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Abstract

Computational mathematics plays a significant role in the analysis and

understanding of the outcomes of biological observations. Modelling cells and tissues

is a current topic in mathematical biology. In this work, various mathematical

tools including the vertex dynamics model that is implemented, for simulations, by

the open software, Chaste, were used to investigate cellular dynamics in epithelial

tissues. The results can be split into three parts:

1. Using the vertex dynamics model, mechanical properties of epithelial cells

were studied by exposing them to stretching and contraction. The outcomes

of numerical simulations, as well as of analytical studies, indicate that the

vertex dynamics model confirms the elastic properties of cells.

2. Using the vertex dynamics model as well as analytical tools, topological

features of epithelial tissue in the case of cell divisions, namely the distribution

of cells according to the number of their edges, were studied. It was found

that the histograms obtained via this model reproduced the experimental

observations fairly well. Moreover, an analytical model of growing tissue

which explained and reproduced topological features of epithelial tissues was

developed. Also, a cellular automata model was developed that also confirmed

the universal nature of epithelial tissue topology.

3. The vertex dynamics model was modified in a way that it reproduced

dynamical changes in the cell shapes observed in the epithelial tissues. The

model provided an explanation of patterns of cell migration and cell shape

changes observed in experiments. Using this modification to investigate

the impact of cellular dynamics, namely the rearrangement of cells and

particularly the T1-transition (i.e. switching process of connected edge

with their neighbours) processes, on tissue topology, it was found that the

histograms of cell-edge distribution (CED) are approximately identical to that

formed by proliferating cells.



A paper constructed from the results, short version, of chapter three and four, was

submitted to the Journal of Physical Review Letters and also published in arXiv:

1710.08527 (1).
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Chapter 1

Introduction

Mathematical modelling is one of the fundamental methods that is widely

used nowadays in studies of biological systems in order to understand the

accumulated experimental information (66; 67). It is applied to studies of

topological characteristics of cells, including changes in cell shape, cell division and

rearrangement of cells in tissues. This is often combined with the study of the

mechanical properties of cells underlying these cellular processes.

The understanding of mechanisms of cellular migration associated with the early

stages of the organism’s development is another important area of application of the

computational models (13). For example, modelling the behaviour of epithelial cells

in a Drosophila embryo is considered as a powerful tool in the investigation and

understanding of developmental processes in biological tissues.

Mathematics has recently been employed in studies of many serious diseases,

such as cancer, that result from the abnormal cell divisions. Through the

modelling, attempts are made to understand the initiation, growth and migration

of the resulting cells. Mathematical modelling is often accompanied by computer

simulations, which are the most widely used methods to find the outcome of the

model, thus helping, research into pathology can be further developed (52).

1.1 Biological background

Biology focuses on understanding life and organisms on the planet, whether in the

past, present, or future. This science studies the physical and chemical properties of

14



CHAPTER 1. INTRODUCTION

living organisms, alongside aspects of an organism’s development and the evolution

of living things, in microscopic, molecular and cellular, and macroscopic scales (92).

During the last two centuries and through experimental observations, scientists

have realised that the study and understanding of the cells’ complex structure and

their multi-function are of vital important. Cell studies provide an explanation

for underlying causes of diseases and enable researchers to interpret the differences

between the organisms biologically, and how these various organisms can generate

new generations faithfully or with some mutations (6). Mathematical models

are indispensable for dealing with complex phenomena of this kind, where the

mathematics not only supplies the quantitative methods to organize, examine and

understand the massive amount of data but also is used to construct models that help

to simulate the biological processes and reveal mechanisms that would be difficult

to establish experimentally. Therefore, these simulations present the optimum

solutions for investigating these mechanisms.

Building a useful and an objective biological mathematical model requires that

the model is based on the most significant biological relevant factors, where the more

reliable model is the one that predicts the manner in which the process will respond

to introduced conditions and predicts next future experiments to be performed (66;

67).

1.1.1 Cells

Cells are considered as the principal units of life. There are two types of cells: the

eukaryotic cell that contains a nucleus which stores most of the genetic material,

and the prokaryotic cell that lacks a nucleus, with the genetic material distributed

in the cytoplasm (6; 57).

In the multicellular organisms, the differentiated cells that have a distinctive

structure and have the same functions are often assembled into a tissue. Cells of

a certain tissue work together cooperatively to carry out a particular task. There

are four main kinds of tissue that form the organs of animals, namely epithelial,

muscular, nervous, and connective. epithelial cells are covering the outer surface of

the body and also lining the inside body cavity (4). Later in this chapter, epithelial

cells are described in further detail. Muscle cells carry out a highly specialized
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CHAPTER 1. INTRODUCTION

task—contraction. In vertebrates, there are three different types of muscle cells;

skeletal muscle for producing voluntary movements such as walking; cardiac muscle

and smooth muscle for producing involuntary movements such as heart pumping and

the intestine, respectively (4). Nerve cells, or neurons, execute highly specialized

service that is receiving and transmitting signals throughout the body. For example,

neurons of the eye and ear transmit signals to the brain and spinal cord (4). There

are various kinds of connective tissues such as adipose, tendons, bone, cartilage and

red blood. These tissues made up from different type of cells (adipocytes, fibroblast,

osteoblasts, chondrocytes, erythrocytes, respectively). Each of these connective

tissues has a different task, for example, bones help in movement and red blood

function in oxygen transport (16).

Cells have various complex components that are used for many different

functions. For example, the plasma membrane is central to enclose and maintain

the cell as a unit of life; it surrounds and protects the interior components of

the cell by segregating it partially from its environment. The membrane is a

dynamic fluid structure, which is semi-permeable, that regulates the transport of

ions and molecular materials that cross the membrane from one side to the other.

There are many other functions of the membrane, such as its role in connecting

the neighbouring cells to each other, in the transducing of the chemical signalling

and in the connecting of the cytoskeleton networks. Many components of the cell

are inside the plasma membrane, including the cytoplasm which composes all the

internal content of a cell except the nucleus; the nucleus that contains the DNA; the

mitochondria that generate the energy; the cytoskeletal components that control the

shape and the movement, and many other organelles and vesicles (6; 57). The next

subsection is centred on the role of the cytoskeleton in the mechanical properties of

eukaryotic cells, especially the epithelial cells.

1.1.2 Cytoskeleton and its role in cell movement

Cytoskeleton is a dynamic network of protein filaments that provides the

structural strength to cells. The cytoskeleton is comprised of three fundamental

types of filaments: actin filaments (microfilaments), intermediate filaments and

microtubules. Furthermore, the actin-binding proteins are essential components
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CHAPTER 1. INTRODUCTION

of the actin cytoskeleton. Molecular motor proteins such as myosin, kinesins, and

dynein families convert chemical energy to mechanical work to generate force and

movement. The cytoskeletal elements, in association with molecular motor proteins,

use the external energy sources and play a crucial role in many cellular processes such

as cell migration, adhesion, organelle and vesicle transport, ion gradient generation

and cell division (12; 15).

Figure 1.1: The three fundamental cytoskeletal elements in the epithelial cells. (A)
Actin filament. (B) Intermediate filament. (C) Microtubule. The figure is taken
from (90).

Actin filaments (Figure 1.1A): Actin is the (cytoskeleton) protein most

abundant in the majority of cells. It is in the form of globular monomer, G-Actin,

which can polymerize to a filamentous form, F-actin. Actin filament, which is a

dynamic structure, has two ends, bared (+) end and the pointed (-) end. These

filaments fall into two structures, two-dimensional bundles or three-dimensional

elastic networks with semisolid gel properties, where actin filaments are being

cross-linked via other associated proteins (15; 47). Actin-binding proteins play a

crucial role in a variety of actin activities such as assembly and disassembly of actin

filaments, formation of bundles and networks that are mediated by cross-linking and

their interaction with cell membrane and other cytoskeletal elements (5; 91).

Actin filaments polymerize from G-Actin monomers. An actin filament can be

considered as two parallel proto-filaments that twist around each other in order

to constitute a right-handed helix of approximately 8 nm in diameter, the main

mechanical element of the cytoskeleton (90). The connection of actin network with

the transmembrane adhesion proteins generates pathways for chemical signals from

the external cell environment that enable cells to react to both mechanical and

chemical signals (46).

Actomyosin, a product of an interaction between actin and myosin, has a central
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role in muscle contraction and many non-muscle movements such as cell division,

where myosin converts the chemical energy of adenosine-triphosphate (ATP) to

generate forces and movement. Although there are different types of myosins

and each of them has a different function in the cell such as myosin I that helps

to transport vesicles and organelles, all myosins use the actin filaments to create

movement (15).

Intermediate filaments (Figure 1.1B): Intermediate Filaments (IFs) in many

vertebrate cells and tissues represent a primary element of the cytoskeleton

system (19). They are approximately 10 nm in diameter, which is between the

diameter of actin filaments and that of the microtubule filaments. Despite the

diversity of the proteins that constitute the intermediate filaments, these fibrous

proteins share common structural features (5; 15; 77).

The different intermediate proteins, more than 65 (15), can be categorized into

five main classes based on their similarities in the biochemical characteristics of

amino acid, a small organic molecule representing the building blocks of proteins

and in the structure of the associated genes. The types I and II comprise two

classes of keratin filaments that are found exclusively in epithelial cells. The type

III intermediate filaments comprise vimentin, which is found in a number of cells

types, such as white blood cells, and desmin, which is especially found in muscle

cells. The type IV intermediate filament proteins are the neurofilaments, which are

expressed in nerve cells. The type V intermediate filaments are known as nuclear

lamins, which are fibrous proteins lining the nucleus of many eukaryotic cells. The

first four types of intermediate filaments are found in the cytoplasm, while the

latter is found in the nucleus. Fibrous filaments for each type are constituted by

assembling their constituent intermediate filament subunits. Each proto-filament of

the intermediate filament consists of an alpha-helical rod domain and two terminals,

the head and tail domains. The assembling of proto-filaments constitutes the

intermediate filaments (5; 15; 77).

Intermediate filament proteins have a high tensile strength. They are more stable

and durable than the other two elements of the cytoskeleton and they play the

central role in not only providing the mechanical strength, thereby regulating the

structures of the cells and tissues, but also in providing a scaffold for the positioning
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of the cellular processes. The mechanical strength of cells enables them to resist

the mechanical stress when they undergo stretching. The distributing effect of the

topically applied forces is one of the most important functions of the intermediate

filaments. This distribution helps the epithelial cells to maintain themselves and

prevents their membranes from tearing as a result of the mechanical shear (5).

Microtubule filaments (Figure 1.1C): Microtubules are dynamic structures

that are built from subunits called tubulin, which are dimers consisting of two

globular proteins: α-tubulin and β-tubulin. These dimers polymerize to constitute

microtubules. They have hollow cylindrical structures, 25 nm in diameter, and are

composed of 13 parallel proto-filaments. Microtubules in all eukaryotic cells not

only have an important role in determining cell shape and in regulating many cell

movements associated with actin filaments, but also play a critical role in organizing

and in separating chromosomes from the daughter cells during mitosis. Entering

the process of mitosis allows the cytoplasmic microtubules to enter the process of

disassembling and then reassembling in order to constitute a complex structure

termed mitotic spindle (5; 15).

The two important molecular motors, kinesin and dynein, use the microtubules

to move along in opposite directions. The microtubule has two ends (+) and (-):

kinesin moves toward (+) end and dynein moves towards (-) end for transporting

many intracellular components such as vesicles and organelles, where kinesin and

dynein convert chemical energy into mechanical work using Guanosine-triphosphate

(GTP) hydrolysis. Moreover, beating cilia and flagella are stable structures that

microtubules can also form in eukaryotic cells to enable cells to swim or remove

fluid from their surfaces (5; 15).

The microtubules (green) and the nucleus (blue), are shown clearly in the

Figure 1.2, on image taken from research undertaken by the author in the Institute

of Molecular and Cellular Anatomy (MOCA), University of Aachen as a part of the

work within the workshop ” Multimodal monitoring of cell migration (CGPW05)”

that was held from 27th to 31st of July 2015.

Gomez and his co-workers (28) observed that in the epithelial cells the

microtubule organization that lies underneath the apical surface and that occurs

at the same time as epidermal cell elongation during the development of Drosophila
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embryos is responding to perturbations in the cell shape. This observation can be

shown in varied epithelia (28).

Figure 1.2: An image of a cell where microtubules (green) and nucleus (blue) are
clearly visible. The picture was produced by the author during his trip to the
summer school in RWTH Aachen University.

The epithelial monolayer sheets were the focus of this study.

In conclusion, we note that the cytoskeletal elements especially the actomyosin play

a central role in determining the mechanical properties of epithelial cells.

1.1.3 Mechanics of the cytoskeleton

Knowing the mechanical properties of the cytoskeletal filaments and the location of

these filaments inside the cytoplasm as well as the geometry of their crosslinking

proteins gives a solid base to understand and predict the mechanical properties of

cells (42).

The persistence length, Lp, is the parameter that describes the resistance of the

filament to the thermal forces, which is defined as follows:

Lp =
EI

kT
(1.1)

where k is the Boltzmann constant (k = 1.3806 × 10−21J/K) and T represents

the absolute temperature. kT = 4.116 × 10−21 Nm at the standard temperature
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25◦C (298.15 K. EI is the flexural rigidity (resistance generated by a structure

undergoing bending), E refers to Young’s modulus and I refers to the second moment

of inertia (42).

Gittes and his co-workers (26) attempted to measure the persistence length of

actin and microtubules filaments using the observations of thermal fluctuations in

their shape. The flexural rigidities were estimated to be 7.3 × 10−26 Nm2 and

2.1 × 10−23 Nm2 of phalloidin-stabilized actin filaments, with Young’s module 2.6

GPa, and taxol-stabilized microtubule filaments, with Young’s module 1.2 GPa,

respectively. Subsequently, according to the Equation (1.1), the persistence length

of the actin filaments is ∼ 17.7 µm and of the microtubule filaments is ∼ 5 mm.

Other observations, using different techniques, found that the persistence length of

actin filaments is ∼ 15 µm and of the microtubule filaments is ∼ 6 mm (42).

Regarding the pure and hydrate intermediate filaments, the flexural rigidity is

very low. The electron micrographs show the persistence length is ∼ 1 µm for

neurofilaments and ∼ 3 µm for vimentin (42).

The relaxation time can be used to give information about the time that the

shape of a filament takes to change. The relaxation time can be expressed as follows:

τn ∼=
ϑ

EI

[
L

π(n+ 1/2)

]4

, n = 1, 2, 3, ... (1.2)

where ϑ is the coefficient of the perpendicular drag per unit length of a filament

(cylinder) near a surface, Here n and L are mode number and the length of the

filament, respectively. ϑ can be given as

ϑ =
4πή

ln(2h/r)

where ή represents the viscosity, ή = 0.89 × 10−3 kgm−1s−1 at 25◦C. Here h and

r are the height above the surface and the hydrodynamics radius of the filament,

respectively. For actin filaments with r ∼ 4.5 nm and L = 22.7 µm, the relaxation

time for the first mode is τ1 = 15 s and for the second mode is τ2 = 2.0s. In the

case of microtubule filaments with r ∼ 15 nm and L = 63.2 µm, τ1 = 3.9 s (26).

These physical parameters are not connected directly to the models in this thesis

since this thesis dealt with the mechanical properties of the cells rather than the
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mechanical properties of the cytoskeletal elements. However, cytoskeletal elements

play a fundamental role in the mechanical properties of the cells, therefore it is

interest to understand their behaviour.

1.1.4 Epithelial tissue

In the epithelial tissue, the cells are aligned to constitute a sheet-like structure

which is, in turn, arranged either in a monolayer, as in the lining of the gut and the

developing embryo, or in a multilayer, as in the outermost layer of the skin, which is

termed epidermis (32). The simple epithelium is that tissue with a monolayer sheet,

while the stratified epithelium is the tissue with a multilayer sheet. Additionally,

the epithelial sheets carry out a different number of functions in the multicellular

organisms. In the skin, the epidermis sheets work as protector; in the gut, the

monolayer sheet absorbs the nutrients while other sheets secrete many important

products such as hormones, tears and milk. Some others respond to the light signals,

as in the eye retina or to the sound signals as in the ear hair cells. Epithelia also

play a significant role not only in the protection of the organisms from diseases

by preventing the microorganisms from entering the body but also in maintaining

the fluid inside the body. However, despite the different functions of the epithelial

tissues, they clearly share many common structural features (5; 6).

An epithelial cell has three surfaces, namely apical, lateral, and basal, which

refer to the upper, sides and lower domain of the cell, respectively. While the basal

and lateral surfaces are together referred to as the basolateral surface, the apical

and basal are jointly known as the apicobasal surface. Finally, the apical and lateral

surfaces are collectively termed the apicolateral surface (80).

For creating an epithelial sheet, the cells link to one another through cell

junctions (23) where the tight junctions, anchoring junctions and gap junctions

are the three principal classes of the cell junctions that have been clearly observed

in the epithelial tissues (Figure1.3). The function of these junctions is to link

tightly epithelial cells to each other for constituting epithelial sheets. The tight

and the anchoring junctions provide the strength and rigidity to these sheets.

Moreover, these junctions play a central role in the communication between these

cells (57). In addition, the tight junctions serve as selective gateways that constitute
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barriers to separate the apical and basolateral surfaces for regulating the paracellular

diffusion of ions, solutes, and other materials, and for preventing the exchange of

the membrane elements between these two domains. The tight junctions also play

a significant role in the process of signal transduction that guides the behaviour of

the cells (reviewed in detail in (65; 85; 93)).

Anchoring junctions in the epithelial tissues fall into three main subcategories:

adherens junctions, desmosomes and hemidesmosomes (Figure 1.3). For the

adherens junctions and also desmosomes, the cadherins calcium-dependent cell-cell

adhesion molecules, link two adjacent cells together; while for hemidesmosomes,

the integrins, which are a large family of αβ heterodimeric transmembrane

receptors (43), bind the basal surface of the cells to the basal lamina underneath the

cells. The tight and the adherens junctions attach to the actin filaments, while both

the desmosomes and the hemidesmosomes interconnect to the keratin intermediate

filaments as illustrated in the Figure 1.3 (33; 57).

The gap junctions are constituted of connexins forming transmembrane channels.

These channels, that connect the cytoplasm of two neighbouring cells, permit small

molecules to be transmitted between two connected cells (7; 14; 29; 82).

Furthermore, cell to cell adhesion is necessary to build coherent epithelial sheets

which differ in apical and basolateral polarity (70).

Cell polarity refers to asymmetry in one or more of the characteristics of the

cell, as in the epithelial cell, such as in the shape, structure, functions, and in the

distributions of proteins. The tripartite junctions: tight junction, adherens junction

and the desmosome located in the apical surface, constitute the section known as

the apical-junction complex (33).

In the plane, the cells in the epithelial sheets roughly take a polygonal cross

section with a different number of sides, as shown in Figure 1.4. Cell shape refers

to the cell’s number of neighbours (CNN).

