

)2

Let c = fcc and x = 1√
2

(√
fx̃x̃x̃+ fx̃c̃√

fx̃x̃
c̃
)

.

This gives the normal form of fold bifurcation;

dx

dt
= ± c± x2

The sign of c is the same as the sign of ∂f
∂c .

The sign of x2 is the same as ∂2f
∂x2 .
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For bifurcation to occur the equilibrium must be non-hyperbolic, that is,
∂f
∂x = 0. For fold bifurcation to occur the following two properties must hold
∂f
∂c 6= 0 and ∂2f

∂x2 6= 0.

(a) x′ = c+ x2 (b) x′ = −c− x2 (c) x′ = c− x2 (d) x′ = −c+ x2

Figure 4.2: Fold bifurcation. Normal form. Four plots correspond to 4
different cases

From the normal form diagrams it can be seen that whether c and x2 are
positive or negative effect the type of fold bifurcation. If c and x2 are the
same sign then the equilibriums vanishe at c = 0 and if they are different
signs the equilibriums appear at c = 0. If x2 is negative the equilibriums
are stable when x > 0 and unstable when x < 0. If x2 is positive the
equilibriums are stable when x < 0 and unstable when x > 0.
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Chapter 5

Transcritical bifurcation

5.1 Example 1

Consider the equation

dx

dt
= f(x, c) = xg(x, c) = x(x− 1 + c)

The equation has equilibria at x = 0 and x = 1− c.

∂f
∂x = 2x− 1 + c

Equilibrium at x = 0.
∂f

∂x
(0, c) = −1 + c

Therefore the equilibrium is stable when c < 1 and unstable when c > 1 and
non-hyperbolic when c = 1.

Equilibrium at x = 1− c.
∂f

∂x
(1− c, c) = 1− c

Therefore the equilibrium is stable when c > 1 and unstable when c < 1 and
non-hyperbolic when c = 1.

This bifurcation point cannot be a fold bifurcation point because x = 0
is always an equilibrium point regardless of the parameter c and so exists
before and after the bifurcation point. In fold bifurcation we have a change
from zero to two equilibrium depending on the value of the parameter c.
The bifurcation point here is a transcritical bifurcation point. In transcriti-
cal bifurcation two equilibriums collide and their stability is exchanged.

Transcritical bifurcation occurs at the fixed point (x, c) = (0, 1), at this
point the equilibriums collide and their stability is exchanged.
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Figure 5.1: Bifurcation Diagram for transcritical bifurcation on dx
dt = x(x−

1+ c). The dashed line represents an unstable equilibrium and the solid line
a stable equilibrium. The arrows give direction of evolution of solution.

5.2 Example 2

Consider the equation

dx

dt
= f(x, c) = x(ax(x− 1) + c)

The equation has one equilibrium at x = 0 and another equilibrium at

x = 1
2 +

√
1
4 − c, the same as the fold bifurcation example, which is non-

hyperbolic when x = 1
2 , c = a

4 .

The partial derivative is ∂f
∂x = 3ax2 − 2ax+ c

∂f
∂x (0, 0) = c and so the equilibrium is stable when c < 0 and unstable
when c > 0 and non-hyperbolic when c = 0. Therefore (0, 0) is a bifurcation
point, because the equilibrium x = 0 exists before and after the bifurcation
point this is a transcritcal bifurcation.

At x = 1
2 , c = 1

4 fold bifurcation occurs, we have the same stability as
the fold bifurcation example, that is unstable when x > 1

2 and stable when
x < 1

2 .
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Figure 5.2: Bifurcation diagram for the coexisting transcritical and fold bi-
furcation simultaneously occurring on dx

dt = x(ax(x−1)+c). The dashed line
represents an unstable equilibrium and the solid line a stable equilibrium.
The arrows give direction of evolution of solution.

For the equilibrium x = 0 you can see that the equilibrium is stable when
c < 0 and unstable when c > 0.

The equilibrium x = 1
2 +

√
1
4 − c is unstable for c < 1

4 and vanishes at

the fold bifurcation point c = 1
4 .

The equilibrium 1
2 −

√
1
4 − c is unstable when c < 0 at c = 0 transcriti-

cal bifurcation occurs and so the equilibrium is stable for 0 < c < 1
4 . At

c = 1
4 fold bifurcation occurs and the equilibrium vanishes.

5.3 Normal form

To make standard analysis we need to bring the equation to the normal form.

Consider the ODE
dx

dt
= xg(x, c)

with non-hyperbolic equilibrium at (x∗, c∗). That is g(x∗, c∗) = 0.

In order to use the Taylor expansion I will introduce the change of vari-
ables;

x̃ = x− x∗, c̃ = c− c∗
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I can now use the Taylor expansion, in this case we need only the first order
terms.

f(x̃, c̃) = x

(
g(0, 0) +

∂g

∂x̃
(0, 0)x̃+

∂g

∂c̃
(0, 0)c̃

)
Remember g(0, 0) = 0 and so the expansion becomes;

f(x̃, c̃) = x̃

(
∂g

∂x̃
(0, 0)x̃+

∂g

∂c̃
(0, 0)c̃

)
f(x̃, c̃) = x̃(gx̃x̃+ gc̃c̃)

f(x̃, c̃) = gx̃x̃
2 + gc̃c̃x̃

f(x̃, c̃) =
√
gx̃x̃

(
√
gx̃x̃+

gc̃√
gx̃
c̃

)
Let x =

√
gx̃x̃ and c = gc̃√

gx̃
c̃

The normal form is therefore

dx

dt
= x(±x± c)

In transcritical bifurcation there are two equilibriums and one bifurcation
point. One equilibrium point exists regardless of parameter c and so the
equilibrium point exists before and after the bifurcation point. The stabil-
ity of the two equilibrium points changes when the equilibria collide.

The conditions for transcritical bifurcation to occur are ∂f
∂c = 0 and ∂2f

∂x2 6= 0.

(a) x′ = x(c− x) (b) x′ = x(x− c) (c) x′ = x(x+ c) (d) x′ = x(−x− c)

Figure 5.3: Transcritical bifurcation normal forms
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Chapter 6

Pitchfork Bifurcation

Pitchfork bifurcation occurs when the function f(x, c) is odd, that is when
f(−x, c) = −f(x, c), and when there is an equilibrium point at x = 0.

6.1 Example

Consider the equation

dx

dt
= f(x, c) = xc− 4x3

First confirm that f(x, c) is odd.

f(−x, c) = −xc+ 4x3 = −f(x, c)

f(x, c) has equilibrium at when f(x, c) = 0 that is when xc − 4x3 = 0

x(c− 4x2) = 0 this happens when x = 0 and x = ±
√
c

2 .

The derivative of the right hand side is ∂f
∂x = c− 12x2.

When x = 0;
∂f

∂x
(0, c) = c− 12(0)2 = c

Therefore the equilibrium at x = 0 is stable when c < 0, unstable when
c > 0 and non-hyperbolic when c = 0.

The equilibriums at x = ±
√
c

2 can only occur when c > 0 because of the√
c.

∂f

∂x

(√
c

2
, c

)
= c− 12

(
±
√
c

2

)2

= −2c

17



Figure 6.1: Bifurcation diagram for pitchfork bifurcation on dx
dt = xc− 4x3

with stability shown on the cross section

And so the equilibrium point at x = ±
√
c

2 is always stable.
This is an example of supercritical pitchfork bifurcation.

6.2 Normal form

To make standard analysis we need to bring the equation to the normal form.

Consider the equation
dx

dt
= f(x, c)

Where f(x, c) is an odd function, that is f(−x, c) = −f(x, c).

Assume non-hyperbolic equilibrium at x = x∗, c = c∗.

Therefore f(x∗, c∗) = 0 and ∂f
∂x (x∗, c∗) = 0.

Let x̃ = x−x∗ , c̃ = c−c∗. There is now non-hyperbolic equilibrium at (0, 0).

I can now use the Taylor expansion;

f(x̃, c̃) = f(0, 0) +
∂f

∂x̃
(0, 0)x̃+

∂f

∂c̃
(0, 0)c̃+

∂2f

∂x̃2
(0, 0)

x̃2

2
+

∂2f

∂x̃∂c̃
(0, 0)x̃c̃

+
∂2f

∂c̃2
(0, 0)

c̃2

2
+
∂3f

∂x̃3
(0, 0)

x̃3

6
+

∂3f

∂2x̃∂c̃
(0, 0)

x̃2c̃

2
+

∂3f

∂x̃∂2c̃
(0, 0)

x̃c̃2

2

+
∂3f

∂3c̃
(0, 0)

c̃3

6
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f(0, 0) = 0 due to the equilibrium at (0, 0).

And because the equilibrium is non-hyperbolic, a necessary condition for
all bifurcation, ∂f

∂x̃ (0, 0) = 0.

Because f is an odd function, all terms that involve x̃ to even powers are
zero, and derivatives that involve even powers of x̃ are zero.

If ∂f
∂c̃ 6= 0 even though the equilibrium is non-hyperbolic bifurcation does

not occur. All terms involving c̃2 are small and so can be neglected. I shall
only neglect the terms that involve c̃2 only.

Therefore the expansion becomes;

f(x̃, c̃) = x̃

(
∂2f

∂x̃∂c̃
c̃+

∂3f

∂x̃∂c̃2

c̃2

2

)
+
∂3f

∂x̃3

x̃3

6

Let x = 3

√
1
6
∂3f
∂x̃3 x̃ and c =

∂2f
∂x̃∂c̃

c̃+ ∂3f

∂x̃∂c̃2
c̃2

2

3
√

1
6

∂3f

∂x̃3

.

The normal form of pitchfork bifurcation is therefore

dx

dt
= ±cx± x3

Pitchfork Bifurcation has two types of normal forms; supercritical and sub-
critical. Whether the bifurcation is supercritical and subcritical depends on
the sign of x3 in the normal form.

dx
dt = ±cx− x3 is the supercritical pitchfork normal form.
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(a) x′ = x(−c− x2) (b) x′ = x(c− x2)

Figure 6.2: Supercritical pitchfork normal form

dx
dt = ±cx+ x3 is the subcritical pitchfork normal form.

(a) x′ = x(c+ x2) (b) x′ = x(−c+ x2)

Figure 6.3: Subcritical pitchfork normal form

For pitchfork bifurcation to occur we must have ∂f
∂c = 0, ∂2f

∂c2
= 0, ∂2f

∂x∂c 6= 0,
∂3f
∂x∂c2

6= 0 and ∂3f
∂x3 6= 0.

In pitchfork bifurcation the ODE either goes from having three equilib-
rium points before bifurcation to one after the pitchfork bifurcation point.
Alternatively it goes from having one equilibrium point before bifurcation
to three equilibrium points after pitchfork bifurcation.
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Chapter 7

Systems of Ordinary
Differential Equations

7.1 System of Linear Equations

7.1.1 General solution

Consider the equations; {
du
dt = a11u+ a12v
dv
dt = a21u+ a22v

where a11, a12, a21 and a22 are all positive constants.

The system of linear equations can be rewritten as(
du
dt
du
dt

)
=

(
a11 a12

a21 a22

)(
u
v

)

By using the Jacobian of the linear system, here

J =

(
a11 a12

a21 a22

)
and the characteristic equation;

det(J − λI) = 0

the eigenvalues can be calculated.

In this example the characteristic equation would be;∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0.
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And so the eigenvalues can be calculated by solving for λ;

(a11 − λ)(a22 − λ)− a12a21 = 0

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0

λ1, λ2 =
(a11 + a22)±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

2

Notice that a11 + a22 = trace(J) and a11a22 − a12a21 = det(J) and so the
equation becomes;

λ1, λ2 =
TrJ ±

√
(TrJ)2 − 4(detJ)

2

If the eigenvalues are real and distinct the solution of the equation is

x = c1e1e
λ1t + c2e2e

λ2t

Where e1,2 are the eigenvectors corresponding to eigenvalues λ1,2 and c1, c2

are arbitrary constants.