1.1.5 Cell division

Cell division plays a central role in the development of multicellular organisms.

There are two kinds of reproduction of cells: sexual reproduction and asexual

reproduction. The cells, tissues and organs in any multicellular organism come
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Figure 1.3: Different classes of polarized epithelial cell junctions and their
interactions with the elements of two connected cells. The tight and adherens
junctions in addition to the desmosomes, that are at the apical part of lateral cell
membranes, comprise the apical junction complex. The remainder desmosomes,
in addition to gap junction, are found at lateral cell membranes under the apical
junction complex. Hemidesmosomes are situated in the basal cell membranes and
are linked with the basal lamina. The tight and adherens junctions connect to the
actin filaments, while both the desmosomes and the hemidesmosomes connect to
the intermediate filaments. The figure is taken from (33).

Figure 1.4: View of the apical side of epithelial tissue in vitro (image taken from
the chick embryo gastrula): white lines represent borders between cells (courtesy
of Professor Kees Weijer, FRSE University of Dundee). Cell borders labelled by
a fluorescent marker. For identification purposes, walls of one of the cells are
additionally coloured in red, this shows the polygonal shape of the cell.
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from one cell obtained in the process of sexual reproduction (5).

A fertilized egg is the first step in the process of the evolution of an organism. It

is followed by the second step in which a significant number of cells are produced by

cell division, leading to the development of tissues, the differentiation of cells, and

finally the organ formation. This thesis focuses on cell division when two genetically

identical daughter cells are produced from a typical tissue cell (57).

Figure 1.5: Illustration of the phases that the eukaryotic cell undergoing during its
cell cycle. The figure is taken from (16).

The cell cycle is the process in which a cell passes through a successive series

of events resulting in the duplication of its components and then divides into two.

The underlying mechanisms that guide the cell cycle are similar for all eukaryotic

cells (6). The eukaryotic cell cycle is comprised of four consecutive phases: gap

G1, synthesis S, gap G2 and M. In G1 and G2, the cell grows; DNA is replicated in

phase S. Phase M consists of two steps which are the mitosis that guides the division

of the nucleus and the cytokinesis that completes the division of the cell into two,

as depicted in the Figure 1.5, (6; 34). Moreover, the shape of the cells bears an

important role in determining the orientation of the divisional plane.

The experimental observations of the cell-edge distribution have been performed

on Drosophila melanogaster. The Drosophila melanogaster, a fruit fly, is used
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as model organism for many studies, including genetic analysis, since the early

part of the 20th century as the sample can be easily conserved, and also needs a

relatively short time, roughly two weeks, to reproduce, thus rendering it a convenient

experimental model (16).

1.2 Mathematical studies of cellular dynamics

Experimental observations are important in determining the components of cells,

understanding the functions of these components and examining the relationship

between components and their external environment, and also among themselves.

However, the massive amount of experimental data on one hand and the complexity

of many cellular activities on the other make the use of mathematical models

unavoidable. Mathematics provides efficient tools to analyse and comprehend the

data, saving the time of experimentalists. There are three main models that

have been used to describe the dynamics of tissue development, namely the vertex

dynamics model, the Potts model, and a set of so-called cell-centre models (21).

For studies of tissue topology represented by cell-edge distribution, some models,

such as the model that has presented by Gibson et al. (25) and the models that have

presented by Sandersius et al. (79), hereafter referred to as GPNP model and SCWN

models respectively, have been introduced. Later in the chapter, these two models

are described in detail.

Mathematical models not only are beneficial to validate the experimental

observations but can also be used to simulate processes that cannot be easily

implemented in vitro. For example, representing the epithelial cells as polygons

enables the researchers to study many features of epithelial tissues, such as

the impact of cell movements and cell divisions in a tissue, and to understand

the topology and underlying mechanisms that regulate the dynamics of these

tissues (22).

In this study, the vertex model is used to examine whether the

stretching/shrinking of cells under certain values of parameters of applying forces

is exponential. This model is also used to determine the number of cell-edge

distribution associated with cell divisions and cellular mixing.
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1.2.1 The Potts models

The cellular Potts model is a computational 2D lattice-based model, which was

first used by Graner and Glazier to study the development of biological epithelial

tissue (31; 27). This model is also called the Glazier-Graner (GGM) model. In

this model, the tissue consists of a collection of lattice cells (Figure 1.6). Each

cell (associated with the cell index) is considered as a set of grid points on a

regular lattice. Movement of a cell indicates that the cell loses or acquires some

lattice points. This implies that the grid points may belong to different cells with

time. To model the evolution of the tissue, a variation principle approach is applied

to minimize the energy of the system neighbour point is randomly chosen to be

associated with a considered grid point, followed by determining the change of

system energy in the case of the states of the point and its neighbour changing

with each other. The change between the state of the grid point and its neighbour

is allowed if the change of energy is decreases. On the other hand, the probability

of the change is calculated in the case of the change increasing. For the probability,

p, Boltzmann factor: p = e−∆E/T is used, where T is a parameter representing the

temperature of the system. Furthermore, the energy can be determined using the

adhesive forces between cells and the pressure force which is associated with the

incompressibility of cells:

E = Eadhesive + Epressure (1.3)

1. The cell-to-cell contacts have adhesive energy Jk,l (Jk,l = Jl,k), where Jk,l

represents an interface between adjacent grid points, provided that these points

belong to different cells (k and l are the types of these cells).

2. In order to control the volume of a cell (say cell k), Vk(t), a target volume Tk

is used. The volume of a cell refers to the number of its grid points. This k

cell is given a volume effective energy

Evol,k = α(Ak(t)− Tk)2

where α is a positive constant (63).
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Figure 1.6: Schematic illustration of the Potts model. Squares with the same colour
represent one cell

1.2.2 The cell-centre model

The cell-centre model is an off-lattice model which is based on the Voronoi diagram

formed from the centre of the cells. This approach originally was developed by

Meineke and his co-workers (62) and fully described by van Leeuwen et al. (86).

In 2010, the cell-centre model was extended by Osborne et al. (74). In this model,

each cell is considered as a discrete object and neighbouring cell centres are linked

by linear springs. A Delaunay triangulation and A Voronoi tessellation are used

to determine the adjacent cells and the cell shapes, respectively, as depicted in

Figure 1.7. The equation of motion, neglecting inertial effects, is given as

ηi
dri
dt

=
∑
j∈Si

kij(|ri − rj| − Sij(t))
rj − ri
|rj − ri|

, i = 1, ..., N. (1.4)

Where ri is the position of the centroid of cell i, ηi denotes its associated drag

coefficient, N is the total number of cells, kij and sij(t) are the strength and natural

length, respectively, of the spring connecting centres of i−th and j−th cells. Si is

the collection of all neighbouring cells to cell i and t is time (74).

1.2.3 The vertex dynamics model

Dynamic behaviour of epithelial tissue plays an essential role in a large number of

developmental processes, such as growth, disease development and wound closure.

Moreover, computational dynamical models are important in studies of cell-cell
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Figure 1.7: Schematic representation of the cell-centre model. The cells are specified
from a Voronoi tessellation of the centre of cells. The figure is taken from (74).

interactions (22).

As mentioned previously in this chapter, there are three main approaches that

can be used to simulate the development of the epithelial tissue. This study is

focused on the use of the vertex dynamics model to study dynamical processes in

epithelial tissues as governed by cellular forces which are represented as forces acting

upon cellular vertices (20; 44; 68).

In the vertex dynamics model, each cell can be approximated geometrically

by a polygon in two-dimensions and a polyhedron in three-dimensions, which

is approximately compatible with the experimental observations of the epithelial

tissues. In this model, the rules are established to determine how each vertex

moves, how the cell divides, and how the cell follows rearrangement (22). Originally,

the vertex model was used to investigate the topology of inorganic systems such

as grain boundaries (49), soap froth (60) and foams (73) because in all of these

structures pressure and surface tension generate dynamics. The vertex model has

also been presented to describe whether the different cell division patterns in the

pitcher leaves of Sarracenia purpurea are adequate to illustrate bifacial growth in

the hollow region and protruding growth in the ridge (24). The first appearance

of the vertex dynamics model for studying the epithelial monolayer deformations

was in 1980 in a publication by Honda and Eguchi (37). In 2004, Brodland (10)

presented a thorough review of the vertex dynamics model for biological systems

and its comparison to the two other models.

Furthermore, in the three-dimensional vertex model, each cell can be
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approximated geometrically by a polyhedral, which has been used to study the

dynamic behaviour of developing tissues by many researchers (18; 41; 81). The

process of cell intercalation which leads to a formation of an elongated tissue in

a cell-monolayer has also been investigated by using the three-dimensional vertex

model (39). The vertex dynamics model has also been used to study the processes

of wound closure in epithelial tissue (40; 68; 69).

In 2015 Honda and Nagai (38) reviewed the history of both cell models, the

cell-centre model and the vertex dynamics model, and explained their applications

in detail. They also highlighted that these models are indispensable to the

understanding of the technique whereby genes direct biological shapes.

The open source Chaste framework uses a test-driven approach which is a C++

code. It has been widely used in recent studies to simulate the vertex dynamics

model owing to its versatility and generality (21; 64; 76).

The vertex dynamics model and cell-centre model are usually deterministic

and off-lattice models, while Potts models are lattice-based models and stochastic.

The factors which make the vertex model more convenient to study the epithelial

monolayer deformations than the other models is (1) the way in which the cells are

represented (polygons) which is in agreement with the experimental observations;

(2) its ability to incorporate cell rearrangement within an epithelial monolayer in an

explicit way; (3) the results that can be obtained via the vertex model simulations

can be interpreted biologically more easily than from the simulations obtained by

using the other models (22).

1.2.4 The GPNP model

Divisions and rearrangements of cells control the development of tissues. The

epithelial cells show diverse polygonal shapes and that feature requires a quantitative

method of description. The distribution of the cell edges have been studied

mathematically and experimentally for a long time. The first attempt to understand

the pattern of the number of cell-edges dates back to the early twentieth century

when Lewis studied the geometrical characteristic of the epidermis of cucumber,

theoretically and in vitro, and his studies become a basis for later research (54; 55;
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56).

Recently, Gibson and his co-workers (25) have introduced a mathematical model,

referred to as GPNP model, to understand the cell-edge distribution and to present

the universal pattern for this distribution through studying many different species

and building histograms for the corresponding distributions of the number of cell

edges. Building the histogram for the CNN (cell’s numbers of neighbours) is the

most effective way to characterize the tissue topology.

The GPNP model is a well known useful model, largely because of its simple

assumptions: all cells divide in a synchronous way; the mother cell’s nodes are

distributed randomly using the binomial distribution between two daughter cells

and the absence of cells with less than four edges, which is in agreement with the

biological observations, as a small number of cells with this number of edges have

been observed experimentally. Also, its behaviour shows a good agreement with

the biological data. However, there are some shortcomings in this model which are

related to the fact that some model assumptions are not realistic. It is assumed in

the GPNP model that all cells divide synchronously but this is not consistent with

biological observations (79). Also, although the results of this model are in a good

agreement with the biological data, the entire absence of cells that have four edges

was observed in the outcomes of the model, which is in contrast to observation of

3%− 4% of these four-edged cells in vitro (79). Finally, the manner of distributing

nodes between daughter cells is not unique; there are multiple algorithms that can

be applied (79), as will be seen later in this chapter.

To describe the GPNP model (25; 79), the starting point is the building of two

transition matrices, one of which describes the replacement of the mother cell by

daughter cells and the other, the effect of cell division on neighbouring cells. Let N

represent the number of cells, and T and S are the two transitions matrices. The

entries of the matrix T , Tij, refer to the probability of getting a j-sided daughter

cell as a result of dividing an i-sided cell. For this, the division of an i-sided mother

gives two of its vertices to each of its newly created daughter cells, leaving i − 4

edges to be separated randomly, with equal probability, between the two daughter

cells according to the binomial distribution.

Additionally, two new nodes are added to each daughter as a result of
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constructing a new cell. Hence

Tij =

(
i− 4

j − 4

)
1

2i−4
, 4 ≤ j ≤ i (1.5)

The entry of S, Sij, refer to the probability of obtaining a j-sided cell as a result of an

i-sided cell acquiring an extra edge. This transition matrix accounts for the impact

of the divided cell on its neighbouring cells. Now, since synchronous division, which

is one of the assumptions of this model, forces all cells to divide at each generation,

and since there are N of the cells, each of them will acquire an additional edge in

the new generation. Thus, the new generation possesses 2N cells with 2N extra

edges. Hence on average, each cell will acquire one edge and according to

Sij =

1 if j = i+ 1

0 otherwise.

(1.6)

By taking U = TS, we have

Uij =

(
i− 4

j − 5

)
1

2i−4
, 5 ≤ j ≤ i+ 1, i ≥ 4. (1.7)

The other values of U are zero. Therefore the distribution of fractions P =

(P4, P5, P6, P7, P8, P9)T of different sided-cells, where Pi = Ni
N
, i = 4, ..., 9 at the

generation r can be described as

P r+1 = UTP r = (UT )r+1P (0),

where UT is the transpose of U and P (0) is an arbitrary column-vector initial

condition (for example, P (0) = (0, 0, 1, 0, 0, 0)T , that means the process starts with

a 6-sided cell). Since the cells of less than four and more than nine edges are

rare in biological data, they are often not taken into account. The histogram of

normalization of the results that has been obtained from repeating the processes for

many of generations (say 10000) can be given, this was done using Matlab (17a)

code which is provided in Appendix A.1, in comparison with the experimental

observations as shown in Figure 1.8. The GPNP model exhibits a very good

agreement with the experimental data. However, there is one exception related
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Figure 1.8: Distribution of cells according to the number of edges in experiments
(melrose bars) and in GPNP model (FireBrick bars). The figure is produced by the
author using data from (25).

to the absence of 4-sided cells, in contrast to the presence of approximately 4%

of this kind of cells in the empirical observations. The following models, SCWN

models, represents an attempt to improve the GPNP model.

1.2.5 The SCWN models

To tackle the absence of the 4-sided cells as well as the algorithm of the random

distributing of edges between the two daughter cells, the three different SCWN

models have been constructed by Sandersius and his co-workers (79) via changes in

some assumptions of the GPNP model.

Firstly, the SCWN model that allows three-sided cells is considered. Although

the 4-sided cells are allowed in the GPNP model, the way in which the distribution

of cell edges is calculated compels the absence of this type of cells. This happens

because the 3-sided cells are not accepted by a calculating algorithm in the GPNP

model, and also because the GPNP model is synchronous, which means that all

cells will gain an extra edge in the next generation. For that, in the first model, the

GPNP is reformulated to allow the 3-sided cells, which, in turn, enable the 4-sided

cells to be constructed, whereas in the transition stage, the 3-sided cells gain an

extra edge and form 4-sided cells. Thus the two transition matrices T and U are

33



CHAPTER 1. INTRODUCTION

reconstructed to undergo this new assumption and are given as

Tij =

(
i− 2

j − 3

)
1

2i−2
, 3 ≤ j ≤ i+ 1, (1.8)

Uij =

(
i− 2

j − 4

)
1

2i−2
, 4 ≤ j ≤ i+ 2, i ≥ 3. (1.9)

In contrast to the GPNP model, this model gives one of the mother cell’s edges

to each of the daughter cells which each gain another edge as a result of creating

the new interface. Also, the other mother edges are distributed with the same

probability between the two daughter cells. Consequently, although the 4-sided

cells are seen clearly in the histograms for this model’s outcomes, the results are

not compatible with the experimental observations, for the frequency of 4-sided

cells is now approximately 8% in contrast to 4% in the experimental data shown in

Figure (1.9).

4 5 6 7 8 9
n (number of edges)

0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y 
of

 c
el

ls

First SCWN model
Second SCWN model
Third SCWN model
Experimental data (Gibson)

Figure 1.9: Comparison of histograms obtained using the three modifications of
SCWN model with experimental data. The first SCWN model (olive histogram), the
second SCWN model (green histogram), the third SCWN model (violet histogram)
and the experimental data of the Drosophila disc epithelium (melrose histograms).
The figure is produced by the author using data from (25) and (79) to build a Matlab
(17a) codes. The Matlab codes are presented in Appendices A.1 and A.2.

Furthermore, the conditional probabilities in distributing the edges of a mother

cell between its two daughter cells in GPNP undergo a subtle bias because the

distribution is not unique. To avoid this bias state, the second and the third models
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operate on the hypothesis of splitting the nodes randomly, either in uniform or in

binomial fashion, between the two daughter cells, then rejecting 4-sided cells in the

second SCWN model and rejecting 3-sided cells in the third SCWN model. Hence,

the transitions matrices T and U in the second and third SCWN models can be

reformulated from the GPNP as

Tij =

(
i

j − 2

)
1

2i − 2− 2i
, 4 ≤ j ≤ i, (1.10)

Uij =

(
i

j − 3

)
1

2i − 2− 2i
, 5 ≤ j ≤ i+ 1, i ≥ 4, (1.11)

for the second SCWN model and

Tij =

(
i

j − 2

)
1

2i − 2
, 3 ≤ j ≤ i+ 1 (1.12)

Uij =

(
i

j − 3

)
1

2i − 2
, 4 ≤ j ≤ i+ 2, i ≥ 3 (1.13)

for the third SCWN model. Similarly, as in the GPNP approach, the distribution

of fractions P = (P4, P5, P6, P7, P8, P9)T of different sided-cells; Pi = Ni
N
, i = 4, ..., 9;

at the generation r can be expressed as

P r+1 = UTP r = (UT )r+1P (0),

where UT refers to the transpose of U and P (0) refers to an arbitrarily chosen

column-vector initial condition (for example, P (0) = (0, 0, 1, 0, 0, 0)T ) . As evident

from Figure 1.9, the histograms obtained using the second and the third SCWN

models also failed to be compatible with the biological data.

1.3 Some important previous models and rules

Some of the considerable contributions that have been converted into laws and

models and have impacted on studies and the understanding of cell distribution

regarding the number of edges are presented briefly in this section.
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1.3.1 Lewis’ experiments

Cell division has a crucial impact on the dynamics of tissues. While experimental

studies of cell division have advanced tremendously during last two centuries, the

computational investigation of this phenomena has received attention only recently.