If the eigenvalues are repeated, that is λ1 = λ2 = λ, the solution of the
equation is

x = (c1 + c2t)ee
λt

Where e is the eigenvector corresponding to eigenvalue λ and c1, c2 are ar-
bitrary constants.

If the eigenvalues are complex, that is λ = α ± βi, the solution of the
equation is

x = eαt(c1e1 cosβt+ c2e2 sinβt)

Where e1 is the eigenvector corresponding to λ = α+βi and e2 is the eigen-
vector corresponding to λ = α− βi and c1, c2 are arbitrary constants.

The constants in each of the solutions are given by the initial conditions.

e1 is an eigenvector of matrix A if Ae1 = λ1e1. If this equation is satis-
fied λ1 is an eigenvalue and e1 is the eigenvector.

7.1.2 Types of stationary points

Again consider the equations;{
du
dt = a11u+ a12v
dv
dt = a21u+ a22v
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where a11, a12, a21 and a22 are all positive constants.

At the equilibrium points both variables u and v do not change with re-
spect to time.

Equilibrium can be classified by considering the eigenvalues of the linear
system. The number of eigenvalues is equal to the number of state vari-
ables, in this case there will be two eigenvalues.

If none of the eigenvalues have zero real part the equilibrium is hyperbolic.

If the eigenvalues are real (TrJ > 4detJ) and negative: The equi-
librium is a sink node which is a stable node. A stable node means that if
there is a random pertubation at the equilibrium point the system always
returns back to the equilibrium point after the disturbance.

If all of the eigenvalues are real (TrJ > 4detJ) and positive: The
equilibrium is a source node which is an unstable node. An unstable node is
where after a small disturbance the system moves away from the equilibrium
point.

If all of the eigenvalues are real (TrJ > 4detJ) and one is posi-
tive and one is negative (

√
(TrJ)2 − 4detJ > TrJ): The equilibrium is

a saddle point. A saddle point is always unstable.

If the eigenvalues are complex cunjugate (TrJ > 4detJ) with nega-
tive real part (TrJ < 0): The focus is a spiral sink which is stable.

If the eigenvalues are complex cunjugate (TrJ > 4detJ) with posi-
tive real part (TrJ > 0): The focus is a spiral source which is unstable.

When at least one eigenvalue has non-zero real part the equilibrium is non-
hyperbolic. When both eigenvalues are purely imaginary the equilibrium
point is a centre, that is when TrJ = 0 the equilibrium is a centre.
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Figure 7.1: Diagram showing how the trace and determinant of J affects the
type of equilibrium point

7.1.3 Example 1

Consider the equations {
du
dt = 8u− 2v
dv
dt = 4u+ 2v

The characteristic equation for this is;

det

(
8− λ −2

4 2− λ

)
= 0

(8− λ)(2− λ) + 8 = 0 ⇒ (λ− 6)(λ− 4) = 0

The eigenvalues are therefore λ1 = 6 , λ2 = 4.

The eigenvalues are real and distinct and so the solution is of the form;

x = c1e1e
λ1t + c2e2e

λ2t
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(a) Direction field with eigenvectors (b) Direction field with phase tra-
jectories

Figure 7.2: Phase Portrait for the sink node

Calculating the eigenvectors;

λ = 6 (
8− λ −2

4 2− λ

)(
x1

x2

)
=

(
0
0

)
(

2 −2
4 −4

)(
x1

x2

)
=

(
0
0

)
This gives x1 = x2. Therefore the eigenvalue we obtain is e1 =

(
1
1

)
λ = 4 (

4 −2
4 −2

)(
x1

x2

)
=

(
0
0

)
This gives 4x1 = 2x2. Therefore the eigenvalue we obtain is e2 =

(
1
2

)
.

The solution is therefore

x = c1

(
1
1

)
e6t + c2

(
1
2

)
e4t

The solution has equilibrium at (0, 0) because the eigenvalues are real and
positive this equilibrium is a sink node which is unstable.
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7.1.4 Example 2

Consider the equations {
du
dt = −2u− 2v
dv
dt = 2u− 2v

The characteristic equation for this is;

det

(
−2− λ −2

2 −2− λ

)
= 0

(−2− λ)(−2− λ) + 4 = 0

λ2 + 4λ+ 8 = 0 ⇒ λ = −4±
√

42−32
2

The eigenvalues are therefore λ1 = −2 + 2i , λ2 = −2− 2i.

Calculating eigenvectors;

λ = −2 + 2i (
−2− λ −2

2 −2− λ

)(
x1

x2

)
=

(
0
0

)
(
−2− (−2 + 2i) −2

2 −2− (−2 + 2i)

)(
x1

x2

)
=

(
0
0

)
(
−2i −2

2 −2i

)(
x1

x2

)
=

(
0
0

)
This gives −ix1 = x2. And so the eigenvector we obtain is e1 =

(
i
1

)
λ = −2− 2i(

−2− (−2− 2i) −2
2 −2− (−2− 2i)

)(
x1

x2

)
=

(
0
0

)
(

2i −2
2 2i

)(
x1

x2

)
=

(
0
0

)
This gives ix1 = x2. And so the eigenvector we obtain is e1 =

(
−i
1

)
The solution to this equation is

x = e−2t

(
c1

(
i
1

)
cos(2t) + c2

(
−i
1

)
sin(2t)

)

At the equilibrium −2u − 2v = 0 and 2u − 2v = 0. Therefore the only
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Figure 7.3: Phase portrait for the spiral sink node

equilibrium of this system is (0, 0). Because the eigenvlues are complex
cunjugate with negative real part the equilibrium point is a spiral sink which
is stable.