The earliest theoretical investigations on cell division topology were undertaken

by Lewis (54; 55; 56). He examined the topological effects of cellular division,

focusing on the hexagonal cell shape and area. The investigation began with dividing

regular hexagonal cells with edges of unit length and studying the expected cell

shapes and areas as well as their effects on the other tissue cells, mathematically

and experimentally. In (55), the relationship between the cell division and both the

shapes and areas of the cucumber’s epidermal epithelial tissue cells were presented by

Lewis. He described cells of various polygonal shapes and also analysed frequencies

of cells with a different number of edges forming during the process of division, as

described in Table (1.1). The data on the cell-edge distribution that are presented

i Mi Li mi = Mi

1000
li = Li

1000
Ri = li

mi
σi = Ri∑9

i=4Ri

4 20 0 0.02 0 0 0
5 251 16 0.251 0.016 0.0637 0.0018
6 474 255 0.474 0.255 0.538 0.0149
7 224 478 0.224 0.478 2.1339 0.0589
8 30 224 0.03 0.224 7.4667 0.2062
9 1 26 0.001 0.026 26 0.7182
10 0 1
Total 1000 1000

Table 1.1: Data on the frequencies of cells representing polygons with different
number of edges and their involvement in cellular division. Mi represents the number
of cells with i-sides and Li represents number of dividing cells with i-sides. The first
two columns of the table is taken from (55).

in the fourth column of Table (1.1) is presented as a histogram in Figure 1.8. The

seventh column of the table shows the relationship between the number of the edges

in a cell and the ability of this cell to divide. It is suggested that the more edges a cell

has, the more opportunity it has to divide. This relationship can be approximated

by an exponential function, as will be demonstrated later in Chapter 3.
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1.3.2 Aboav-Weaire’s Law

In 1970 Aboav investigated the way in which grains of the polycrystalline magnesium

oxide are arranged (2). In his study, he used a specimen of 3000 grains with diameter

average 12µm, He found that the relation between the number of sides, i, of a grain

and the average value, mi, of the sides of adjacent grains is approximately

mi = 5 +
8

i
. (1.14)

Later, in 1974, Weaire (88) introduced the parameter µ2 which can be expressed as

µj =
∑
i

(i− 6)jpi ⇒ µ2 =
∑
i

(i− 6)2pi, (1.15)

where pi represents the fraction of grains of i sides, µ2 = 0 if all the grains are

hexagonal and µ2 > 0 otherwise. Moreover, he also found that

∑
i

miipi = µ2 + 36. (1.16)

Since the Equation (1.14) is for specific case, mi is generally expressed in (3) as

mi =

(
6− a+

bµ2

6

)
+

6a+ (1− b)µ2

i
. (1.17)

where a and b are constants. The Equation (1.17) reduced, taking a = 1 and b = 0,

by Weaire using (1.15) to present the following equation

mi = 5 +
6 + µ2

i
. (1.18)

However, by taking a = 1.2 and b = 0, suggested by the empirical studies, the

Equation (1.17) is given as

mi = (4.8) +
7.2 + µ2

i
, (1.19)

where mi represents the average number of edges surrounding a i-sided cell.

Subsequently, more attention was paid to the law of Aboav-Weaire to formulate

equivalent laws and to find accurate values of the parameters. These laws have been
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used widely in the physical and biological applications (87; 94).

The Equation 1.19 was confirmed in simulation of the epithelial tissue using

vertex dynamics model as shown in Chapter 3.

1.3.3 Kolmogorov’s Concept

Kolmogorov (50) modelled the dynamics of distribution of particles according to

their sizes in the course of particle fragmentation (industrial stone crushing involved

in iron mining). For this, he denoted the whole number of particles and its

expectations by N(t) and N̄(t), respectively, and the number of particles of size

ν ≤ r (r is a specific size of particles.) and its expectation by N(r, t) and N̄(r, t),

respectively (30). He also termed G(ξ) to refer to the mathematical expectation of

the number of breaking particles of size ν ≤ ξr, ξ ∈ [0, 1], that were constructed in

the time interval [t, t+ 1] from a mother particle of size r. This approach, based on

fundamental assumptions that is the probability of fragmentation of each particle

is independent of its size, and of the size of the fragmentation of any other mother

particle, and of the initial time t = 0 (i.e. it is independent of any prior conditions

to fragmentation of that particle). According to these assumptions, Kolmogorov

found that

N̄(r, t+ 1) =

∫ 1

0

N̄

(
r

ξ
, t

)
dG(ξ), (1.20)

and by taking x = ln r, the cumulative distribution T (x) can be described as

T (x, t) =
N̄(ex, t)

N̄(t)
=
N(ex, t)

N(t)
. (1.21)

Now, let χ = lnξ and G(ξ) = G(1)S(χ) where S(χ) is mathematical expectation

for particle of size ξ or less to be broken, therefore the Equation (1.20) can be

reformulated as

T (x, t+ 1) =

∫ 0

−∞
T (x− χ, t)dS(χ), (1.22)

Using Lyapunov’s Theorem, Kolmogorov concluded that T (x, t) in course of time

tends to a Normal distribution and therefore N(r, t) - to a log-normal distribution

(30). i.e.

T (x, t)→ 1√
2πtB

∫ x

−∞
e−

(χ−At)2

2B2t dχ, (1.23)
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where

A =

∫ 0

−∞
xdS(x), B2 =

∫ 0

−∞
(x− A)2dS(x).

The cell-edge distribution of cell division is fitted as a Log-normal distribution as

can be seen in chapter three.

1.4 The vertex dynamics model with Chaste

As mentioned previously in this chapter, the vertex dynamics model has been used

efficiently to study numerous essential cellular processes, such as the development of

tissues, cell divisions, cell rearrangements, wound healing, and cancer invasions (74).

An evolution of the epithelial cell in this model is considered as a result of the motion

of its vertices that are subjected to mechanical forces. The velocity of a vertex i can

be presented as

ηi
dri
dt

= F i, (1.24)

where ri represents the position of the vertex i, F i represents the sum of all forces

acting upon the vertex at time t (35), ηi represents its mobility coefficient. F i are

usually considered to be potential and defined by potential functions (see (20; 37)).

In (37) the researchers attemted to reproduce the honeycomb arrays, which

represent the apical side of an epithelial sheet, using computational simulations

through the vertex dynamics model. To build a successful model for studying the

development of cells, using either the vertex dynamics model or any other model

that necessitates the elements associated with the cells, necessarily precludes the

intersection, and to fulfil this condition, the topological rearrangements need to be

taken into account.

The first and the most distinguished cell rearrangement is the T1-transition,

Figure 1.10, which switches the neighbouring cell relationships (89). Each T1

swap, edge rearrangement, results from removing an edge and, in turn, the two

non-adjacent cells that contain the end vertices of the removed edge, form a new

shared edge. The T1 swap can happen when the length of the removed edge becomes

less than a specific threshold distance value. If the removed edge is on the periphery

of the tissue and belongs to one cell, then the vertices on its two ends merge.

Additionally, the element with four edges, associated with a cell in a simulation, can
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Figure 1.10: Junction rearrangement during T1-transition: the edge between the
cells B and C disappears while the new edge between the cells A and D forms.

be converted to a 3-sided element through the T1-transition processes. Moreover,

the triangular element, that has three edges, remains in the mesh if its area is

bigger than or equal to a threshold area value; otherwise when the target area is

small it will be removed from the mesh and its associated cell will be removed

from the simulation via a T2-transition. Therefore, T2-transition is the processes

of removing the triangular elements and the voids that occur in the mesh. The

third topological rearrangement is the T3-transition, or element intersections, that

represents the process of merging a vertex of an element in the mesh with an edge

belonging to another element. This process has multiple roles in the development

of cells, such as wound healing (21; 22; 68). However, this is outside the scope of

this thesis.

There are some features that distinguish cells from other materials, such as foams,

that have been studied through the vertex dynamics model. Cells can grow, divide

and be destroyed. These features have a significant role in the morphogenesis of

multicellular organisms, where a cell that is subjected to mitosis divides into two

daughter cells of the same size (11). The two new daughter cells are formed by

placing two new vertices on the perimeter of a mother cell, which are the ends of

the cleavage line that crosses the cell’s centroid and incorporates the boundary of

the divided cell.

To simulate the evolution of the epithelial sheet using the vertex dynamics

model (21), the steps of implementation are to start with the initial position for

each vertex in the mesh, r0
i , the time undergoing discretization, such that tc = c∆t,

where ∆t refer to the time step and c refers to the current iteration. The position and

the applied net force can be taken as rci = ri(t
c) and F c

i = F i(t
c), respectively. As

40



CHAPTER 1. INTRODUCTION

long as the simulations are running, some procedures must be executed at each time

step. Where the inner progress that occurs in each cell, such as the cell cycle, the

cellular processes including the topological rearrangements, such as T1-transition,

cell division and cell death, all have to be amended. Finally, one of the numerical

methods for solving the differential equations, such as Runge-Kutta or Forward

Euler discretization, must be employed to solve the Equation (1.24) for determining

new positions of vertices and cells separately and simultaneously. According to the

Forward Euler discretization, we have the following equations

ri(t+ ∆t) = ri(t) +
∆t

ηi
F i, (1.25)

where ∆t necessarily is chosen as a small value for the stability of the solution. It is

evident that imposing cells in epithelial sheets onto a series of edge rearrangements

form plastic deformations and may cause local dynamic rearrangements. Hence,

some cells show fluid-like behaviour through the intercalation process owing to the

edge rearrangement, T1-transition, generating a local contraction and expansion in

the direction of the removed edge and the newly created edge respectively.

Moreover, the stochastic process may be applied when dealing with the cell cycle,

where the duration of the first phase, G1, is chosen to be a random variable.

1.4.1 The Chaste implementation of the vertex dynamics

model

In this thesis, simulations of the vertex dynamics model were implemented using

the open-access software Chaste, which takes the object-oriented language C++

(84) as the essential programme for writing its code (64; 76). However, a few new

subroutines were developed and added to make it more appropriate for this research

(Appendix B).

The Chaste software (21; 64; 76) is built to study and to simulate many complex

problems using different mathematical concepts in addition to solving ordinary and

partial differential equations. Relating to the biological cells, this framework can deal

efficiently with various essential mathematical models such as Potts model, various

cell-centred models and the model of interest in this study, which is the vertex
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dynamics model, in order to model the most important cellular processes, including

cell division, cell rearrangements and adhesion as well as the dynamical behaviour,

such as the topological change, diffusion, and shear. The fundamental steps of

simulating cellular processes such as cell divisions and topological rearrangements

through the software Chaste can be briefly described as follows:

1. The generation of a required number of cells.

2. The use of an appropriate way for connecting the elements in the mesh and

its represented simulated cells with each other.

3. The determination of the start time, end time, and the time step of the

simulation and loop over each vertex of each element in the mesh to add

the magnitude of the net applied force.

4. The addition of the requested functions (forces), where each is relatively a

short-code that performs a special task and uses the test class.

5. In the case when cell division is induced, defining the way the division takes

place, i.e. whether it is deterministic or stochastic, needs to be determined and

the appropriate coding file used, to assign a particular division time for each

cell. In this study, and because the vertex dynamics model has been used, the

mesh must comprise as many elements as the number of cells, where each cell

in the simulation is represented by an element in the mesh.

6. Finally, the running of the simulation.

More details that explain how to deal with the open software Chaste are given in

Appendix B.

1.5 Aim of this these

In this thesis, the vertex dynamics model was used for studying the mechanical

properties and topology of epithelial tissues. The relaxation of the epithelial cell that

subjected to a short-time deformation was studied numerically and mathematically

to indicate whether it is elastic or plastic. This thesis also tries to present the
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novel mathematical model, using master equations and simulations, for the cell-edge

distribution in the case of the cell divisions and cell rearrangement that is represented

by T1-transition.

1.6 Remainder of thesis overview

The overview of the remainder of the thesis is given as follows:

Chapter 2 examines the behaviour of a tissue when it is stretched/shrunk and

released to indicate whether it is elastic or plastic under certain parameters values.

For that, the vertex dynamics model is used that implemented, for simulations, by

the open software Chaste. In the case of the tissue being elastic , the relaxation time

was found. The relaxation time is the time that needed for the cell to get e-times

closer to equilibrium. The examination started with a single cell that is stretched and

shrunk vertically 5%, 10% and 15% and the results of all these cases show the elastic

behaviour of the stretching/shrinking and the relaxation time are halved in the case

of applying the three forces, which are the deformation force, the tension force and

the perimeter force, rather than applying only the tension force or the perimeter force

alongside the deformation force. The existence of the deformation force is necessary

to avoid the collapsing of the tissue or the cell (in the case of taking just a single

cell). The results were validated by simulation and also analytically. This study was

extended to include more than one cell where cells are shrunk vertically 15% and also

to include the case of taking different target lengths where a single cell is stretched

vertically 10%. In all these cases the results showed that the behaviour was elastic

and the relaxation time was found. Finally, the elasticity in the case of stretching an

infinite number of cells (Tissues are composed of many cells. Therefore, considering

infinite tissue in the model is justified) analytically was studied and confirmed.

In chapter 3, a novel mathematical model was constituted to reproduce the

cell-edge distribution that have been observed in the biological data, which is

represented by master equations using the vertex dynamics model, and to overcome

the shortcomings of the previous models. In this model, firstly, the basic form

is constructed which represents the rate of change of the fractions of the number

of edges in the cells over a short period of time. Three ways of dividing cells were
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examined: the uniformly oriented divisions, the binomially oriented divisions and the

equal split divisions, the latter being, biologically, the most realistic. The equal split

results associating with the fact that the probability of cellular division increases

exponentially with the number of the cell edges, showing a significant agreement

with the experimental observations. A cellular automata model was constructed

using the equal split process and the outcomes were compatible with the biological

data.

Chapter 4 is focuses on the building of a new code within the open software,

Chaste, to simulate the dynamic behaviour of the epithelial tissues that takes into

account the cell rearrangements, especially the T1-transitions. It was concluded

that there is an approximately exponential relationship between the number of edges

that are affected by this process and the probability of this process occurring. This

chapter also deals with the construction of a new mathematical model which by

associating with the exponential relationship, reproduces one of the topological

characteristics in the epithelial tissues, namely the distribution of the number

of edges per cell in an epithelial tissue which is undergoing plastic deformation.

The computational results which come from the simulation and the mathematical

model show that there is a very good agreement with the biological observation,

taking into account the population of the tissue and the time duration of running

the simulations. An automata model was also made to reproduce the cell-edge

distribution undergoing the T1 process. The results were compatible with the

experimental data.

A paper based on the results, short version, of chapter three and four was

published in arXiv: 1710.08527 and also submitted to the Physical Review Letters

journal (1).

In chapter 5, the findings of the research are discussed and some areas for future

research raised. The behaviour of a stretched epithelial tissue is discussed as well as

the strength and weakness of the existing mathematical models for reproducing the

distribution of the number of edges per cell in a tissue undergoing cellular divisions,

and how this model is distinguished from the others. The dynamic behaviour of the

epithelial tissue undergoing the process of T1-transition is also discussed.
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Chapter 2

Mechanical properties of tissue in

Chaste implementation of the

vertex dynamics model

Abstract

Mechanical properties of biological cells and tissues have recently been under

intensive investigation. It has been demonstrated experimentally that cells and

epithelial tissues behave as an elastic material in response to short-time deformations

and exhibit plasticity if deformed for an extended period of time. To understand

physical mechanisms underlying mechanical properties of cells and tissues, numerical

simulations were performed in this study, using the vertex dynamics model as

implemented by Chaste. It was shown that the virtual cell in the vertex dynamics

model relaxes exponentially in time in response to small deformations. Based on the

analysis of the dynamics of a single cell, it was found that the elasticity is conditioned

by an interplay between forces postulated in the vertex model, namely between

the tension and/or perimeter constraint forces from one side and deformation

(volume-constraint incompressibility) force on the other. The simulations in this

work also showed that the tissue containing many cells remains elastic although

its relaxation time (the time that required for the cell to get e-times closer to
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equilibrium) increases linearly with its size. The numerical results were confirmed

analytically. In particular, an analytical model of a single cell was designed and it

was shown that the deformed cell relaxes elastically, provided that the deformation

is small (the number of cell edges is not changed). In this study, also the elasticity of

relaxation of an infinite number of cells with infinite relaxation time was confirmed

analytically.

2.1 Introduction

It is known that deformed cells and tissues act as visco-elastic materials. Elasticity is

the capability of a body to recover its initial un-deformed situation after stopping the

causes of the deformation where the deformation, in this case, is called elastic and,

otherwise, is called plastic (53), (58). In physics, elastic and viscous materials are

generally studied separately. Bausch and his co-workers (8) have locally measured

the viscoelastic properties of the adherent cell surfaces by designing a magnetic bead

microrheometer. They found that, as in Figure 4 in their published paper (8), the

relaxation time of a stretched membrane is around 1 s. for a cell of roughly 10 µm.

In their experiment the cell is subjected to the force of 2000 pN.

Most biological studies have focused on elastic properties of organs. Elasticity,

for example, was investigated in experiments on plant cells (59) and in studies of

an extrusion of epithelial cells from their own sheets (51). On microscopic scale,

the impact of fundamental protein components of the cytoskeleton, such as the

actin filaments, intermediate filaments and microtubules, on the elastic properties

of cells were examined by Janmey and co-workers (45). They found that all these

components contributed significantly to the elastic properties of cells, although the

actin filaments have the largest impact and, therefore, play the most significant role

in maintaining cellular shapes. Thus, the deformed epithelial cell produces its own

inner force that comes from the rearrangement of the actomyosin networks. This

epithelial cell shows an elastic deformation which keeps its integrity. Consequently,

the epithelial tissues are often considered as elastic materials in theoretical studies

(48; 71). The elasticity is evident under the short time-scale deformations and

manifested by the tendency of cells to restore their original shapes. However, cells
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that are subjected to an external force for a relatively long time (a few minutes)

exhibit liquid-like behaviours and show a plastic deformation (32). In general,

viscoelasticity plays a pivotal role in tissue morphogenesis (72). Epithelial tissues

are commonly represented by a unicellular sheet with the cell-cell junctions on its

apical side forming a polygonal and elastic two-dimensional network (37; 44).

In this study elasticity of the epithelial cell and tissues were examined using

the vertex dynamics model. Cells in this model are represented by polygons whose

vertices move under the influence of three distinct forces: tension force along the

edges, Fi, cell-area constraint force Fd, and cell-perimeter constraint force, Fp. This

model had previously been used (20; 68) for numerical studies of tissue dynamics

as affected by cellular processes such as cellular division and rearrangement. Here

this model was used for analysis of mechanical relaxation of deformed cells.

In the first set of numerical simulations, a single cell was stretched/shrunk, then

released to check how it relaxed to an equilibrium state. Consequently, it was

observed that the relaxation is exponential with the characteristic time, depending

on the balance of the three forces. These numerical results were also confirmed

analytically. In the second set of numerical simulations, a virtual tissue comprised

of more than one cell was stretched/shrunk and its dynamics analysed after the

stretching/shrinking force had been removed. It was noted that if the deformation

of the tissue is not large, the relaxation is still elastic with the characteristic time

increasing linearly with the number of cells in the tissue. Thirdly, relaxation of a

single cell was studied in a modified vertex dynamics model, namely in the model

where the tension force Fi involves non-zero target length of cell edges. In this

case, the relaxation time for elastic deformations depends on the target length in

a quadratic manner if all three forces are applied or a bell-shaped manner in the

absence of the perimeter force, Fp. Although the analytical study of the tissue

has strong limitations, it was shown analytically that the tissue composed of an

infinite number of cells is still elastic but its relaxation time is infinite (Tissues have

consisted of many cells. thus, considering infinite tissue in the model is justified).
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2.2 Forces in the vertex dynamics model

Cells in the vertex dynamics model are represented by polygons, and cellular

dynamics is defined by the motion of cell vertices (20; 68). Furthermore, in this

model it is postulated that vertices are massless particles moving under the influence

of four forces: friction force, Ffr, tension forces, Fi, acting along the cell edges

merging at the considered vertex, area constrain (or resistance-to-deformation force),

Fd, and perimeter constrain force, Fp. Thus,

F fr + F i + F d + F p = 0 (2.1)

The main assumptions concerning these forces in the vertex model are as follows:

� Friction force is proportional to the vortex velocity, F fr = −ηV , where η is

the coefficient of friction which in this study is assumed to be 1.

� The other three forces are considered to be conservative and defined by their

potentials: F d = −∇Ud, F i = −∇Ui, and F p = −∇Up.

Thus:

ηV i = −∇Ud −∇Ui −∇Up, (2.2)

or

η
dri
dt

= −∇(Ui + Ud + Up), (2.3)

where ri is the position of vertex i and ∇ is the gradient notation.

Each of the three potential forces has a different objective: the tension force,

Fi, acts to shrink the edge length as in Figure 2.1(a); similarly, the perimeter force,

Fp, acts to shrink the entire perimeter of the cell and, finally, the area-constraint

force, Fd, works towards keeping the cell area close to the predefined target area as

in Figure 2.1(b).

Tension force does not depend on the size of edges and in order to include the

dependency of forces on the edge size, the perimeter force is needed.
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(a) (b)

Figure 2.1: Fragment of virtual tissues modelled by the vertex dynamics model and
show the effect of the forces. (a) The effect of the tension forces on a vertex i. (b)
The effect of the deformation forces on a vertex i.

2.2.1 The tension force

Potential for the tension force acting along the edge, which connects vertices i and

j, is defined as:

Ui(i, j) = σ |ri − rj| (2.4)

where parameter σ refer to the energy per unit length of edge and can be different

for the edges located between cells and the edges on the periphery of tissue, |ri − rj|

represents the Euclidean distance between the vectors ri and rj. Tension forces act

along all edges and, therefore, there are three tension forces acting on the vertex

connecting three edges (i.e. vertices i, j, k and l in Figure 2.2), or two for vertices

connecting only two edges (i.e. vertices m, n and o in Figure 2.2). Thus, the tension

force, F i, acting on the vertex i along the edge (i, j) is defined as

F i(i, j) = −∇Ui(i, j) = −σ∇i |ri − rj| = −σ
ri − rj
|ri − rj|

. (2.5)

where ∇i is a short notation for ∇ri.

For that, let ri = (x, y), and rj = (x1, y1) and hence ∇i |ri − rj| =

∇i(
√

(x1 − x)2 + (y1 − y)2) = (x,y)−(x1,y1)√
(x1−x)2+(y1−y)2

=
ri−rj
|ri−rj | and this force pushes the

vertices on the opposite sides of the edge towards each other. It is evident from

symmetry that the sum of the tension forces acting along three edges merging at

the vertex in tissue formed by equilateral hexagons is zero.
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Figure 2.2: Fragment of virtual tissue modelled by the vertex dynamics model

Furthermore, the force F i can be modified by including the none-zero target length,

l, so that the modified force, F e, acts to maintain the target distance (the edge

length) between vertices rather than towards the complete collapse of the edge:

Fe(i, j) = −σ (|ri − rj| − l)
ri − rj
|ri − rj|2

. (2.6)

2.2.2 The resistance to the deformation due to

incompressibility (deformation force)

Potential associated with incompressibility of a single cell, α, for example C1 in

Figure 2.2, is defined as:

Udα = ρα(Sα − S◦α)2, (2.7)

where ρα is a positive constant and Sα, S◦α are the area and the target area of the

cell α respectively. The associated force is given by the gradient:

F d = −∇Udα = −2ρα(Sα − S◦α)∇(Sα − S◦α). (2.8)

The vertex located in the middle of the tissue belongs to three cells and therefore

is subject to three deformation forces, each given by a gradient of corresponding

potential. For example, the vertex i is subjected to the force due to deformation of
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cell C1 in Figure 2.2. The gradient in the area of the cell C1 can be given as

∇iSij = ∇i
1

2
K · [(ri − rk)× (rl − rk)] =

1

2
[(rl − rk)×K], (2.9)

K is a unit vector perpendicular to the surface of the paper and ∇(S◦α) ≈ 0.

For the derivation of this formula, let ri = (x, y), rl = (x1, y1), and rk = (x2, y2).

Hence

∇i
1

2
K · [(ri − rk)× (rl − rk)] = ∇i

1

2
(0, 0, 1) ·

∣∣∣∣∣∣∣∣∣
i j k

x− x2 y − y2 0

x1 − x2 y1 − y2 0

∣∣∣∣∣∣∣∣∣
= ∇i

1
2
((x − x2)(y1 − y2) − (y − y2)(x1 − x2)) = 1

2
((y1 − y2)i − (x1 − x2)j) =

1
2
[(rl − rk)×K]

where · and × refer to the dot product and cross product respectively. This force

acts to return the area of a cell to the target area, here the target area was assumed

to be 1.

The deformation force depends only on the volume of the cells and has nothing

to do with bending or shape of the cells.

2.2.3 The perimeter force

Potential for a perimeter constraint force for the cell α is defined as:

Upα = γαL
2
α, (2.10)

where γα is the positive constant (representing the coefficient of contractibility) and

Lα represents the perimeter of the cell α. The corresponding force is given by the

gradient:

F p = −∇Upα = −2γαLα∇Lα, (2.11)

where

∇Lα =
ri − rl
|ri − rl|

+
ri − rk
|ri − rk|

, (2.12)

Again the vertex which belongs to three cells is subject to the three corresponding

perimeter constraint forces.
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There is no need to use the perimeter force if the tension force is replaced by

Fe, but it is decided to retain it in order to compare the model with its previous

version. Hence, in the equation of the motion (see Equation(2.3))

Fi = −2

(i)∑
j

σil, σik
ri − rj
|ri − rj|

, (2.13a)

Fd = −
(i)∑
j

ρij(Sij − S◦ij)[(rl − rk)×K], (2.13b)

Fp = −
(i)∑
j

γijLij

(
ri − rl
|ri − rl|

+
ri − rk
|ri − rk|

)
, (2.13c)

The three sums are taken over the most three nearby adjacent vertices which are

j, l and k of the vertex i.

It is important here to refer that the lipid bilayer is one of the fundamental

component parts of the cell membrane, which is very thin in comparison to the

average diameter of the cell. This component can be represented by a planar

mathematical surface. Helfrich (36) suggested the following formula to find the

curvature energy per unit volume of the closed lipid bilayer:

fc =
κc
2

(2H − C0)2 + κ̄K (2.14)

where κc and κ̄ refer to the flexural rigidities (resistance generated by a structure that

undergoing bending), C0 represents the spontaneous curvature, H and K represent

the mean and the Gaussian curvature respectively. In this work, the membrane is

represented by a straight lines with zero curvature and therefore this formula gives

zero energy.

2.3 Simulation of the tissue using Chaste

Imposing the forces on the vertices of the polygons that represent the cells plays

a central role in the vertex dynamics model. These forces are the tension force

Fi, the deformation force Fd, and the perimeter force Fp. Each of these forces has

a different objective. The tension force acts to shrink the edges; the deformation

force constrains the area of the cells to the imposed target area (it is not bending).
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Finally, the perimeter force acts to return the perimeter of the cells to the target

perimeter, which in this part of study is assumed to be zero.

Consequently, collapsing of the tissues is unavoidable in the absence of the

deformation force as shown in Figure 2.3, where the images of virtual tissue simulated

in the absence of the deformation force are presented. This collapsing of cells results

(a) (b)

(c) (d)

Figure 2.3: Illustration of the tissue collapse in the absence of the deformation force,
Fd. Three simulations with different combinations of forces Fi and Fp are shown
with the image of the tissue at time t = 7 in all three cases. (a) Initial configuration
(at time t = 0) of the tissue. (b) The tissue at time t ≈ 7 when only forces Fi and
Fp are imposed. (c) The tissue at time t ≈ 7 when only force Fi is imposed. (d)
The tissue at time t ≈ 7 when only force Fp is imposed.
One can see that the tissue is collapsing in all cases, and the collapse is the fastest
on the panel (b), slower on the panel (d) and the slowest on the panel (c). Forces
Fi and Fp were simulated with parameters σ = 0.05 and γ = 0.007 in all three
simulations. The numbers inside the cells represent the area of the cells.

from assuming the target length and target perimeter are zero. The effect of the

perimeter force depends on the target perimeter, if the target perimeter is zero then
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the perimeter force does not prevent the cell from collapsing.

Figure 2.3 starts with an initial case in which each cell is a regular hexagon with

the value of each edge size is allocated as a default by Chaste software to 0.57735,

and since the area of the regular hexagon is given by

3
√

3

2
.(edge length)2,

therefore the area of each cell is 0.866. In this figure, initially, 5× 5 cells are taken

and three situations are examined in which the forces Fi and Fp, the force Fi, and

the force Fp are applied to the vertices. As can be seen in Figure 2.3, the cells

collapse in the presence of the two forces faster than when applying one of these

forces and also the cells collapse faster in the case of applying the force Fi instead

of the force FP . Figure 2.3c shows that the collapsing of the cells in the case of

applying the tension force starts from the outer cells and then proceeds to the next

outer cells and so on. In each state, the collapsing of the outer cells does not affect

the area and the length of the edges of the inner cells. In addition, the situation

in the case of applying the perimeter force is different, where the collapsing affects

all cells but where the greater the distance between a cell and the cell located in

the centre, the greater the state of collapse of this cell, as in Figure 2.3d. These

different effects of the forces are because of the nature of each of these forces on the

cells, where the deformation force regulates the area of the cells, the tension force

regulates the length of cell edges and the perimeter force deals with the perimeter

of the cells.

To maintain the stable tissue, the force Fd is imposed with one or both of the

other forces, Fi, Fp. The default values of the parameters enable the construction of

standard situations that can be used for the comparison of different cases where the

parameters of the forces are changed. To set particular numerical values to these

three parameters defining forces in vertex model it was noted that multiplication

of all three parameters by the same factor does not change the state of the virtual

tissue in the long run. Therefore one of the parameters (i.e. ρ) can be set to one

without loss of generality. Furthermore, it was shown that the deformation force

should be of the same order as at least one of the two other forces (see Figure 2.3).

Thus tension and perimeter forces in default setting are assumed to be neither too
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small nor too big. As a measure of the strength of these two forces, their impact on

the volume of the cell was considered: a 5% reduction of the volume was considered

a reasonable impact of these two forces. Tension force results in a 5% reduction

of cell volume when σ = 0.05 and perimeter force results in a 5% reduction when

γ = 0.007. Therefore the values σ = 0.05, ρ = 1, and γ = 0.007 were selected as

their default values. Hence, applying the forces Fd, Fi and Fp, where the parameters

are in their default values, resulted in increasing the area of the cells to reach 10%

less than the target area value (Figure 2.4a). Furthermore, applying the forces Fd

and Fi or the forces Fd and Fp, where the parameters of these forces in their default

values causes an increase in the area of the cells to reach 5% less than the target

area value, which is 0.95 (Figure 2.4b).

(a) (b)

Figure 2.4: Tissues formed by regular hexagonal cells are shown. (a) The area of
cells in a stationary tissue, when all three forces, Fd, Fi, and Fp, are imposed, is
0.901. (b) The area of cells in a stationary tissue, when the force Fd with one of
the forces Fi, or Fp is imposed, is 0.951. Parameter values: ρ = 1, γ = 0.007 and
σ = 0.05, target area is set to 1 in both cases.

Now, since the presence of the force Fd is necessary to avoid the collapsing of the

tissue, the cases of applying the force Fd with one or both of the other two forces

were studied. The area of the cells has a target value that relies on the type of the

forces that the vertices of the cells in the tissue were subjected to. Furthermore, the

time that these cells required to reach this target value depended on the number of

the cells in the tissue.

The Figures 2.3 and 2.4 were implemented in the isotropy case, where the cells

had been subjected to the forces without any stretching and the tissue was selected
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to be N by N cells.

The simulations results showed that the multiplying all parameters of the forces

that act on the vertices of cells by a real number r does not result in any changes

in the destination area value; rather it results in changes in the time that the cells

need to reach that area value (Figure 2.5).
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Figure 2.5: The relation between the number of cells and the time that these cells
need to reach the destination area. (a) The relation in the case of applying the
forces Fd, Fi and Fp and the destination area is 0.9, (b) The relation in the case of
applying the forces Fdand Fi and the destination area is 0.95, (c) The relation in
the case of applying the forces Fd and Fp and the destination area is 0.95, In all this
cases r is taken to be 1.

The time can be given as
1

r
t

where, for applying the forces Fd, Fi and Fp (Figure 2.5a), t = 0.2143Z + 1.2578.

For applying the forces Fd and Fi (Figure 2.5b), t = 0.2824Z + 1.5687,

and for applying the forces Fd and Fp (Figure 2.5c), t = 0.3102Z + 1.7619,

where Z = N2 is the number of cells in the tissue and N = 1, 2, 3, .... and t represents

the time that the cells need to reach the destination area value when r = 1.

However, increasing or decreasing the parameter value of one force, in the case

of there existing more than one, and keeping the other(s) at the default value(s)

changes the destination area value. For example, in the case of applying the forces

Fd with one of the forces Fi or Fp, the destination area value increases and the cells
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expand, as a result of multiplying ρ by a constant r and fixing the other parameter

at the default value, where r is a real number (1 < r < 20). However, the destination

area value decrease and the cells shrink, as a result of multiplying σ/ γ by a constant

r and fixing ρ at the default value, where r is a real number (1 < r < 20). The

situation will be reversed in the case of multiplying these parameters by 1/r.

There are symmetrical configurations about r = 1 with respect to the values of

areas between those relating to multiplying ρ by r and fixing the other parameter,

whether it is σ, or γ on one side, and those relating to multiplying σ or γ by 1/r

and fixing ρ on the other side, as shown in Figure 2.6. This figure also shows that

the area value approaches 1 in both cases; versus rρ, with the other parameter fixed

and versus (1/r)σ or (1/r)γ, fixing the value of ρ as r approaches 20. However, the

area becomes smaller and smaller versus rγ and ρ or (1/r)ρ and γ and approaches

zero as r approaches 20, the cells collapsing as versus rσ and ρ or (1/r)ρ and σ with

r > 8. A similar behaviour can be observed when applying the forces Fd, Fi, and Fp,

where multiplying one parameter by r gives the same area as that can be obtained

from multiplying the other two parameters by (1/r) and vice versa, as shown in

Figure 2.7.
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Figure 2.6: Area of cells as a function of model parameters. Only two forces Fd with
Fi or Fd with Fp are applied for the default values ρ = 1, σ = 0.005, and γ = 0.007.
Case 1: multiplying ρ by r or multiplying σ by 1/r. Case 2: multiplying ρ by r or
multiplying γ by 1/r. Case 3: multiplying σ by r or multiplying ρ by 1/r. Case 4:
multiplying γ by r or multiplying ρ by 1/r.
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Figure 2.7: Area of cells as a function of model parameters. All three forces Fd, Fi,
and Fp are applied. for the default values ρ = 1, σ = 0.005, and γ = 0.007. All
three forces Fd, Fi, and Fp are applied. Case 1: multiplying ρ by r or multiplying
σ and γ by 1/r. Case 2: multiplying γ by r or multiplying ρ and σ by 1/r. Case 3:
multiplying σ by r or multiplying ρ and γ by 1/r. Case 4: multiplying σ and γ by r
or multiplying ρ by 1/r. Case 5: multiplying ρ and σ by r or multiplying γ by 1/r.
Case 6: multiplying ρ and γ by r or multiplying σ by 1/r.

Using the vertex dynamics model the behaviour of deformed (stretched) tissue was

also examined. The results of corresponding simulations are shown in the Figures

2.8 and 2.9. Tissue deformed to a certain extension completely recovers (elastic

deformations (see Figure 2.8) while larger deformation causes certain plasticity when

the tissue does not completely recover (see Figure 2.9). These deformations were

implemented by subjecting the upper and lower vertices of the upper and lower

rows of the cells to an external force of magnitude 1.51 acting, simultaneously,

upwards and downwards, respectively. Plasticity occurs as a result of T1-transition

events (Figure 1.10) which causes exchange in cell neighbour. Later in Chapter four,

T1-transition is described in detail. Moreover, tension force takes into account the

adhesion between cells.

An external force was also applied with magnitude 6 to a small group of cells

within the tissue to cause migration of this group of cells inside the tissue. The

results of these simulations are illustrated in Figure 2.10. It can be seen that cells

in contact with moving cells undergo elastic deformations which indicates that the

virtual tissue in the vertex dynamics model represents a solid rather than liquid.
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Figure 2.8: Elastic deformation. The tissue undergoes vertical stretching between
the time zero and time 10 and is then released. It recovers to the original shape.
All three forces are imposed with parameters: ρ = 10, σ = 0.5, and γ = 0.07. Here,
The upper and lower vertices of the upper and lower rows of the cells are subjected
to an external force of magnitude 1.51, between the time zero and time 10, acting,
simultaneously, upwards and downwards, respectively. There was no T1-transition
events occurred.

Figure 2.9: Plastic deformation. The tissue undergoes vertical stretching between
the time zero and time 20 and is then released. It recovers to a great extent but
does not return to the original shape. All three forces are imposed with parameters:
ρ = 10, σ = 0.5, and γ = 0.07. Here, The upper and lower vertices of the upper
and lower rows of the cells are subjected to an external force of magnitude 1.51,
between the time zero and time 20, acting, simultaneously, upwards and downwards,
respectively. Plasticity happens as a result of T1-transition events (Figure 1.10)
which causes exchange in cell neighbours.
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Figure 2.10: Migration of group of cells under the influence of the external force with
magnitude 6 applied to the vertices of all four cells comprising the moving group.
All three basic forces are imposed in this simulation. Parameter values for the blue
cells: ρ = 50, σ = 5, and γ = 20 and for the other cells: ρ = 50, σ = 1, and γ = 20.