7.2 System of Non-Linear Equations

Non-linear systems can rarely be solved exactly, unlike linear systems which
can always be solved analytically and therefore exactly. The linearisation
technique finds the closest linear system to the non-linear system at the
equilibrium, so that the equilibrium can be analysed using the method for
a linear system. Non-linear systems can have any number of equilibria.

7.2.1 Linearisation near stationary points

Consider the system of autonomous equations;{ dx
dt = F (x, y)
dy
dt = G(x, y)

with equilibrium at (x∗, y∗). That is;

F (x∗, y∗) = 0

G(x∗, y∗) = 0
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To linearise, start by approximating F (x, y) and G(x, y) at (x∗, y∗), this is
done by calculating the tangent to the functions at the fixed point. This
gives;{

dx
dt = F (x, y) ' F (x∗, y∗) + ∂F

∂x (x∗, y∗)(x− x∗) + ∂F
∂y (x∗, y∗)(y − y∗)

dy
dt = G(x, y) ' G(x∗, y∗) + ∂G

∂x (x∗, y∗)(x− x∗) + ∂G
∂y (x∗, y∗)(y − y∗)

Since (x∗, y∗) is a fixed point F (x∗, y∗) = G(x∗, y∗) = 0. Thus{
dx
dt = ∂F

∂x (x∗, y∗)(x− x∗) + ∂F
∂y (x∗, y∗)(y − y∗)

dy
dt = ∂G

∂x (x∗, y∗)(x− x∗) + ∂G
∂y (x∗, y∗)(y − y∗)

This linear system can be rewritten in matrix notation;( dx
dt
dy
dt

)
=

[
∂F
∂x (x∗, y∗) ∂F

∂y (x∗, y∗)
∂G
∂x (x∗, y∗) ∂G

∂y (x∗, y∗)

](
x− x∗
y − y∗

)
The Jacobian is [

∂F
∂x (x∗, y∗) ∂F

∂y (x∗, y∗)
∂G
∂x (x∗, y∗) ∂G

∂y (x∗, y∗)

]
which can be used to determine the stability of the equilibrium, which be-
cause it is now a linear system can be done by calculating the eigenvalues.

The phase portrait of this linear system is close to the phase portrait of
the original non-linear system.

7.2.2 Example

Consider the system of equations{ dx
dt = F (x, y) = 2x+ 2y
dy
dt = G(x, y) = 1− y2

Equilibrium occurs when F (x, y) = 0 and G(x, y) = 0. That is;

2x+ 2y = 0 ⇒ x = −y

1− y2 = 0 ⇒ y = ±1

Therefore there are equilibria at (1,−1) and (−1, 1)

To calculate the Jacobian matrix, we need the partial derivatives;

∂F
∂x = 2
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∂F
∂y = 2

∂G
∂x = 0

∂G
∂y = −2y

The linear approximation in matrix notation is therefore;( dx
dt
dy
dt

)
=

[
2 2
0 −2y∗

](
x− x∗
y − y∗

)

(x∗, y∗)=(1,−1) ( dx
dt
dy
dt

)
=

[
2 2
0 2

](
x− 1
y + 1

)
The characteristic equation can then be calculated using the Jacobian;∣∣∣∣ 2− λ 2

0 2− λ

∣∣∣∣ = 0

(2− λ)(2− λ) = 0 ⇒ λ = 2

Therefore the equilibrium at (1,−1) is a source node which is unstable.

(x∗, y∗)=(−1, 1) ( dx
dt
dy
dt

)
=

[
2 2
0 −2

](
x+ 1
y − 1

)
The characteristic equation can then be calculated using the Jacobian;∣∣∣∣ 2− λ 2

0 −2− λ

∣∣∣∣ = 0

(2− λ)(−2− λ) = 0 ⇒ λ = ±2

Therefore the equilibrium at (−1, 1) is a saddle point which is unstable.
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Figure 7.4: Phase portrait for Example 7.2.2 with two equilibrium

From the diagram we can see the saddle point at (−1, 1) and from the di-
rection of the arrows we can see that it is unstable. We can also see the
source node at (1,−1) as the arrows show that the flow is going away from
the node we can confirm that this is an unstable node.

We can treat each point of the phase plane as an initial condition. Then
from the phase portrait, we can see how the solution will change when the
initial condition changes.
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Chapter 8

Hopf Bifurcation

Hopf bifurcation occurs when the system of non-linear equations is non-
hyperbolic. Hopf bifurcation only occurs in systems of two or more dimen-
sions.

In a differential equation Hopf bifurcation typically occurs when the real
part of a complex conjugate pair of eigenvalues, of the linearised flow at a
fixed point, switch from positive to negative or negative to positive that is
when the eigenvalues become purely imaginary.

When the real part of the eigenvalue goes from negative to positive the
fixed point goes from being a stable focus to an unstable focus. This bifur-
cation is called supercritical.

When the real part of the eigenvalue goes form positive to negative the fixed
point goes from being an unstable focus to a stable focus. This bifurcation
is called subcritical.

8.1 Jordan normal form

Consider the matrix A =

(
a b
c d

)
with complex conjugate eigenvalues

λ = α± iβ.

We can transform matrix A into the canonical form by the transformation
T−1AT ;

(vr vi)
−1

(
a b
c d

)
(vr vi) =

(
α −β
β α

)
Where vr is the real part of the eigenvectors of A and vi is the imaginary
part of the eigenvectors of A.
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Proof:

Let the eigenvalues of matrix A be λ1 = α+ iβ, λ2 = α− iβ.

Let v1r + iv1i be the eigenvector corresponding to λ1.

Let v2r + iv2i be the eigenvector corresponding to λ2.

Because v1r + iv1i is the complex eigenvector corresponding to λ1 it sat-
isfies;

Ae1 = λ1e1

A(v1r + iv1i) = (α+ iβ)(v1r + iv1i)

Av1r +Aiv1i = αv1r + αiv1i + iβv1r − βv1i

Equating real and imaginary parts;

Real: Av1r = αv1r − βv1i

Imaginary: Av1i = αv1i + βv1r

Because v2r − iv2i is the complex eigenvector corresponding to λ2 it sat-
isfies;

Ae2 = λ2e2

A(v2r − iv2i) = (α− iβ)(v2r − iv2i)

Av2r −Aiv2i = αv2r − αiv2i − iβv2r − βv2i

Equating real and imaginary parts;

Real: Av2r = αv2r − βv2i

Imaginary: −Av2i = −αv2i − βv2r ⇒ Av2i = αv2i + βv2r

Therefore;
Avr = αvr − βvi
Avi = αvi + βvr

Let T be a matrix where the columns of the matrix are vr and vi.

T = (vr, vi) =

(
v1r −v1i

v2r v2i

)
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AT = A(vr, vi)

AT = (Avr, Avi)

AT = (αvr − βvi, αvi + βvr)

AT =

(
αv1r − βv1i αv1i + βv1r

αv2r − βv2i αv2i + βv2r

)
AT =

(
v1r v1i

v2r v2i

)(
α β
−β α

)

Let N =

(
α β
−β α

)

Showing AT = TN shows that T−1AT = N .

8.2 Normal form

Consider the system; { dx
dt = f(x, y, c)
dy
dt = g(x, y, c)

where c is a parameter.

Without loss of generality we can assume that the system has equilibrium
at (0, 0), assume that at this equilibrium after linearisation the eigenvalues
of the system are λ1,2 = α(c) ± iβ(c) and that for c close to c = 0 the
eigenvalues have zero real part.

Therefore we have;
f(0, 0, c) = 0 , g(0, 0, c) = 0

λ1,2 = α(c)± iβ(c) , α(0) = 0

To study the system around the point c = 0 we can expand the right hand
side of the system using the Maclaurin series;

dx
dt = f(0, 0, c) + x∂f∂x (0, 0) + y ∂f∂y (0, 0) + x2

2
∂2f
∂x2 (0, 0) + xy ∂2f

∂x∂y (0, 0)

+y2

2
∂2f
∂y2 (0, 0) + ...

dy
dt = g(0, 0, c) + x ∂g∂x(0, 0) + y ∂g∂y (0, 0) + x2

2
∂2g
∂x2 (0, 0) + xy ∂2g

∂x∂y (0, 0)

+y2

2
∂2g
∂y2 (0, 0) + ...

We know that f(0, 0, c) = 0 , g(0, 0, c) = 0 due to the equilibrium at (0, 0).
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The partial derivatives are not constants but functions of the parameter
c. If we denote all terms of second order or higher as f2 and g2 the system
can be rewritten as;{

dx
dt = x∂f∂x (0, 0) + y ∂f∂y (0, 0) + f2(x, y, c)
dy
dt = x ∂g∂x(0, 0) + y ∂g∂y (0, 0) + g2(x, y, c)

We can now transform the system into the Jordan normal form;{
du
dt = α(c)u− β(c)v + F2(u, v, c)
dv
dt = β(c)u+ α(c)v +G2(u, v, c)

If we let z = u+ iv and z̄ = u− iv

z + z̄ = u+ iv + (u− iv) = 2u ⇒ u = z+z̄
2

z − z̄ = u+ iv − (u− iv) = 2u ⇒ v = z−z̄
2i

Substituting these values of u and v into the Jordan normal form we obtain;
d( z+z̄

2 )
dt = α z+z̄2 − β

z−z̄
2i + F2

d( z−z̄
2i )
dt = β z+z̄2 − α

z−z̄
2i +G2

Multiplying the second equation by i we obtain;

d( z−z̄
2i )i
dt = β (z+z̄)i

2 − α (z−z̄)i
2i + iG2

d( z−z̄
2 )
dt = β (z+z̄)i

2 − α z−z̄2 + iG2

Adding the first equation obtained in Jordan normal form and the new
equation;

d
(
z+z̄

2

)
dt

+
d
(
z−z̄

2

)
dt

= α
z + z̄

2
− β z − z̄

2i
+ F2 + β

(z + z̄)i

2
− αz − z̄

2
+ iG2

d

dt

(
z + z̄

2
+
z − z̄

2

)
= α

(
z + z̄

2
+
z − z̄

2

)
+β

(
(z + z̄)i

2
− z − z̄

2i

)
+F2+iG2

d

dt
(z) = αz + βzi+ F2 + iG2

Let λ = α+ iβ and F (z, z̄, c) = F2 + iG2
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Substituting this gives;
ż = λz + F (z, z̄, c)

We can use the Maclaurin series for the function F (z, z̄, c)

F (z, z̄, c) =
∂2F

∂z2

z2

2
+

∂2F

∂z∂z̄
zz̄ +

∂2F

∂z̄2

z̄2

2
+
∂3F

∂z3

z3

6
+

∂3F

∂z2∂z̄

z2z̄

2
+

∂3F

∂z∂z̄2

zz̄2

2

+
∂3F

∂z̄3

z̄3

6
+ ...

Our equation then becomes;

ż = λz +
∂2F

∂z2

z2

2
+

∂2F

∂z∂z̄
zz̄ +

∂2F

∂z̄2

z̄2

2
+
∂3F

∂z3

z3

6
+

∂3F

∂z2∂z̄

z2z̄

2

+
∂3F

∂z∂z̄2

zz̄2

2
+
∂3F

∂z̄3

z̄3

6
+ ...

We can now work on removing the non-linear terms.

8.2.1 Removing the quadratic term

If we first focus on the quadratic term z2 we can let our equation become

ż = λz +Az2

where A = 1
2
∂2F
∂z2 which is a function of the parameter c.