2.4 Numerical study of relaxation of deformed

tissue

The study of the development of the tissues mathematically plays a considerable

role in understanding the behaviour of migration and how cells proliferate, rearrange

and how cells differentiate. An understanding of these processes may help to deal

with deviant behaviour that may lead to many serious diseases such as cancer. In

this section the process of relaxation is examined numerically to check whether the

relaxation is exponential, and thereby the tissue is elastic, or the relaxation is not

exponential. For this, the parameters value were restricted at the default values,

whereof σ = 0.05, ρ = 1, and γ = 0.007, S0 = 1. Moreover, imposing each of Fi, Fp,

one at a time, reduces the area of the cells 5%. In this study, the following cases

were investigated.
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2.4.1 The case of a single cell

In the single cell case the behaviour of the relaxation for each of the situations,

namely applying the forces Fd, Fi, and Fp, applying the forces Fd and Fi, and finally

applying the forces Fd and Fp, was examined to determine numerically whether it

is elastic or not elastic. For this, the computer simulation was carried out using the

vertex dynamics model. The numerical results demonstrated that the relaxation is

exponential (Figure 2.11) with the relaxation times as in Table 2.1.
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Figure 2.11: The exponential behaviour of the relaxation after stretching/shrinking
a single cell in a model with the following forces: (a) Fd, Fi, and Fp; (b) Fd and Fi;
(c) Fd and Fp. Model parameters: σ = 0.05, ρ = 1, γ = 0.007 and S0 = 1. x and y
are the length of the cell in the x-axis and y-axis direction, respectively. X and Y
are the deformation of the cell in the x-axis and y-axis, respectively.

For example, to find the relaxation time in the case of applying the three forces with

X = 1 and Y = 1.15, it is clear from the Figure 2.12 that the relaxation time τ =

1/0.123 = 8.13. X and Y represent the deformation in the x-axis and y-axis direction

respectively. For Y = 1 that is mean no deformation and Y = 1.15 that is mean that

61



CHAPTER 2. MECHANICAL PROPERTIES OF TISSUE IN CHASTE
IMPLEMENTATION OF THE VERTEX DYNAMICS MODEL

The value of X
and Y

τ for y/x,
imposing Fd,
Fi, and Fp

τ for y/x,
Imposing Fd
and Fi

τ for y/x,
Imposing Fd
and Fp

X=1,Y=0.85 8.2 16.13 15.87
X=1,Y=0.90 8.2 16.13 15.87
X=1,Y=0.95 8.13 16.13 15.87
X=1,Y=1.00 - - - - - - - - -
X=1,Y=1.05 8.06 16.13 15.87
X=1,Y=1.10 8.13 16.13 15.87
X=1,Y=1.15 8.13 15.87 15.63

Table 2.1: The relaxation times (τ) for the three situations that are shown in
Figure 2.11.
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Figure 2.12: The exponential relaxation of a stretched single cell 15% in the y-axix
direction after the cell subjected to the forces Fd, Fi and Fp, the parameters were
in the default values.
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the cell was stretched vertically 15%. The results show that the relaxation time is

approximately constant with different values of stretching/shrinking in each of these

three situations. One of the interesting observations is that the relaxation time is

halved in the case of applying the three forces in comparison with the situation of

the absence of either Fi or Fp.

2.4.2 The case of tissue containing N ×N (N ∈ Z+) cells

In case of N ×N cells, the behaviour of the relaxation after applying the forces Fd,

Fi and Fp was investigated to decide numerically whether it is elastic or plastic.

For this, the computer simulation was implemented using the vertex dynamics

model. The simulations results showed that the relaxation is exponential with the

relaxation times, as in the Table 2.3. The results demonstrated that the relaxation

time is linearly increased approximately with the increase in the number of

cells (Figure 2.13). Table 2.2 shows that the relaxation time is roughly constant in

any number of cells with different values of vertical stretching/shrinking. Moreover,

The value of X and Y The relaxation time,
imposing Fd, Fi, and Fp,
The number of cells are
2×2

The relaxation time,
imposing Fd, Fi, and Fp,
The number of cells are
3×3

X=1,Y=0.85 33.33 71.43
X=1,Y=0.90 34.48 71.43
X=1,Y=0.95 34.84 71.43
X=1,Y=1.00 - - - - - -
X=1,Y=1.05 35.71 66.67
X=1,Y=1.10 34.48 71.43
X=1,Y=1.15 34.48 71.43

Table 2.2: The relaxation times (τ) for the 2 × 2 and 3 × 3 number of cells and
applying Fd, Fi and Fp.

the exponential behaviour of the relaxation after shrinking more than one cell,

applying Fd, Fi and Fp, X = 1, Y = 0.85, N -cells, t = 750, ts = 0.02 is given in the

Table 2.3.
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The number
of cells

τ
(Fi+Fd+Fp)

1×1 8.20
2×2 33.33
3×3 71.43
4×4 66.67
5×5 83.33
6×6 83.33
7×7 90.91
8×8 100.00
9×9 111.11
10×10 125

Table 2.3: The relaxation
times (τ) for the N × N
number of cells and
applying Fd, Fi and Fp,
where N = 1, 2, ..., 10.
The parameters at
default values.
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Figure 2.13: The exponential behaviour of
the relaxation after shrinking more than
one cell with applying Fd, Fi and Fp, X =
1, Y = 0.85, N × N -cells, t = 750, ts =
0.02. The parameters at default values.

2.4.3 The case of a single cell and modified model, applying

forces Fd, Fp and Fe (Fe instead of Fi)

The force Fe is modified from Fi by taking the edge’s target length into account and

is defined as in the Equation (2.6).

Here, the behaviour of the relaxation, applying the forces Fd, Fe (definition of

Fe is given by the formula (2.6)), and Fp is described to show numerically whether

it is elastic or not by taking a single cell and different edge target lengths. The

numerical results demonstrated that the relaxation is exponential, Figure 2.14a and

the relation between the relaxation times and edge target lengths is quadratic, as

depicted in Figure 2.14b. Here, X = 1 which is mean no deformation in the x-axis

direction and Y = 1.10 which is mean the cell was stretched vertically 10%.

2.4.4 Case of a single cell and modified model with applying

forces Fd, and Fe (Fe instead of Fi)

In this case, the behaviour of the relaxation, applying the forces Fd, Fe is described

to determine numerically whether it is elastic or plastic by taking a single cell and

different edge target lengths. The numerical results also showed that the relaxation
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Figure 2.14: (a) The exponential relaxation for a stretched cell when the forces Fd,
Fe and Fp are applied (X=1,Y=1.1 with different edge target length). Here, x and
y are the length of the cell in the x-axis and y-axis direction, respectively. (b) The
relaxation times (τ) for a stretched single cell when forces Fd, Fe and Fp are applied
and for different target values.
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Figure 2.15: (a) The exponential relaxation for a stretched cell when the forces Fd
and Fe are applied (X=1,Y=1.1 with different edge target length). Here, x and y
are the length of the cell in the x-axis and y-axis direction, respectively. (b) The
relaxation times, applying Fd and Fe (for one cell).

65



CHAPTER 2. MECHANICAL PROPERTIES OF TISSUE IN CHASTE
IMPLEMENTATION OF THE VERTEX DYNAMICS MODEL

is exponential, Figure 2.15a. The relationship between the relaxation times and

edge target lengths is demonstrated in the bell curve shape as given in Figure 2.15b.

Here, X = 1 and Y = 1.10 which is mean the cell wasn’t deformed horizontally

in the x-axis whereas it was stretched vertically 10%. The relaxation time depends

on the target length for the given target area and has a maximum when the target

length corresponds to the target area.

2.5 Analysis of the dynamics of a single deformed

cell

In this section, the relaxation of a slightly deformed cell is studied analytically. For

simplicity, deformations are considered which maintain certain geometric symmetry

of the considered cell which is also presumed to have a hexagonal shape, as shown

in Figure 2.16. For simplicity, the origin of the coordinate system is placed in the

centre of the cell, therefore x2 = 0 (the shape is symmetric). The three parameters a,

b and α ( 2α is the angle ∠ABC) are adequate to examine the solutions analytically

through finding velocities of vertices as given by the derivatives
dy2

dt
,
dx1

dt
, and

dy1

dt
.

Let ∆S = S◦ − S where S and S◦ = 1 are the area and the target area of the cell

respectively. Therefore the total area of the hexagon is S = 1−∆S. For the regular

hexagon (i.e. the sum of the forces acting on the vertices =0), 2α = β = 2π
3

, where

β is the angle ∠BAF ). From the symmetrical shape (Figure 2.16), it is clear that

x1 = a sin(α), (2.15)

y2 = a cos(α) + y1 (2.16)

In general, it can be assumed that α = π
3

+ ε and therefore β = 2π
3
− ε, a = a0 + δ,

and b = a0 + ∆ (where ε, δ, ∆ are small real numbers). By the Equations (2.15)

and (2.16) the area of the shape can be given as

A = 2x1(y2 − y1) + 2bx1 = 2a2 sin(α) cos(α) + 2ab sin(α) (2.17)
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Figure 2.16: The hexagon cell with vertices A, B, C, D, E, and F and edges AB,
BC, CD, DE, EF , and FA in which AB = BC = DE = EF = a, AF = CD = b,
and AC = DF (i.e. the cell is symmetric). 2α is ∠ABC, θ1 is ∠EBF , and θ2 is
∠FBA.

and by assuming that the area is constant we have

A = 2(a0 + δ)2 · sin(π
3

+ ε) · cos(π
3

+ ε) + 2(a0 + δ) · (a0 + ∆) · (sin(π
3

+ ε))

Using the first order approximation for sine and cosine,

A = 2(a0 + δ)2 · (sin(π
3
) + cos(π

3
)ε) · (cos(π

3
)− sin(π

3
)ε) + 2(a0 + δ) · (a0 + ∆) · (sin(π

3
) +

cos(π
3
)ε)

A = 2(a0 + δ)2 · (
√

3
2

+ ε
2
) · (1

2
−
√

3
2
ε) + 2(a0 + δ) · (a0 + ∆) · (

√
3

2
+ ε

2
)

and hence

A = 3
√

3
2
a2

0 + 2
√

3a0δ +
√

3a0∆.

The values of the other terms are relatively very small and hence can be neglected.

Since the area of the regular hexagon with side a0 is 3
√

3
2
a2

0 and since the area returns

very quickly to the target area, therefore

3
√

3

2
a2

0 + 2
√

3a0δ +
√

3a0∆ =
3
√

3

2
a2

0;

2
√

3a0δ +
√

3a0∆ = 0
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hence

∆ = −2δ. (2.18)

The analytical solutions for the three situations in the case of using the forces Fd with

one of the forces Fp and Fi or both, using a single cell were examined analytically

as follows: since we have a symmetrical hexagon cell, analysing the change of the

positions of the two points A and B is adequate to be taken for this study, where

the change of the positions of the other points that correspond to these two points

is similar ( i.e. the points B and E as well as A, C, D and F behave in a similar

way). Therefore only dy2
dt

, dx1
dt

, and dy1
dt

are needed to describe the behaviour of the

relaxation. To describe these equations, the expression ψ = ri−rl
|ri−rl|

+ ri−rk
|ri−rk|

and

ω = 1
2
(rl − rk) ×K need to be defined using Figure 2.2 and the Equations (2.5),

(2.9) and (2.12) , where K is the unit vector (0, 0, 1). Hence for the vertex B;

ri = (0, y2), rl = (−x1, y1) and rk = (x1, y1), while for the vertex A; ri = (x1, y1),

rl = (0, y2) and rk = (x1,−y1) and through Equations (2.15) and (2.16) we have

ψB =
2(y2 − y1)j

a
= 2 cosαj (2.19)

ψA =
x1i+ (y1 − y2)j

a
+

2y1j

b
= sinαi− cosαj + j (2.20)

and

ωB = x1j = a sin(α)j. (2.21)

ωA =
1

2
((y2 + y1)i+ x1j) =

1

2
(P cos(θ1)i+ P sin(θ1)j) (2.22)

where P is denoted in Figure 2.16.

For studying the behaviour of the relaxation of stretching/shrinking a single

cell analytically, we have three different cases which are studied also numerically in

subsection 2.4.1.

1. In the case of applying the forces Fd and Fi, it is necessary to describe

the three relationships dy2
dt

, dy1
dt

, and dx1
dt

. From the Equations (2.13a) and

(2.13b), using the point (0, y2), Fiy = −σψB and Fdy = 2ρ∆SωB. Therefore,
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the derivative dy2
dt

can be given as

dy2

dt
= Fdy + Fiy = 2ρ∆Sa sin(α)− 2σ cos(α). (2.23)

Moreover, for using the point (x1, y1), Fiy = −σψA(y), Fix = −σψA(x), Fdy =

2ρ∆SωA(y), and Fdx = 2ρ∆SωA(x), where the subscripts (x) and (y) indicate

that the direction of the force towards the x-axis and y-axis respectively.

Hence the derivative dy1
dt

and the derivative dx1
dt

can be given as

dy1

dt
= Fdy + Fiy = Pρ∆S sin(θ1) + σ cos(α)− σ, (2.24)

dx1

dt
= Fdx + Fix = Pρ∆S cos(θ1)− σ sin(α). (2.25)

2. For applying the forces Fd and Fp, the three relationships dy2
dt

, dx1
dt

, and

dy1
dt

need to be given. From the Equation (2.13c), and using the point (0, y2),

Fpy = −12a0γψB(y). In this case dy2
dt

can be given as

dy2

dt
= Fdy + Fpy = 2ρ∆Sa sin(α)− 24γa0 cos(α). (2.26)

Moreover, for using the point (x1, y1), Fpy = −12a0γψA(y) and Fpx =

−12a0γψA(x). In this case dy1
dt

and dx1
dt

can be presented as

dy1

dt
= Fdy + Fpy = Pρ∆S sin(θ1)− 12γa0(1− cos(α)), (2.27)

dx1

dt
= Fdx + Fpx = Pρ∆S cos(θ1)− 12γa0 sin(α). (2.28)

3. For applying the forces Fd, Fi and Fp, the above two cases can be used to

find the dy2
dt

, dx1
dt

, and dy1
dt

as follows: By merging both the cases above

dy2

dt
= Fdy+Fiy+Fpy = 2ρ∆Sa sin(α)−2σ cos(α)−24γa0 cos(α). (2.29)

By taking the point (A) the other two derivatives can be obtained by using
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the above corresponding derivatives as given below:

dy1

dt
= Fdy+Fiy+Fpy = Pρ∆S sin(θ1)+σ cos(α)−σ−12γa0(1−cos(α)), (2.30)

and

dx1

dt
= Fdx +Fix+Fpx = Pρ∆S cos(θ1)−σ sin(α)−12γa0 sin(α). (2.31)

The corresponding equations that reflect the behaviour of the relaxation are given

as follows:

1. In the case of applying Fd and Fi, the equations are given as follows:

Since b = 2y1 and b = a0 + ∆ = a0 − 2δ, then db
dt

= 2dy1
dt

, therefore

d(a0 − 2δ)

dt
= 2(Pρ∆S sin(θ1) + σ cos(α)− σ),

In the triangle 4FBH sin(θ1) = x1
P

, and according to (2.15) as well as a0 is

constant, these give

−dδ
dt

= ρ∆S(a sin(α)) + σ cos(α)− σ,

By replacing the values of a and α (a = a0 + δ and α = π
3

+ ε) and using the

first order approximation, we have

−dδ
dt

= ρ∆S

(
(a0 + δ)

(√
3

2
+

1

2
ε

))
+ σ

(
1

2
−
√

3

2
ε

)
− σ,

Consequently,

dδ

dt
= −
√

3

2
ρ∆Sδ −

(
1

2
ρ∆Sa0 −

√
3

2
σ

)
ε. (2.32)

The other terms are neglected because their values are relatively very small.

Now, in the triangle 4FBH cos(θ1) = y2+y1
p

, and according to (2.16) as well
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as using the Equation (2.25), and since b = 2y1, therefore

dx1

dt
= ρ∆S(a cosα + b)− σ sin(α).

Now, since α = π
3

+ ε, a = a0 + δ and b = a0 + ∆ and using the first order

approximation and the Equation (2.18), we have

dx1

dt
= −
√

3

2
a0ρ∆Sε− 1

2
σε− 3

2
ρ∆Sδ. (2.33)

The terms that have relatively very small values are neglected.

On the other hand, by using (2.15), then dx1
dt

= d(a sinα)
dt

, and therefore

dx1

dt
= sin(α)

da

dt
+ a cos(α)

dα

dt

Again, using the same procedure in the previous steps, we have

dx1

dt
=

(√
3

2
+

1

2
ε

)
dδ

dt
+ (a0 + δ)

(
1

2
−
√

3

2
ε

)
dε

dt
.

In consequence,

dx1

dt
=

(
−3

4
ρ∆Sδ −

√
3

4
ρ∆Sa0ε+

3

4
σε

)
+

(
1

2
a0 +

1

2
δ −
√

3

2
a0ε

)
dε

dt
. (2.34)

Hence, by calling the Equations (2.33) and (2.34), we have

−
√

3

2
a0ρ∆Sε− 1

2
σε− 3

2
ρ∆Sδ =

(
−3

4
ρ∆Sδ −

√
3

4
ρ∆Sa0ε+

3

4
σε

)

+

(
1

2
a0 +

1

2
δ −
√

3

2
a0ε

)
dε

dt
.

and consequently,

dε

dt
= − 3

2a0

ρ∆Sδ −

(√
3

2
ρ∆S +

5

2a0

σ

)
ε. (2.35)
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The terms with relatively small value are neglected.

In a similar way the equations can be found for the other stages,

2. In the case of applying Fd and Fp, the equations are given as follows.

dδ

dt
= −
√

3

2
ρ∆Sδ − (

1

2
ρ∆Sa0 − 6

√
3γa0)ε, (2.36)

and
dε

dt
= − 3

2a0

ρ∆Sδ − (

√
3

2
ρ∆S + 30γ)ε. (2.37)

3. In the case of applying Fd and Fi, the equations are given as

dδ

dt
= −
√

3

2
ρ∆Sδ −

(
1

2
ρ∆Sa0 −

√
3

2
σ − 6

√
3γa0

)
ε, (2.38)

and
dε

dt
= − 3

2a0

ρ∆Sδ −

(√
3

2
ρ∆S +

5

2a0

σ + 30γ

)
ε. (2.39)

The eigenvalues and eigenvectors are used to find the solutions using Matlab 17a

where AV = λV , A is a square matrix, λ is eigenvalue of A corresponding to the

eigenvector V. The matrices and each of the eigenvalues and their corresponding

eigenvectors are given as follows:

1. In the stages of the imposing forces Fd and Fi

A =

−0.0433 0.0282

−0.1240 −0.2500

, V =

 0.8349 −0.1482

−0.5504 0.9890

,

λ1 = −0.0619 and λ2 = −0.2314.

2. In the stages of the imposing the forces Fd and Fp

A =

−0.0433 0.0289

−0.1240 −0.2533

, V =

 0.8390 −0.1493

−0.5441 0.9888

,

λ1 = −0.0620 and λ2 = −0.2346.
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3. In the stages of the imposing the forces Fd, Fi and Fp

A =

−0.0866 0.0567

−0.2549 −0.5090

, V =

 0.8337 −0.1457

−0.5521 0.9893

 ,

λ1 = −0.1241 and λ2 = −0.4714.

Finally the solutions for the equations are found using the values of the eigenvalues

and corresponding eigenvectors.

1. The solutions in the stages of imposing the forces Fd and Fi, can be

given as

δ
ε

 = c1e
−0.0619t

 0.8349

−0.5504

+ c2e
−0.2314t

−0.1482

0.9890

, where c1, c2 are

constants.

2. In the stages of the imposing the forces Fd and Fp, the solution can be

given as

δ
ε

 = c1e
−0.0620t

 0.8390

−0.5441

+ c2e
−0.2346t

−0.1493

0.9888

, where c1, c2 are

constants.

3. In the stages of the imposing the forces Fd, Fi and Fp, the solution can

be given as

δ
ε

 = c1e
−0.1241t

 0.833

−0.5521

+ c2e
−0.4714t

−0.1457

0.9893

, where c1, c2 are

constants.

From the solutions the behaviour of elasticity was observed and from the value

of the first eigenvalue in each case it is clear that the relaxation in each of the first

two situations is 1/0.0619 (for second is 1/0.0620) ≈ 16 and the relaxation for the

third situation is 1/0.1241 ≈ 8. These values are consistent to a large extent to

those obtained numerically in Subsection (2.4.1). If the time unit in simulation
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corresponds to 0.1 s then 8 corresponds to 0.8 s and 16 corresponds to 1.6 s which

is close to the experimental data (8).

Finally, the values of the area, in these particular parameters values, at the

equilibrium state (i.e. dy2
dt

= dy1
dt

= dx1
dt

= 0) can be found as follows:

At the equilibrium state dy2
dt

=0, a = a0, and α = π
3
. Hence the Equations (2.23, 2.26

and 2.29) can be rearranged, respectively, as follows:

2ρ∆Sa0 sin
(π

3

)
− 2σ cos

(π
3

)
= 0, (2.40)

2ρ∆Sa0 sin
(π

3

)
− 24γa0 cos

(π
3

)
= 0, (2.41)

and

2ρ∆Sa0 sin
(π

3

)
− 2σ cos

(π
3

)
− 24γa0 cos

(π
3

)
= 0. (2.42)

Now, since σ = 0.05, ρ = 1, γ = 0.007, ∆S = 1 − S, and S = 3
√

3
2
a2

0 then the

Equations (2.40-2.42) can be reorganised, respectively, as:

in the case of applying the forces Fd and Fi,

4.5a3
0 −
√

3a0 + 0.05 = 0, (2.43)

in the case of applying the forces Fd and Fp

4.5a3
0 − (
√

3 + 0.084)a0 = 0, (2.44)

and in the case of applying the forces Fd, Fi, and Fp

4.5a3
0 − (
√

3− 0.084)a0 + 0.05 = 0 (2.45)

Then the Equations (2.43-2.45) can be solved, respectively, for the values of a0 as

follows.

In the case of applying the forces Fd and Fi, a0 = 0.6054 and hence the area at the

equilibrium is S = 0.9523; in the case of applying the forces Fd and Fp, a0 = 0.6052

and therefore the area at the equilibrium is S = 0.9515; in the case of applying

the forces Fd, Fi, and Fp, a0 = 0.5894 and hence the area at the equilibrium is

S = 0.9025. It is noted that the other values of a0 are neglected either because they
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are negative, a0 represents the length of each edge at the equilibrium and should be

positive, or because they render the area close or equal to zero. It can be seen that

these area values are approximately the same as found in the simulations.

2.6 Analysis of the dynamics of deformed tissue

of infinite size

In this section, the examination of the relaxation for slightly deformed cells is

presented analytically. For this examination the symmetrical hexagon shape was

taken (Figure 2.17). For simplicity, the centre of the zero cell was chosen to be the

origin point. The three parameters a, b and α ( 2α is the angle ∠ABC) are adequate

to examine the solutions analytically through finding
dy2

dt
,
dx1

dt
, and

dy1

dt
.

The analytical solutions for the situation in the case of using the forces Fd, Fp

and Fi using an infinite number of cells were studied analytically as follows:

Since a symmetrical hexagonal cell shape is given, the analysis of the change of

position of the two points A and B are adequate for the objective of this study,

where the change of position of the other points that correspond to A and B is

similar. ( i.e. for example, the points C, D, and F behave similarly to A; E, I, and J

behave similarly to B). Therefore the only dy2
dt

, dx1
dt

, and dy1
dt

are sufficient to describe

the behaviour of the relaxation.

Describing these equations requires defining these formulae

Ψ =
ri − rj
|ri − rj|

+
ri − rl
|ri − rl|

+
ri − rk
|ri − rk|

,

and

Ω =
1

2
(rl − rk)×K +

1

2
(rk − rj)×K +

1

2
(rj − rl)×K = 0.

using Figure 2.2 and the Equations (2.5), (2.9) and (2.12) , where K is the unit

vector (0, 0, 1). Hence for the vertex B; ri = (0, y2), rj = (0, y3), rl = (−x1, y1) and

rk = (x1, y1), while for the vertex A; ri = (x1, y1), rj = (x2, y2), rl = (0, y2) and

rk = (x1,−y1) and through Equations (2.15) and (2.16) we have

ΨB =
2(y2 − y1)j

a
− j = (2cosα− 1)j, (2.46)
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Figure 2.17: A domain of infinite tissue formed by regular hexagonal cells. A
particular cell is considered with vertices A, B, C, D, E, F , I, and J and edges AB,
BC, CD, DE, EF , FA, AI, and BJ , where AB = BC = DE = EF = AI = a,
AF = CD = BJ = b, and AC = FD (i.e. the shape is symmetric). 2α is ∠ABC,
θ1 is ∠EBF , and θ2 is ∠FBA.
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ΨA =
2(y1 − y2)j

a
+

2y1j

b
= (1− 2cosα)j, (2.47)

and

ΩB = ΩA = 0. (2.48)

In this situation, the forces Fd, Fi and Fp are applied and the three relationships

dy2
dt

, dy1
dt

, and dx1
dt

need to be found. From the Equations (2.13a) and (2.13b), and

using the point (0, y2), Fiy = −σΨB(y) and Fdy = 0 and from the Equation (2.13c),

Fpy = −12a0γΨB(y). In this case dy2
dt

can be given as

dy2

dt
= (σ + 24a0γ)(1− 2cos(α)) (2.49)

Moreover, for using the point (x1, y1), Fiy = −σΨA(y), Fix = 0, Fdy =

−ρ∆SΩA(y) = 0, Fdx = −ρ∆SΩA(x) = 0, and Fpy = −24a0γΨA(y) and

Fpx = −24a0γΨA(x) = 0. In this case dx1
dt

= 0 and dy1
dt

can be presented as

dy1

dt
= Fdy + Fiy + Fpy = (σ + 24a0γ)(2cos(α)− 1). (2.50)

The equations that represent the behaviour of relaxation can be found as follows:

In the case of applying the forces the equations are given as below.

Since b = 2y1 and b = a0 + ∆ = a0 − 2δ, then db
dt

= 2dy1
dt

, therefore

d(a0 − 2δ)

dt
= 2(σ + 24a0γ)(2cos(α)− 1),

Since a0 is constant, therefore by replacing the values of α, α = π
3

+ ε, and using the

first order approximation, we have

−2
dδ

dt
= 2(σ + 24a0γ)

(
2

(
1

2
−
√

3

2
ε

)
− 1

)
,

Hence,
dδ

dt
=
√

3σε+ 24
√

3a0γε. (2.51)

The second and higher order terms are neglected because they are very small.
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On the other hand, by using (2.15), then dx1
dt

= d(a sinα)
dt

, therefore

dx1

dt
= sin(α)

da

dt
+ a cos(α)

dα

dt

By replacing δ and α and using the first order approximation,

0 =

(√
3

2
+

1

2
ε

)
dδ

dt
+ (a0 + δ)

(
1

2
−
√

3

2
ε

)
dε

dt

By replacing the value of dδ
dt

using (2.51), then

(
−3

2
σε+ 36a0γε

)
+

(
1

2
a0 +

1

2
δ −
√

3

2
a0ε

)
dε

dt
= 0. (2.52)

In consequence
dε

dt
= − 3

a0

σε− 72γε. (2.53)

The relatively small terms value are neglected.

For the solutions, the eigenvalues and eigenvectors are used using Matlab 17a

where AV = λV , A is a square matrix, λ is eigenvalue of A corresponding to the

eigenvector V. The matrix and the each of eigenvalues and their corresponding

eigenvectors are given as follows:

A =

0 0.2583

0 −0.7582

, V =

1.0000 −0.3225

0 0.9466

, λ1 = 0 and λ2 = −0.7582

Hence, the solutions in the case of the imposing the three forces can be given as

δ
ε

 = c1e
0t

1

0

+ c2e
−0.7582t

−0.3225

0.9466


From this solution, it is evident that the relaxation time is infinite.

2.7 Conclusions

In this work the exponential behaviour of the relaxation from these different

cases has been confirmed. In the case of one cell and applying the forces after
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stretching/shrinking, and then releasing a cell to relax to equilibrium state, it was

observed that the relaxation time in the case of applying the three forces decreased

in comparison to the case of the absence of the tension force Fi or the perimeter

force Fp. This was shown numerically and analytically. In the case of more than

one cell, the relaxation adopts exponential behaviour with approximately a linear

relationship between the relaxation times and the number of cells only after 36

cells but not before that (Figure 2.13). The case of replacing the tension force Fi

with the elastic force Fe was also examined for the behaviour of relaxation. In this

case, it was also demonstrated that the relaxation is exponential and the relationship

between the relaxation times and the edge target lengths changed from the quadratic

behaviour for applying all forces to the bell curve shape in the case of the absence

of the perimeter force. Moreover, the relaxation of an infinite number of cells was

studied analytically. The results confirmed its elasticity with an infinite relaxation

time.
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Chapter 3

Mathematical study of epithelial

tissue topology

Abstract

Experimental observations reveal the striking identity of topological patterns formed

by cells in various epithelial tissues: on apical and basal sides of epithelial tissue cells

form polygons, while histograms of cell-edge distribution are practically identical for

all inspected tissues. Since tissues form and grow as a result of cellular proliferation,

it is reasonable to assume that the events associated with cellular divisions underpin

the topology of an entire tissue. A few mathematical models have been reported

which derive tissue topology from cellular division patterns (25; 79). However, none

of them has succeeded in reproducing experimental observations. Here, two new

models are reported, continuous (represented by master equations) and cellular

automata, both successfully reproducing experimental and numerical observations

and overcoming the shortcomings of previous models. In particular, based on

simulations which were performed in this study using the vertex model, it was

concluded that the probability of cellular division increases exponentially with the

number of cell edges. This assumption turned out to be critical for successful

reproduction of experimental data.
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3.1 Introduction

With recent advances in biology, particularly with a deeper understanding of cellular

processes, it has become possible to tackle new and challenging problems related to

the properties of tissues. Epithelial tissues are commonly represented by unicellular

layers and have a quite distinctive topology (75). Cell borders, as seen from the tissue

surface, form segments of straight lines and cells are represented by polygons (78).

The number of cell edges (which is equivalent to the number of their neighbouring

cells) commonly varies between 4 and 9, inclusively. Triangular cells, as well as cells

with ten or more edges, are encountered very rarely (25).

Histograms showing cellular fractions of polygons having a certain number of

edges are widely used in the literature (25; 79). Those histograms have been

observed to present a common, almost identical, pattern for the cell-edge distribution

(CEDHs) in epithelial tissues of different biological organisms (such as cucumber

epidermis (54; 55), Drosophila, Xenopus, Hydra, Arabidopsis (25)). The distribution

of frequency of cells in respect to their number of edges is asymmetric (see

Figure 3.1c), with a maximum value of 6-sided polygons, indicating that the majority

of cells in a tissue are hexagonal ( 45%). Pentagonal and heptagonal cells are

observed less frequently in proportions of 25% and 20% respectively while 4 and

8-sided cells are rarely observed with a frequency of less than 5% each.

Figure 3.1c shows CEDHs obtained in three different experiments as follows:

Lewis’s experimental data (LED) that were observed by Lewis in 1928, Gibson’s

experimental data (GED) that were monitored by Gibson and his co-worker in

2006, and LaPorta-Zapperi experimental data (LZED) obtained in the University

of Milan in work carried out in cooperation with the group in the University of

Liverpool (Abdullah and Vasiev) in 2017. The histograms show that there is

compatibility between the results. Also in Figure 3.1c, it can be seen that log-normal

fits and this observation extends its universality to other objects, for example, to the

distribution of sizes of crushed stones in iron mines (50). This universal pattern of

histograms gives a significant reference for building a reliable mathematical model.

The model in this study was built to primarily provide a mathematical model which

is compatible with these experimental observations. CEDH bears a significant

role in the understanding of the mechanical approach of the development of the
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epithelial tissues and in turn helps to the study and understanding of the other

cellular processes, such as adhesion, cell rearrangement and motility.
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Figure 3.1: a) A segmented image of the tissue formed by a Drosophila pupa (9).
b) The same image as in (a) is coloured according to the number of edges in each
cell (blue:4 ,green:5, red:6, cyan:7, yellow:8), which is belong to LZED. c) The
corresponding histogram was averaged over three different experiments and different
time steps. The histogram is compared with the earlier results reported in the
literature (25; 55).

The polygonal cells that compose an epithelial tissue are portrayed in a

two-dimensional surface and are connected to each other by sharing each of their

edges with a distinct neighbouring cell. During a single process of division, a cell

from the tissue (the mother cell) divides into two new cells (the daughter cells) and

each of its two neighbours increases their number of vertices (and therefore their

number of edges) by one. The selection of the two affected neighbours is specified

by the orientation of a division line that splits the mother cell into two daughter

cells. In this concept, the division line crosses two edges of a mother cell rather than

any of its vertices. Consequently, in the course of tissue growth, the number of cells

as well as their number of edges, changes over time. However, the CEDH stabilizes

at an equilibrium pattern shown in Figure 3.1c.

A number of mathematical models have been developed to explain the formation

of the observed CEDHs. A model introduced by Gibson et al. (25) (referred to

as the GPNP model), considers the cellular proliferation as the only process that
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contributes to the topology of epithelial tissue. According to the GPNP model,

cells are polygons with four or more sides (i.e. the complete absence of 3-sided

cells is assumed) and are divided synchronously in discrete generations, while

spatial correlations between the sidedness of neighbouring cells are neglected. The

orientation of the division line in each mother cell is chosen randomly. The algorithm

of the division process in the GPNP model places two vertices of an i-sided mother

cell on one side of the division line, two other vertices on the other side of the

division line, and distributes the remaining i − 4 vertices randomly (following the

binomial distribution) between the two sides. These assumptions allow calculations

of the probability of an i-sided cell to become j-sided at the next generation, taking

into account the change in the sidedness due to the division of the cell and the gain

of sides from dividing neighbouring cells. The GPNP model fairly reproduces the

histograms obtained experimentally with the only exception that the population of

4-sided cells becomes extinct during proliferation in this model and therefore is not

observed in the histograms.

Sandersius et al (79) attempted to revisit the GPNP Markov chain model by

considering more biologically realistic assumptions. In their first modification to

GPNP model, they considered that 3-sided cells exist in the tissue and they found

that under this conjecture, the steady state frequency of 4-sided polygons is 8%.

However, despite the fact that this modification predicts a non-zero population of

4-sided cells, in contrast to the original GPNP model, this percentage is two times

higher than the actual fraction observed in experimental data. In addition, they

analysed the histograms derived by the modified model considering asynchronous

divisions and assuming that the split of mother-cell vertices among two daughter

cells is given by a uniform random binomial (which was considered in GPNP

model) distribution. However, histograms obtained under these assumptions do not

reproduce the histogram obtained in experiments and therefore it was concluded

that correlations between sidedness of neighbouring cells should play a role in the

formation of CEDH in growing tissue. They confirmed their conclusions by showing

a good agreement between experimental observations and simulations implemented

by a computational sub-cellular element model (79).

One of the core assumptions of all the above models is that the probability of cell
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division does not depend on the number of its edges. Recently, it has been shown

experimentally that this is not true. Figure 3.2 illustrates that cells with more edges

divide more frequently and this relationship can be expressed in an exponential form.

The plot in this figure presents the frequency of division as a function of the number

of edges of the dividing cell, where the line represents the best exponential fit (en/τ ,

n = 4, 5, ..., 9) to data with τ = 1.7. This experimental observation reflects the fact

that the cells with more edges generally have a larger surface area compared to the

cells with a smaller number of edges. This experimental fact has been confirmed, in

numerical simulations using the dynamic vertex model. These simulations will be

discussed in detail later in this chapter.
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Figure 3.2: Frequency of cellular divisions as depending on the number of edges of
dividing cell. The presented data has been extracted from experiments reported in
(9). Error bars represent standard deviation and best fit exponential function is
shown.

In this study a new mathematical model is proposed which is represented

by master equations that describe the evolution of CEDH in growing epithelial

tissue. The model is used to assess different cell-division scenarios and associated

probability mass functions (such as uniform, binomial or equal split) giving a

different distribution of mother-cell vertices between daughter cells. The model

is used to produce CEDHs which are then compared with the CEDH obtained in

experiments on Drosophila. The first version of the model where it was assumed that

all cells divide with the same probability (linear model) produced CEDHs which are
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considerably different from those obtained in experiments.

In this work, numerical simulations were performed on the vertex dynamics

model using the open-access software Chaste (21; 22; 64) to generate CEDH for

the virtual tissue. CEDHs obtained in simulations are remarkably similar to the

CEDHs from experiments. Particularly, the simulations in this study showed that

there might be an exponential increase in the frequency of cellular division with the

number of edges of the dividing cell. Such dependence naturally arises from the

fact that cells divide only when they reach a certain age and the number of edges

of long-living cell tends to increase due to the division of their neighbours. This

relationship is used to reformulate the analytical model and to reproduce histograms

using the modified model. It was found that the CEDHs in the modified model,

had significantly improved and become comparable with the experimental data. In

particular, CEDH obtained using the equal split scenario appeared to be in the

best agreement with experimentally observed CEDH, while the CEDHs for other

scenarios also improved.

Finally, also in this research, a cellular automata model of growing epithelial

tissue was developed. CEDHs obtained for a virtual tissue described by this model

confirmed results obtained in the framework of the continuous model: CEDHs for

the equal split scenario with the incorporated exponential increase of the frequency

of cellular division on the sidedness of the dividing cell reproduced the CEDHs fairly

well in experiments and in the analytical model under the same assumptions.