Let z = w + aw2

Rearrange to give a quadratic function of w in terms of z

aw2 + w − z = 0⇒ w =
−1±

√
1 + 4az

2a

To see whether we need the plus or minus in the square root we can look at

the plot of w = −1±
√

1+4az
2a
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(a) w = −1+
√
1+4az

2a (b) w = −1−
√
1+4az

2a

Figure 8.1: Plots for w

From the plots we can see that we want to take w = −1+
√

1+4az
2a as this is

the plot which passes through (0, 0), therefore it maps out equilibrium at
z = 0 to w = 0.

We are interested in our solution near the equilibrium and so we are in-
terested in only small values of z. Because of this we can use the Maclaurin
series to further simplify our value of w.

Recall the Maclaurin series for
√

1 + x is
√

1 + x ≈ 1 + x
2 −

x2

8 + x3

16 + ...

Therefore
√

1 + 4az ≈ 1 + 2az − 2a2z2 + 4a3z3 + ...

Substituting this equation into our equation for w we obtain;

w ≈ −1 + 1 + 2az − 2a2z2 + 4a3z3 + ...

2a
= z − az2 + 2a2z3 + ..

As we are only aiming to remove the quadratic term now, we can eliminate
all terms of order greater than two.
Therefore;

w = z − az2

Differentiating gives;
ẇ = ż − 2azż

Recall ż = λ+Az2 and substitute into ẇ;

ẇ = λz +Az2 − 2az(λz +Az2)
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ẇ = λz + (A− 2aλ)z2 − 2aAz3

We are not interested in terms of order greater that two. We shall denote
these terms as O(|z|3)

ẇ = λz + (A− 2aλ)z2 +O(|z|3)

Now if we recall that z = w + aw2 we can substitute this into the equation
for ẇ and obtain an equation in terms of w, the equation becomes;

ẇ = λ(w + aw2) + (A− 2aλ)(w + aw2)2 +O(|z|3)

ẇ = λw+aλw2+Aw2+2Aaw3+Aa2w4−2aλw2−4a2λw3−2a3λw4+O(|w|3)

ẇ = λw + aλw2 +Aw2 − 2aλw2 +O(|w|3)

Therefore
ẇ = λw + (A− aλ)w2

To eliminate the quadratic term we need; A− aλ = 0 ⇒ a = A
λ

Setting a = A
λ we eliminate the quadratic term in ż = λz +Az2.

ż will become ż = λz +O(|z|3)

8.2.2 Removing the complex conjugate quadratic term

Let our equation be
ż = λz +Bz̄2

where B = 1
2
∂2F
∂z̄2 which is a function of the parameter c.

Let z = w + bw̄2 with complex conjugate z̄ = w̄ + b̄w2 as ¯̄w = w

Rewrite to make w and w̄ the subject;

w = z − bw̄2

w̄ = z̄ − b̄w2 = z̄ −O(|z|2)

As we are only interested in the z̄2 terms we can include all other order two
and higher terms in O(|z|2). Substituting the second equation into the first
we obtain;

w = z − b(z̄ −O(|z|2))2

w = z − b(z̄2 − 2z̄O(|z|2)) +O(|z|2)2

w = z − bz̄2 +O(|z|2)
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And so up to second order terms we have;

w = z − bz̄2

If we take the derivative we obtain;

ẇ = ż − 2bz̄ ˙̄z

Recall ż = λz +Bz̄2 with complex conjugate ˙̄z = λ̄z̄ + B̄z2 = λ̄z̄ +O(|z|2)

Substituting in these values gives;

ẇ = λz +Bz̄2 − 2Bz̄(λ̄z̄ +O(|z|2))

ẇ = λz + (B − 2bλ̄)z̄2 +O(|z|2)

Recall z = w+ bw̄2 and z̄ = w̄+ b̄w2. Substituting in these values for z and
z̄ we can obtain an equation for ẇ in terms of w and w̄ only;

ẇ = λ(w + bw̄2) + (B − 2bλ̄)(w + bw̄2)2

ẇ = λw + λbw̄2 +Bw̄2 + 2Bb̄w2 +Bb̄2w4 − 2bλ̄w̄2 − 4bb̄λ̄w2 − 2bb̄2λ̄w4

ẇ = λw + (λb+B − 2bλ̄)w̄2 +O(|w|3)

To eliminate the quadratic term w̄2 we need λb+B − 2bλ̄ = 0 ⇒ b = B
2λ̄−λ .

Setting b = B
2λ̄−λ we eliminate the w̄2 quadratic term in ż = λz +Bz̄2.

ż will become ż = λz +O(|z|3)

8.2.3 Removing the mixed quadratic term

Let our equation be
ż = λz + Czz̄

with C = ∂2F
∂z∂z̄ which is a function of the parameter c.

Let z = w + cww̄ with complex conjugate z̄ = w̄ + c̄ww̄

Rearranging to make w and w̄ the subject;

w = z − cww̄

w̄ = z̄ − c̄ww̄

Substituting the second equation into the first we obtain;

w = z − cw(z̄ − c̄ww̄)
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z − cww̄ − cc̄− cc̄w2w̄

We are only interested in terms up to order 2;

w = z − cwz̄ +O(|w|3)

Substituting in the first equation;

w = z − cz̄(z − cww̄) +O(|w|3)

w = z − cz̄z − c2ww̄z +O(|w|3)

w = z − cz̄z +O(|w|3)

Therefore w = z − cz̄z up to second order terms.