3.2 Numerical simulation using the vertex

dynamics model

In this section CEDH obtained in numerical simulations of growing tissue using the

dynamics vertex model (38) is reported. This model is commonly used for modelling

epithelial tissues (20; 22). In this model, each cell is represented by a polygon

whose shape can change due to the forces acting upon its vertices. Simulations

of the growing tissue were performed using the open-access software Chaste (64),

implementing formation of a tissue from a single cell in the course of successive

divisions. Cell division in Chaste can be set in various ways. An algorithm when
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cell division is set in a random manner was chosen for this study so that the ages of

dividing cells are uniformly distributed within the interval [TM , TM +TR], where TM

is a cell age when cells are allowed to divide and TR randomises the division process

(typically TM = 2 and TR = 2). All cells undergo division when they aged between

two and four (simulation unit time). The probability of division is uniform function

and the Gillespie algorithm is implemented in the vertex dynamics model.Thus, in

the simulations, the process of cellular division is fully specified and the number

of edges of every single cell (and the number of edges of its neighbours) is easily

determined.

3.2.1 CEDH for growing tissue in numerical simulations

To find CEDH in the modelled growing tissue six simulations were performed in this

study (since the dispersion for six simulations was not large, there was no reason to

make more simulations). Each of these simulations started with one cell (at t = 0 as

initial condition). In the course of the simulation, cells proliferated and at the time

the simulation stopped there were more than 4,000 cells. The simulations data are

summarised in the matrix M shown below:

M =



122 1625 2905 1284 158 8

111 1445 2603 1132 137 7

79 1149 2176 926 79 1

70 1152 2011 898 86 4

100 1347 2430 1094 104 3

110 1428 2593 1165 115 6


, m =



6102

5435

4410

4221

5078

5417


Entries in the matrix [Mij] represent the number of cells with j+ 3 number of edges

(that is, the number of edges varies between 4, when j = 1, and 9, when j = 6) at

the end of i’s simulation. Vector m gives the total number of cells at the end of each

simulation, mi =
∑6

j=1Mij.

The CEDH obtained from these simulations and shown in Figure 3.3 represents

the CEDH for the averaged data for all simulations. To find fractions of cells having
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Figure 3.3: CEDH from simulations on vertex model (cyan histograms) as compared
with the CEDH obtained experimentally (25) (melrose histograms). Parameter
values used in the vertex model simulations: ρ = 220, σ = 10, γ = 10, TM = 2
and TR = 2.

different number of edges the vector F was used, where F found from the equation

Fi =

∑6
j=1 Mji∑6
i=1mi

.

Hence,

F =
[
0.0192, 0.2658, 0.4803, 0.2120, 0.0218, 0.0009

]
,

and components of this (normalised) vector presented as bars forming simulated

CEDH in Figure 3.3. As is evident from this figure, the CEDH for growing virtual

tissue is remarkably similar to the CEDH obtained experimentally.

If there is no cell division the tissue in the vertex dynamics model is frozen

and the histogram of cell-edge distribution is not changing. In order to analyse

the dynamic of the histogram, cell division was introduced and while cell grows

the histogram evolves and stabilizes when the number of cells over 1000. However,

in this study, the simulation was extended to 5000 cells to be sure the stationary

histogram is obtained.

3.2.2 Verification of Aboav’s Law in numerical simulations

As presented in Chapter 1, Aboav’s law defines the relationship between the number

of edges of neighbouring cells. In this study, this relationship was calculated for a
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virtual tissue formed in the course of one of our numerical simulations for a tissue

comprised of 6,102 cells. The results of these calculations are presented in Table 3.1:

values of Eij where i and j change from 4 to 9 give the number of j-sided cells

neighbouring i-sided cells.

Eij 4 5 6 7 8 9
4 0 11 109 129 34 5
5 19 867 3504 2579 469 27
6 132 3596 8377 4365 585 33
7 146 2644 4396 1613 155 6
8 34 474 586 155 14 1
9 5 27 33 6 1 0

Table 3.1: Numbers of j-sided cells neighbouring i-sided cell (where i, j = 4, ..., 9)
found in the numerical simulation.

The data presented in the Table 3.1 can be reshaped according to the formula

Rij =
Eij∑9
k=4 Eik

,

where i, j= 4, ..., 9 which would now give the fraction of the j-sided cells

neighbouring i-sided cells. For example, the cells with 7-sides represent the majority

(around 45%) of cells neighbouring 4-sided cells, while the 6-sided comprise only

38%. Similarly, 6- and 5-sided cells represent the majority of cells neighbouring

9-sided cells, forming approximately 46% and 38% of the total number of neighbours

respectively. These results are represented by bar plots in Figure 3.4. Aboav’s

law states that the average number of edges for all cells neighbouring i-sided cell

decreases linearly with i. To check this for the numerical simulation in this study,

corresponding averages were calculated according to the formula:

Ai =

∑9
j=4 Eij × j∑9
j=4Eij

,

where i = 4, ..., 9. Calculated numbers can be presented as a vector:

A =
[
6.6979, 6.3608, 6.1038, 5.8890, 5.7184, 5.5972

]
.

The plot of these numbers versus i is shown in Figure 3.5 indicates that the

simulations confirm Aboav’s law: the average number of edges for neighbouring
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Figure 3.4: Bar charts showing fractions of j-sided cells neighbouring i-sided cells
where i = 4, ..., 9 (each panel corresponds to one of these i values).

cells indeed decreases linearly with the number of edges of the considered cell.

By eye, the exponential fit looks similar to the linear fit (Figure 3.5), therefore it is

not considered.

The data presented in the Table 3.1 can be reshaped according to the formula:

R∗ij = Rji

which would now give the fraction of the j-sided cells neighbouring i-sided cells. For

example, the cells with 6 sides represent around 38%, 47%, 49%, 49%, 46%, and 46%

of neighbouring cells to 4, 5, 6, 7, 8, 9-sided cells respectively. The data represented

by R∗ij are presented as bar charts in Figure 3.6. It can be seen that cells with more

edges are more frequently met as neighbours of cells with smaller number of edges,

and vice versa.

It is noted that the values that can be calculated using the Equation (1.19), vector m

which represents the average number of edges surrounding a cell, are approximately

the same as in the vector A.

m =
[
6.7680, 6.3744, 6.1120, 5.9246, 5.7840, 5.6747

]
.
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Figure 3.5: Aboav relationship for the virtual tissue obtained in numerical simulation
using the vertex model: average number of edges for cells neighbouring i-sided cell
linearly decreases with an increase of i.
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Figure 3.6: Frequencies of j-sided cells (bars) neighbouring i-sides cells (panels).
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3.2.3 Dependence of the frequency of cellular division on

the number of edges of dividing cell

As seen earlier, the experimental observations indicate that cells having more edges

divide more frequently than the cells that have a smaller number of edges. This

phenomenon was examined in this study for virtual tissues obtained in six numerical

simulations which were used to find CEDH (see above). Similarly to the matrix M

introduced for constructing CEDH, matrix L was shaped so that its entries [Lij]

give the total number of j-sided cells divided during the i’s-simulation.

L =



6 286 1916 3082 747 62

8 299 1779 2578 713 57

7 219 1452 2138 549 43

3 233 1394 2079 484 26

9 277 1662 2428 649 51

7 272 1777 2594 708 58


.

Using matrices M and L matrix R can be constructed with Rij =
Lij
Mij

which gives

the number of divisions of j-sided cells per one j-sided cell

R =



0.0492 0.176 0.6596 2.4003 4.7278 7.75

0.0721 0.2069 0.6834 2.2774 5.2044 8.1429

0.0886 0.1906 0.6673 2.3089 6.9494 43

0.0429 0.2023 0.6932 2.3151 5.6279 6.5

0.09 0.2056 0.684 2.2194 6.2404 17

0.0636 0.1905 0.6853 2.2266 6.1565 9.6667


.

Finally, after averaging entries in each column and normalising the obtained set of

numbers so that their sum is equal to one, the vector σ is found as

σ =
[
0.0028, 0.008, 0.0278, 0.0939, 0.2385, 0.629

]
,

with entries σi giving the division frequencies of i-sided cells. Plot of σi versus i

is shown in Figure 3.7. It can be seen that once again the exponential increase in

the probability of division versus the number of edges of the dividing cell is present,
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Figure 3.7: Correlation between the frequency of cell division and the number of
edges i of mother cell in numerical simulations on the vertex model. Error bars
represent standard deviation and best fit exponential function is shown.

as observed in experiments (see Figure 3.2). The exponential fit (et/τ ) to the data

shown in Figure 3.7 is the best for the value of the parameter τ = 0.91.

The most important observation that can be figured out is, as the Sigma
′
s

values give the proportional relationship between the number of edges in a cell

and the opportunity of this cell to be divided faster than the other cells , the

Aboave relationship illustrates that the cells with the same number of edges i

have neighbours with an average number of edges and this average decrease with

increasing i and this provides the opportunity to the cells with the small number of

edges to grow and become bigger pertaining to the size. Consequently, these two

relationships play the central role in the continuing the process of the division that

the epithelial tissues are required.

3.3 Analytical model describing the evolution of

CEDH in epithelial tissue

In this section, a system of master equations is introduced which describes

the evolution of cellular fractions in growing epithelial tissue. The principal

assumption is that cellular division is a reasonably rare event so that cell-shape
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changes associated with any two cellular divisions do not interfere with each other.

Furthermore, it is assumed here that there are no 3-sided cells, which leads to the

assumption that a cleavage line crosses two non-adjacent edges of a mother cell

(this assures that none of the daughter cells is 3-sided, neither is formation of cells

with more than nine neighbours considered, as those are not commonly observed in

experiments (25)). The order of cell vertices plays a fundamental role in determining

the orientation of a division line.

It is assumed that the proliferation is the only process involved in the evolution

of CEDH. It is noted (see Figure 3.8) that each cell division results in the formation

of two daughter cells with their number of edges totalling to i + 4 where i is the

number of edges of the mother cell. In addition, two neighbours of the dividing

cell each acquire an extra edge. Note that as a result of single cell division, there

appears one extra cell and six extra edges, leading, in the long run, to an average

six edges per cell, making an average cell to be hexagonal.

The total number of cells at time t is denoted by N(t), the number of i-sided cells

Figure 3.8: Division of hexagonal cell into two identical daughter cells.

by Ni(t) and the fraction of i-sided cells in the population by pi(t) = Ni(t)/N(t).

The rate of change in the fraction of i-sided cells is given by

d

dt

(
Ni

N

)
=
dNiN −NidN

N2dt
=

dN

Ndt

(
dNi

dN
− Ni

N

)
,

which can be written as

ṗi = α (Mi +Ki − pi) , (3.1)

where α = dN
Ndt

is the cells’ proliferation rate and the expression in brackets defines
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the probability for an i-sided cell to appear/disappear in a single proliferation event.

dNi
dN

= Mi + Ki is split into two terms, where Mi determines the changes due to

removal of i-sided mother cells and the addition of i-sided daughter cells while Ki

accounts for the changes in the number of edges of neighboring cells after each

division. The term Ki is easy to estimate, assuming that the fraction of i-sided cells

in the neighborhood of any dividing cell is equal to their total fraction (i.e. there is

no correlation between sidedness of neighbouring cells). Then:

Ki = −2pi + 2pi−1, (3.2)

where the first term defines the decrease in the fraction of i-sided cells if either or

both affected neighbours were i-sided before the division and become i + 1-sided

after the division; and the second term counts the cells that were i− 1-sided before

the division and become i-sided. If the number of edges is allowed to vary from

four to nine, then Equation (3.2) holds for 5 < i < 8, while for the boundary cases

K4 = −2p4 and K9 = 2p8.

3.3.1 Three scenarios of cellular division

To assess the component Mi in Equation (3.1) different scenarios of cellular division

will be considered in this study. In the first scenario, the division line crosses any

two non-adjacent edges of the mother cell with equal probability. This scenario is

referred to as ‘uniformly oriented divisions’. This case is shown schematically in

the upper panel of Figure 3.9 where the black dashed and red solid lines represent

the possible division lines all occurring with the same probability which is equal to

1/(i − 3) where i is the number of edges of the mother cell. This also gives the

frequencies of possible pairs of daughter cells which are shown in the lower panel

of Figure (3.9). Thus, for example, the frequency of acquiring a 4-sided daughter

cell from a hexagonal, heptagonal, or octagonal mother cell is 2 : 3, 2 : 4 and 2 : 5

respectively. The general form of Mi under this scenario is given by:

Mi = 2
9∑
j=i

1

j − 3
p∗j − p∗i , (3.3)
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where p∗j is the probability that a mother cell, in a randomly chosen division, is

i-sided.

Figure 3.9: Possible division scenarios of i-sided mother cells and corresponding
sidedness of daughter cells. The red lines in the upper panel and the red coloured
pairs of daughter cells at the lower panel correspond to the ‘equal split’ scenario.

In an alternative scenario, the probabilities for different orientations of a division

line is non-uniform and given by a binomial probability. In this case the division

line that connects two edges that are furthest away from each other (red solid lines

in upper panel of Figure 3.9) appears more frequently than a division line that

connects edges which are closest to each other (black dashed lines in upper panel of

Figure 3.9). In this case, the pairs of daughters that are shown by red in the lower

panel of Figure 3.9 are observed more frequently than the uncoloured pairs. The Mi

under this scenario, referred to as ‘binomially oriented divisions’, is given by

Mi = 2
9∑
j=i

(
j − 4

i− 4

)
1

2(j−4)
p∗j − p∗i , (3.4)

In the third scenario the division line connects only two opposing edges of the mother

cell, so that the daughter cells either have an equal number of edges (the mother

cell has an even number of edges) or these numbers differ by one (mother cell with

odd number of edges). Allowed divisions are illustrated in red in the upper panel of

Figure 3.9 and possible pairs of daughter cells in red in the lower panel of Figure 3.9.
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It is clear that i-sided daughter cells can only appear after the division of (2i− 3),

(2i− 4) or (2i− 5)-sided cells. Then, the term Mi can be represented as:

Mi =



2p∗2i−4 + p∗2i−3 − p∗i if i = 4

p∗2i−5 + 2p∗2i−4 + p∗2i−3 − p∗i if 4 < i < 7

p∗2i−5 − p∗i if i = 7

−p∗i if i > 7.

(3.5)

3.3.2 Linear model

If, following (25), it is assumed that all cells divide with equal probability, i.e.

p∗i = pi, then for each of the considered above scenarios there will be a system of

linear equations (Equations (3.1-3.3) for the first scenario, (3.1, 3.2, 3.4) - for the

second and (3.1, 3.2, 3.5) - for the third), satisfying the condition
∑9

i=4 ṗi = 0 and

describing the evolution of CEDH. Matrices defining the system in each of these

three cases are as follows:

Uniform distribution:



ṗ4

ṗ5

ṗ6

ṗ7

ṗ8

ṗ9


=



−2 1 2
3

2
4

2
5

2
6

2 −3 2
3

2
4

2
5

2
6

0 2 −10
3

2
4

2
5

2
6

0 0 2 −14
4

2
5

2
6

0 0 0 2 −18
5

2
6

0 0 0 0 2 −10
6





p4

p5

p6

p7

p8

p9


,

Binomial distribution:



ṗ4

ṗ5

ṗ6

ṗ7

ṗ8

ṗ9


=



−2 1 2
4

2
8

2
16

2
32

2 −3 1 6
8

8
16

10
32

0 2 −14
4

6
8

12
16

20
32

0 0 2 −30
8

8
16

20
32

0 0 0 2 −62
16

10
32

0 0 0 0 2 −62
32





p4

p5

p6

p7

p8

p9


,
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Equal split:



ṗ4

ṗ5

ṗ6

ṗ7

ṗ8

ṗ9


=



−2 1 0 0 0 0

2 −3 2 1 0 0

0 2 −4 1 2 1

0 0 2 −4 0 1

0 0 0 2 −4 0

0 0 0 0 2 −2





p4

p5

p6

p7

p8

p9


.

Solutions of these systems are given by a superposition of exponents defined by

eigensolution of the corresponding matrices.

The characteristic equation for the first matrix, corresponding to the uniform

distribution for the orientation of the cell-division line:

λ6 +
171λ5

10
+

5146λ4

45
+

33391λ3

90
+

25954λ2

45
+ 336λ = 0 (3.6)

The characteristic equation for the binomial distribution:

λ6 +
289λ5

16
+

16251λ4

128
+

219597λ3

512
+

699143λ2

1024
+

405253λ

1024
= 0 (3.7)

Finally, the characteristic equation fo the equal split scenario:

λ6 + 19λ5 + 140λ4 + 490λ3 + 792λ2 + 456λ = 0 (3.8)

Eigenvalues (or roots of characteristic Equations (3.6, 3.7, 3.8)) are found (using

Matlab) to be as following:

λUO =



0

−4.1672 + 0.2184i

−4.1672− 0.2184i

−4

−3.3067

−1.4588


, λBO =



0

−4.4692 + 0.7864i

−4.4692− 0.7864i

−4.7573

−3.0362

−1.3305


, λES =



0

−5.1573 + 1.3052i

−5.1573− 1.3052i

−4.7321

−2.6854

−1.2679


.

where λUO, λBO and λES refer to the matrices of eigenvectors of the uniformly

oriented cell-division, Binomially oriented cell-division and Equal split cell-division,

respectively.
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Therefore, the matrix of eigenvectors corresponding to λUO along columns is

EV eUO =



−0.5725 −0.0095− 0.0024i −0.0095 + 0.0024i 0.0108 −0.0517 −0.3404

−0.5725 −0.0095− 0.0024i −0.0095 + 0.0024i 0.0217 −0.0517 −0.3404

−0.4294 −0.0235− 0.0350i −0.0235 + 0.0350i 0.0325 0.0229 −0.2064

−0.2863 −0.1169 + 0.0933i −0.1169− 0.0933i 0.0433 0.2159 −0.0469

−0.1789 0.7725 0.7725 −0.7579 0.6172 0.0879

−0.2147 −0.6132− 0.0536i −0.6132 + 0.0536i 0.6496 −0.7527 0.8460


,

The matrix of eigenvectors corresponding to λBO along columns can be given as

EV eBO =



0.4816 0.0078− 0.0124i 0.0078 + 0.0124i −0.0139 0.2218 −0.5354

0.6092 −0.0313 + 0.0477i −0.0313− 0.0477i 0.0906 −0.0267 −0.4279

0.4852 0.0937 + 0.1156i 0.0937− 0.1156i −0.1076 −0.2452 −0.0747

0.3125 0.1363− 0.3162i 0.1363 + 0.3162i 0.2575 −0.3028 0.1556

0.1759 −0.7385 −0.7385 −0.7797 −0.4302 0.2054

0.1816 0.5321 + 0.1653i 0.5321− 0.1653i 0.5530 0.7831 0.6770


,

And the matrix of eigenvectors corresponding to λES along columns can be given as

EV eES =



0.3409 0.0395− 0.0372i 0.0395 + 0.0372i −0.1506 −0.6264 0.4546

0.6818 −0.0763 + 0.1690i −0.0763− 0.1690i 0.4113 −0.4585 −0.3116

0.5303 0.1103− 0.3954i 0.1103 + 0.3954i −0.3244 0.0969 −0.4291

0.3030 −0.3556 + 0.4010i −0.3556− 0.4010i 0.2375 0.2647 −0.1491

0.1515 0.6145 0.6145 −0.6488 0.1938 −0.2269

0.1515 −0.3324− 0.1374i −0.3324 + 0.1374i 0.4750 0.5295 0.6621


.