Differentiating gives;
ẇ = ż − ˙̄zz − cz̄ż

Recall ż = λz + Czz̄ with complex conjugate ˙̄z = λ̄z̄ + C̄zz̄

Substituting these values for ż and ˙̄z into ẇ gives;

ẇ = λz + Czz̄ − c(λ̄z̄ + C̄zz̄)z − cz̄(λz + Czz̄)

ẇ = λz + Czz̄ − cλ̄z̄z − cC̄z2z̄ − cλz̄z + cCzz̄2

ẇ = λz + (C − c̄λ̄− cλ)zz̄ +O(|z|3)

Recall z = w + cww̄ and z̄ = w̄ + c̄ww̄

Substituting in these values gives;

ẇ = λ(w + cww̄) + (C − cλ̄− cλ)(w + cww̄)(w̄ + c̄ww̄)

ẇ = λw + cλww̄ + Cww̄ − cλ̄ww̄ − cλww̄ +O(|w|3)

Therefore up to second order terms;

ẇ = λw + (C − cλ̄)ww̄

To eliminate zz̄ we need C − cλ̄ = 0 ⇒ c = C
λ̄

Setting c = C
λ̄

will eliminate zz̄ in ż = λz + Czz̄ and so our equation
will become

ż = λz +O(|z|3)
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8.2.4 Removing cubic terms

Most of the cubic terms can be removed using similar methods as was used
for the quadratic terms. (Taken form Panfilov)

For ż = λz + Dz3 using the substitution z = w + dw3, d = D
2λ is found

to be the substitution needed.

For ż = λz+Fzz̄2 using the substitution z = w+ dww̄2, f = F
2λ̄

is found to
be the substitution needed.

For ż = λz +Gz̄3 using the substitution z = w+ gw̄3, g = G
3λ̄−λ is found to

be the substitution needed.

8.2.5 Removing the last cubic term

Let our equation be
ż = λz + Ez2z̄

where E = 1
2
∂3F
∂z2∂z̄

which is a function of the parameter c.

Let z = w + ew2w̄ with complex conjugate z̄ = w̄ + ēw̄2w

Rearranging to make w and w̄ the subject gives;

w = z − ew2w̄

w̄ = z̄ − ēw̄2w

Substituting in the second equation into the first we obtain;

w = z − ew2(z̄ − ēw̄2w)

w = z − ew2z̄ + eēw̄2w3

w = z − ew2z̄ +O(|w|5)

Now, substituting the value for w̄ gives;

w = z − ez̄(z − ew2w̄)2

w = z − ez̄z2 +O(|w|5)

Therefore up to third order terms; w = z − ez̄z2 +O(|w|5)

Taking the derivative gives; ẇ = ż − e ˙̄zz2 − 2ez̄zż

Recall ż = λz + Ez2z̄ with complex conjugate ˙̄z = λ̄z̄ + Ēz̄2z
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Substituting these values into ẇ gives;

ẇ = λz + Ez2z̄ − ez2(λ̄z̄ + Ēz̄2z)− 2ez̄z(λz + Ez2z̄)

ẇ = λz + Ez2z̄ − eλ̄z2z̄ − Ēez̄2z3 − 2eλz̄z2 − 2eEz3z̄2

ẇ = λz + (E − eλ̄− 2eλ)z2z̄ +O(|z|3)

Substituting in z = w+ ew2w̄ and w̄ = w̄+ ēw̄2w we obtain an equation for
ẇ in terms of w and w̄ only;

ẇ = λ(w + ew2w̄) + (E − eλ̄− 2eλ)(w + ew2w̄)(w̄ + ēw̄2w)

ẇ = λw + eλw2w̄ + (E − eλ̄− 2eλ)w2w̄

ẇ = λw + (E − eλ̄− eλ)w2w̄

ẇ = λw + (E − e(λ+ λ̄))w2w̄

Recall λ = α(c) + iβ(c) and λ̄ = α(c) − iβ(c) and at the bifurcation point,
c = 0, α(c) = 0.

Therefore λ(0) + λ̄(0) = iβ(0)− iβ(0) = 0

⇒ e(λ+ λ̄) = 0 for all values of e

Therefore Ew2w̄ cannot be removed regardless of the value of e.

And so our equation;

ż = λz +
∂2F

∂z2

z2

2
+

∂2F

∂z∂z̄
zz̄ +

∂2F

∂z̄2

z̄2

2
+
∂3F

∂z3

z3

6
+

∂3F

∂z2∂z̄

z2z̄

2

+
∂3F

∂z∂z̄2

zz̄2

2
+
∂3F

∂z̄3

z̄3

6
+ ...

Can only be reduced to the form

ẇ = λw + δw2w̄

8.2.6 Polar coordinates

Recall w is a complex number w = u+ iv

We want to find bifurcation of the phase portrait in the u, v plane. It will
be convenient to use polar coordinates.
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Lets introduce ρ and φ. Let u = ρ cosφ and v = ρ sinφ.

w = u+ iv = (ρ cosφ+ iρ sinφ) = ρ(cosφ+ i sinφ) = ρeiφ

Recall λ and δ are complex too, let λ = α+ iβ and δ = l + id

ẇ = λw + δw2w̄ = (α+ iβ)w + (l + id)w2w̄

If w = ρeiφ;
ẇ = ρ̇eiφ + iφ̇ρeiφ

w2 = (ρeiφ)(ρeiφ) = ρ2e2iφ

w̄ = ρe−iφ

w2w̄ = (ρ2e2iφ)(ρe−iφ) = ρ3eiφ

Substituting into our equation for ẇ;

ρ̇eiφ + iφ̇ρeiφ = (α+ iβ)(ρeiφ) + (l + id)(ρ3eiφ)

Dividing through by eiφ;

ρ̇+ iφ̇ρ = (α+ iβ)ρ+ (l + id)ρ3

ρ̇+ iφ̇ρ = αρ+ iβρ+ lρ3 + idρ3

Now we equate the real and imaginary parts;

Real part;
ρ̇ = αρ+ lρ3

Imaginary part;
φ̇ = β + dρ2

In the second equation if β 6= 0 then |ρ|<< β and so we can neglect ρ2

compared to β. The system then becomes;{
ρ̇ = αρ+ lρ3

φ̇ = β

Recall α is a function of the parameter c, as the eigenvalues λ are dependent
on the parameter c. If ∂α

∂c 6= 0 we can introduce a new parameter µ. µ will

have sign - if ∂α
∂c < 0 and sign + if ∂α

∂c > 0. The system becomes;{
ρ̇ = ±µρ+ lρ3

φ̇ = β
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Next rescaling the amplitude, dividing the first equation by l and the second
by β we obtain; {

ṙ = ±γr ± r3

θ̇ = 1

where γ = µ
l and the sign of r3 comes from the sign of l.

The second equation shows that the angle θ goes around at a constant rate.
The first equation gives us the radius which is dependent on the parameter
γ.

8.2.7 Cartesian coordinates

To return to Cartesian coordinates from

ṙ = ±γr ± r3

Let x = r cos θ and y = r sin θ.

Differentiating gives;
ẋ = ṙ cos θ − r sin θ

ẏ = ṙ sin θ + r cos θ

First looking at ẋ. Substitute in the value for ṙ;

ẋ = (±γr ± r3) cos θ − r sin θ

ẋ = ±γr cos θ ± r3 cos θ − r sin θ

Recall x = r cos θ and y = r sin θ and substitute;

ẋ± γx± r3 cos θ − y

If x = r cos θ then x2 = r2 cos2 θ and y = r sin θ so y2 = r2 sin2 θ therefore
x2 + y2 = r2(cos2 θ + sin2 θ) = r2;

ẋ = ±γx± (x2 + y2)r cos θ − y

ẋ = ±γx± (x2 + y2)x− y
ẋ = −y + x[±γ ± (x2 + y2)]

Using the same substitutions in ẏ;

ẏ = (±γr ± r3) sin θ + r cos θ

ẏ = ±γr sin θ ± r3 sin θ + r cos θ

ẏ = ±γy ± (x2 + y2)y + x

Therefore our system in polar coordinates becomes;{ dx
dt = −y + x[±γ ± (x2 + y2)]
dy
dt = x+ y[±γ ± (x2 + y2)]
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8.3 Limit cycle

A limit cycle is an isolated closed trajectory. Isolated means that the neigh-
bouring trajectories are not closed therefore they spiral either towards or
away from the limit cycle.

Limit cycles occur in Hopf Bifurcation. The stability of the limit cycle is
determined by the stability of the equilibriums surrounding it. If the limit
cycle is stable the neighbouring trajectories approach the limit cycle and if
the limit cycle is unstable the neighbouring trajectories go away from the
limit cycle.

For the system
dx

dt
= f(x, y, c)

dy

dt
= g(x, y, c)

where c is a parameter.

Assume the system has non-hyperbolic equilibrium at x = 0,y = 0,c = 0.
And the eigenvalues of the Jacobian are λ1,2 = α(c) ± iβ(c) and that for c
close to c = 0 the eigenvalues have zero real part that is α(0) = 0.

Hopf Bifurcation takes place if;
∂α
∂c (0) 6= 0 as this gives ±γ
β(0) 6= 0 otherwise the eigenvalues would be equal to zero at the equilibrium
Re(c) 6= 0 as this gives ±r3

8.4 Normal form diagrams

Consider; 
ṙ = f(γ, r) = γr − r3 = r(γ − r2)

θ̇ = 1

f(γ, r) = 0 ⇐⇒ r(γ−r2) = 0⇒ r = 0 or r = ±√γ which only exists when
γ > 0.

∂f
∂r = γ − 3r2

When r = 0; ∂f
∂r = γ therefore the equilibrium at r = 0 is stable when

γ < 0 and unstable when γ > 0.
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When r = ±√γ; ∂f
∂r = γ − 3(

√
γ)2 = −2γ because these equilibrium points

only exist when γ > 0 they are always stable.

(a) γ < 0 (b) Bifurcation with stable limit cycle (c) γ > 0

Figure 8.2: Hopf Bifurcation in the system ṙ = γr − r3,θ̇ = 1

When γ < 0 there is one stable equilibrium at r = 0 and no limit cycle.
Bifurcation occurs at γ = 0. When γ > 0 there is an unstable equilibrium
at r = 0, stable equilibriums when r = ±√γ and a stable limit cycle.

(a) γ < 0 (b) Bifurcation with unstable limit cycle (c) γ > 0

Figure 8.3: Hopf Bifurcation ṙ = −γr + r3,θ̇ = 1
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(a) γ < 0 (b) Bifurcation with unstable limit cycle (c) γ > 0

Figure 8.4: Hopf Bifurcation ṙ = γr + r3,θ̇ = 1

(a) γ < 0 (b) Bifurcation with stable limit cycle (c) γ > 0

Figure 8.5: Hopf Bifurcation ṙ = −γr − r3,θ̇ = 1
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Chapter 9

Conclusion

There are three possible types of bifurcation in ordinary differential equa-
tions; fold, transcritical and pitchfork. For any bifurcation to occur the
equilibrium point must be non-hyperbolic, this condition is necessary but
not sufficient.

Fold bifurcation requires ∂f
∂c 6= 0 and ∂2f

∂x2 6= 0.

Transcritical bifurcation requires ∂f
∂c = 0 and ∂2f

∂x2 6= 0.

Pitchfork bifurcation requires ∂f
∂c = 0, ∂2f

∂c2
= 0, ∂2f

∂x∂c 6= 0, ∂3f
∂x∂c2

6= 0 and
∂3f
∂x3 6= 0.

In systems of ordinary differential equations Hopf bifurcation can occur if
there is a non-hyperbolic equilibrium and the system has complex conjugate
eigenvalues λ1,2 = α(c) ± iβ(c) and that for c close to its bifurcation value
the eigenvalues have zero real part.

Bifurcation theory is useful in many areas. For example it has biological
applications wherein it provides a framework to help to understand the be-
haviour of networks which have been modelled as dynamical systems. Bifur-
cation theory also has applications in semi-classical and quantum physics,
for example it has been useful in studying laser dynamics.

To continue studying bifurcation it might be interesting to consider bifurca-
tion in continuous systems. It might also be interesting to look at stability
in non-linear systems with diffusion for example the conditions for Turing
instability.
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