It can be seen that for each of the three models all eigenvalues except for one have

negative real part, none have positive real part and one has zero real part. Thus,

solutions of these systems will converge to the stationary solution defined by the

eigenvector corresponding to zero eigenvalue. As the sum of all fractions in the

CEDH is equal to one, the stationary solution will correspond to this eigenvalue,

normalized in a way that the sum of all its components is equal to one. The

normalized eigenvector corresponding to the eigenvalue λ = 0 for the three scenarios

are
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NEV CZUO =



0.2540

0.2540

0.1905

0.1270

0.0794

0.0952


; NEV CZBO =



0.2144

0.2712

0.2160

0.1391

0.0783

0.0809


; NEV CZES =



0.1579

0.3158

0.2456

0.1404

0.0702

0.0702


.

The stationary solutions of all three linear systems as given by these three normalised
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Figure 3.10: CEDHs obtained in three versions (differing on probabilities of different
division scenarios) of linear model as compared with the experimental CEDH. The
Matlab codes are presented in Appendix A.3.

eigenvectors represent modelled CEDHs so that the fractions of i-sided cells are given

by the associated components of eigenvectors. These modelled CEDHs are shown

in Figure 3.10 which also includes the CEDH from experiments. As seen from

this figure, the modelled CEDHs do not reproduce the experimental observations

in a satisfactory manner; the differences between the experimental results and the

modelled histograms are clearly seen. For example, the cellular fraction of hexagonal

cells is around 45% in the experimental observations while it does not exceed 25%

for all three modelled scenarios.

3.3.3 Nonlinear model

The assumption that the frequency of cellular division is independent of the sidedness

of dividing cell is not supported by experiments (55). Besides, in this study, it was
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shown numerically using the dynamics vertex model that the division probability

increases exponentially with the number of edges of the dividing cell (see Figure 3.7).

A model was thus modified assuming that in Equations (3.3, 3.4, and 3.5) the values

of p∗i are found using the results of the numerical simulations as given by σi and

shown in Figures 3.2 and 3.7. p∗i is the fraction of i−sided mother cell and the

relationship between p∗i and pi was found numerically in the vertex dynamics model

and expressed by

p∗i =
σipi∑
i σipi

, (3.9)

and this term renders the models non-linear. Solutions of these non-linear models
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Figure 3.11: CEDHs obtained in the versions of analytical model with included
dependence of the frequency of cellular division on the sidedness of dividing cell (as
suggested by Figure 3.7). The model becomes non-linear and solutions are found
numerically using Matlab codes. The Matlab codes are given in Appendix A.3

cannot be found analytically but can be evaluated numerically. A code was written

in Matlab to find solutions for all three versions of the model. It was found that

the solutions converge in all cases and show the obtained stationary solutions in

Figure 3.11. As seen from this figure, the modelled CEDHs in the case of non-linear

models are far closer to the experimentally observed CEDH. The best fit is given by

the Equal split model: in fact, the steady-state solution for this model is in excellent

agreement with the experimental observations and also with simulation results

(Figure 3.12). The histograms obtained in the cases of the two other cell-division

scenarios were also improved and now appear comparable with the experimental
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data, especially in the case of the binomial distribution.
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Figure 3.12: CEDHs obtained in the versions of analytical model with included
dependence of the frequency of cellular division on the sidedness of dividing cell in
comparison with the CEDHs that obtained by experimental observations and by
simulation results.

3.4 Cellular automata model

To verify the finding which was obtained using the analytical model (as represented

by the master equations) and using the dynamic vertex model (as implemented

by Chaste), yet another model was designed. This is a cellular automata model

where the tissue growth and the associated evolution of CEDH are given by a set

of automata rules. In this model, a number of cells represented by polygons were

considered so that each cell is associated with an integer number between 4 and 9

representing their number of edges.

To begin with, a small set (can be one) of numbers between 4 and 9 was

randomly chosen representing a cell in the virtual tissue. At each time step, a single

cell-division event was implemented in the following manner: A number was selected

randomly from the existing set and replaced by two other numbers calculated

according to the scenario that the original number corresponds to the number of

edges of the mother cell and two new numbers to the number of edges of two

daughter cells according to the Equal split scenario as in Figure 3.9. Furthermore,

at the same time step, two other cells were chosen randomly from the population
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to be considered as the neighbours of the divided cell for adding an extra edge to

each one. To avoid a formation of 10-sided cells, a constraint was put that 9-sided

cells were not permitted to be selected as a neighbour of the dividing cell. The

cell-division process was repeated many times and the forming CEDH was examined.

Calculations were stopped when CEDH stabilised at an equilibrium distribution (it

took a few thousand divisions).
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Figure 3.13: Histograms of theoretical cell-edge distribution. The histograms
(magenta bars) were derived using a code for an automata model based on the
equal split process in comparison to the dependent equal split (red bars) and LZED
(light gray bars). The Matlab code is presented in Appendix A.4.

Simulations using the cellular automata model were implemented through the

Matlab programming language. The simulations typically started with 100 cells of

random sidedness and run for 100,000 iterations. At each iteration step a randomly

chosen cell divided. To incorporate dependence of the frequency of cellular division

on the number of edges of a dividing cell, the division with a probability given by the

exponent 4 × 10−5e(1.1004i), i = 4, ..., 9 was allowed that had been estimated on the

basis of numerical simulations (see Figure 3.7). As noted earlier, the cell division

events followed an equal split scenario. That is, if the mother cell has an even

number of edges i, then each of the daughters will have (i+ 4)/2 of edges. However,

if the mother cell has an odd number of edges i, then one of the daughters will have

(i + 5)/2 edges and the other daughter will have (i + 3)/2 edges.The cell division

event necessitated a random selection of two other cells whose sidedness is less than
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9 (to represent the neighbours of the dividing cell), adding an extra edge to each of

them. At the end of each iteration, one mother cell disappears, two daughter cells

appear and two other cells receive an extra edge. Finally, the number of cells having

a certain number of edges can be extracted at each iteration step and presented

as the CEDH. The CEDH for the virtual tissue obtained in the cellular automata

converges (in course of iterations) to the shape shown in Figure 3.13. It can be seen

that the CEDH obtained using the cellular automata model reproduces experimental

CEDH fairly well, and this indicates that (1) all the important processes affecting

CEDH, such as Equal split division and the exponential relationship between the

number of edges in a cell and probability of this cell to be divide, were captured and

(2) confirm the results which were obtained using continuous and vertex models.

3.5 Conclusion

In this chapter, the formation of epithelial tissue topology as reflected by CEDH has

been analysed. This analysis was performed using a few distinct models.

The vertex dynamics model for obtaining CEDHs in numerical simulations of

virtual tissue was used. It has been noted that CEDH for virtual tissue has

reproduced experimental observations remarkably well (Figure 3.3).

Then continuous analytical model was introduced, given by master equations,

to analyse the impact of elementary processes associated with cell proliferation on

the formation of CEDH. It was found in this study that in order to obtain CEDHs

comparable with the experimental observations it should be taken into account that

probability of cellular division increases exponentially with the number of edges of

the dividing cell. In addition, it should be presumed that cells are commonly divided

into roughly equal daughter cells (which was called ”Equal split scenario”).

Finally, The cellular automata model was introduced in this work and again

used to produce virtual tissue and find the associated CEDH. Again, in order to

obtain CEDH comparable with experimental observations, automata rules were set

incorporating an exponential increase in the frequency of cellular division with the

sidedness of dividing cell and the equal split scenario.

Solutions of the proposed analytical model have been found under the three
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different scenarios of cellular division. Simulations using the computational models

were analysed in the form of cell-edge distribution histograms and compared with

the histogram obtained from actual experimental observations. The numerical

simulations of virtual tissue were normally performed with N = 1 cells for vertex

model and N = 100 cells for cellular automata model at time t = 0 and pi = 1/6

for each i = 4, . . . , 9 (equal initial proportions). Simulations showed that CEDH

for virtual tissue converge to the form shown by cyan histograms that illustrate an

agreement with EDG, as shown in Figure 3.3 for the vertex model and magenta

histograms that are compatible with EDM, as given in Figure 3.13 for the virtual

population model respectively.

An interesting observation derived from the simulations of the vertex model

is that at the early stages of the simulation’s time frame, the proliferation in

epithelial tissue is synchronous, in contrast to the later stages where the process

is asynchronous and only a small number of cells is divided in each window of time.

Also, a more interesting observation is that the cells with a greater number of edges

are divided more frequently than the cells with a smaller number of edges. The

observed relationship between the number of edges in a cell and the frequency of

division is shown in Figure 3.7, where an exponential trend line describes precisely

this relationship for cells of 4 to 9 sides. The probability of division was almost

equal to 1 for 9-sided cells.

The linear continuous model represented by master equations (under the assumption

that cells divide with a probability that does not depend on their sidedness) was used

for producing CEDHs. Under all three scenarios of cellular division, the histograms

exhibit a right skewed distribution with a maximum value at 5 edges (blue, green and

red histograms in Figure 3.10) which significantly differs from experimental CEDH

(melrose histogram in Figure 3.10). This situation is not only true if the number

of edges of the cells falls between 4 to 9 but also if the number of edges of the cells

falls between 4 to 8, 9, 10, and 11 (see Figure 3.14). On the other hand, taking

into account the exponential relationship between the frequency of division and the

cell sidedness, a disagreement between the model’s outcomes and the experimental

observations for the cases of uniformly or binomially oriented divisions was observed

here (blue and green histograms in Figure 3.11 respectively) but a precise agreement
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Figure 3.14: CEDHs obtained for the cells with 4 to 8, 9, 10 and 11 edges.

was observed for the case of equal split divisions (by comparing the red and the

melrose histograms in Figure 3.11).

Modelling the evolution of cellular fractions could provide explanations for the

mechanisms of the proliferation process and the development of epithelial tissues.

Most of the previously reported models consider cells as polygons and analyse

different dynamics acting either on their sides or on their vertices. In this study, new

models are proposed which are based on a set of assumptions that can potentially

explain why two remarkable previously reported models, the GPNP and the SCWN,

have not entirely succeeded to reproduce the observed cell-edge distribution patterns.

The most critical assumptions in the model in this study are (i) the unique order

of cells vertices, which is important to determine the orientation of a division line,

(ii) the relationship between the cell sidedness and the frequency of divisions, (iii)

the absence of triangular and cells with more than 9 sides, and (iv) the asynchrony

of divisions during the proliferation process. Instead of the discrete generations

considered in GPNP and SCWN models, a continuous time is assumed in this

model where a number of cells is divided in each small time interval. The proposed

mathematical model expresses the rate of change of the fractions of i-sided cells

over time and is assessed for three different scenarios of divisions, namely the

uniformly oriented divisions, the binomially oriented divisions and the equal split

divisions. Moreover, the results from the simulations of the computational vertex

105



CHAPTER 3. MATHEMATICAL STUDY OF EPITHELIAL TISSUE
TOPOLOGY

model indicate an exponential relationship between the number of sides in a certain

cell and the ability of the cell to divide.

Also, the results of simulations using the cellular automata model suggest that

the scenario of equal split divisions can be the dominant action, as it attains a

good correspondence between the computational and the experimental cell-edge

distribution (Figure 3.3). These two observations are confirmed through the

mathematical model, as only in the case of considering these two assumptions a good

agreement is observed between the theoretical and the experimental histograms (red

and melrose histograms in Figure 3.11). Moreover, unless using the exponential

relationship, the CEDH of the cellular automata model cannot agree with the

experimental data (see Figure 3.15).

4 5 6 7 8 9
n (number of edges)

0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y 
of

 c
el

ls

Independent cellular automata model
Dependent cellular automata model
Experimental data

Figure 3.15: CEDHs of the dependent (using exponential relationship) and
independent automata models in comparison to the experimental observations.

In conclusion it is noted that the proposed mathematical models successfully

reproduced experimental CEDH and therefore can be used to explain the dynamics

and mechanisms of cellular divisions. The models in this research indicate the effect

of the cell’s sidedness to its ability to proliferate and the effect of the order of cell’s

vertices to the orientation of the cleavage line. This can help with the understanding

of the geometric features of epithelial tissues and its development and can be further

used for assessing the role of other processes which occur in epithelia such as T1

transitions between neighbouring cells.
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Chapter 4

Modelling cellular mixing in

epithelial tissue

Abstract

Rearrangement of cells, commonly described in terms of T1-transitions, plays just

as fundamental a role as cellular proliferation in shaping developing tissues. This

chapter presents a modification of the vertex dynamics model which allows dynamic

changes in cell shapes and cellular mixing in the virtual tissue. It was found that

the tissue topology (as represented by cell-edge distribution histograms) in the

so-modelled dynamic tissue has the same form as in the growing tissue (which

was considered in the previous chapter). An analytical model was developed,

(represented by master equations), as well as a cellular automata model, to reproduce

and explain this observation. In particular, using the vertex dynamics model, it was

found that the probability that a cell gains/loses edges in the course of T1-transitions

increases/decreases with the number of its edges. Incorporating this observation into

the analytical model is crucial for the histogram of the cell-edge distribution to be

compatible with that observed in experiments and simulations.
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4.1 Introduction

This chapter presents the modification of the vertex dynamics model (within the

open-access software Chaste) which allows simulation of dynamic tissue, that is

the tissue where cells undergo shape changes, resulting in cell mixing in the

virtual tissue. This dynamic is particularly based on so-called T1-transitions.

T1-transition is one of the three processes that constitute the manner of cell

rearrangement in the vertex dynamics model. The cells that undergo T1-transition

switch their vertices with their neighbours and a sequenced repetition of this

process in the same direction generates intercalation and hence forms a plastic

deformation. In this study, the vertex dynamics model was used to research this

phenomenon. The process of T1-transition that occurs in many different materials

such as bubbles of foam, biological cells and drops of emulsions has received much

attention (17; 20; 61; 83; 89).

In the vertex dynamics model, as noted earlier, each cell can be associated

with a two-dimensional polygon with a finite number of vertices and edges. These

vertices adhere to rules that dominate the mechanisms which regulate the mechanical

properties of epithelial cells. In the model in this study, each vertex was subjected

to three different forces that determine the position of this vertex and, in turn,

control the behaviour of the cell in terms of the contraction and expansion, the area

and the perimeter. The tension force controls the length of edges through the value

of its parameter, σ. The length of an edge becomes shorter, longer, or remains

unchanged if the value of the parameter is positive, negative or zero respectively.

The deformation force controls the area of the cells via the value of its parameter,

ρ, where this force endeavours to return the area of the cells to the target area.

The area of a cell becomes bigger, smaller or remains unchanged if the value of the

parameter ρ is negative, positive or zero respectively. The perimeter force controls

the perimeter of the cells via the value of its parameter, γ. This force attempts to

return the perimeter of the cells to the target perimeter. The perimeter of a cell

becomes shorter, longer or remains unchanged if the value of the parameter γ is

positive, negative or zero, respectively.

To run a dynamical simulation, a computer code was built by modifying the

tension force through manipulating the value of the parameter σ in order to
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gain T1-transition by shortening or elongating the length of the edges, where a

T1-transition can occur in consequence of the length of an edge shrinking to a certain

tiny value. In a virtual tissue simulated by this modification of the vertex dynamics

model, cells permanently undergo changes in their shapes and T1-transitions.

In the previous chapter, it was assumed that the CEDH is affected only by

cellular proliferation while the number of edges in growing daughter cells does not

change, unless affected by dividing neighbouring cells. Epithelial cells can, however,

show dynamical changes in their shapes, manifested by T1-transitions (68), when

one edge disappears (bringing together two distant cells) while another appears

(separating two neighbouring cells) (see Figure 1.10). The effect of T1-transitions

on CEDH in simulations was studied using the modified version of the vertex

dynamics model. Cells in the simulation were not allowed to proliferate but forced

to dynamically change and undergo T1-transitions. It was noted that T1-transitions

change neither the number of cells nor the total number of cell edges so that the

outcome of these simulations strongly depends on the initial state of the modelled

tissue. Here a tissue composed of a considerable amount of cells with six edges per

cell on average is considered, corresponding to the experimental case (55). These

simulations show that when starting with a tissue containing a large number (1600

in our simulations) of hexagonal cells, the CEDH evolves towards a stationary shape,

matching the experimental results. In addition, these simulations were used to find

the relationship between the number of edges in the cells and the probability of

these cells undergoing the T1-process.

In this work, an analytical model was built to study the evolution of the CEDH

in the dynamic tissue. The histogram of the outcomes of this model is in a very good

agreement with results of the simulations and experiments relating to cell divisions.

Finally, to further confirm the results a cellular automata model was built for a tissue

where cells undergo T1-transitions. The evolution of this tissue was simulated using

Matlab. The results of these simulations confirmed the form of CEDH obtained

using the analytical model and therefore enhanced the conclusions reached in this

study.
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4.2 Feedback mechanism in the definition of

tension force allows dynamic changes in tissue

This dynamic approach builds on the idea of elongation and contraction that enforce

cell elongation in a certain direction as a result of a sequence of T1-transitions. As

mentioned earlier in this chapter, this model depends on manipulating the value of

the tension force parameter, σ, that attempts to regulate the length of the edges in

a tissue. In each time step, different edges might have different σ’s value. The steps

can be summarised as follows:

First, looping over the vertices, nodes, of the polygons that geometrically represent

the cells in the cell population, these polygons can be called elements. All vertices

are given zero force as initial values. All edges in the cell population have the same

given σ (tension force parameter) value and these values change according to some

rules, explained below, in contrast to the values of the other two parameters γ and

ρ which are constant throughout the running of the simulations. To each vertex a

constant vector is added, where each component represents the value of one of the

forces that act on the vertices. After selecting a certain vertex (see figure 2.1), the

elements that contain the vertex of interest, which here can be referred to as the

local vertex, are looped over. The two vertices are then determined, the previous

and next vertex, which are the vertices that come before and after the local vertex,

respectively. These three vertices construct two edges, one of them referred to as the

previous edge, which has the two ends vertices, which are the previous vertex and

the local vertex. The other edge is referred to as the next edge which has the two

ends vertices, the local vertex and the next vertex, where each of these two edges has

a certain length and a certain σ value that must be determined in the simulation.

The lengths of these edges are compared with their values in the previous time step

correspondingly to find the difference between them. According to the differences

between the current length of an edge and its previous length, referred to as the

change in the length, the edge acquires a new σ value, where the change in the

length determines the σ value of the current edge as follows:

� If the change in the length is greater than zero, then the value of the σ for the

current edge is equal to its previous value + expansion feedback.
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� If the change in the length is less than zero, then the value of the σ for the

current edge is equal to its previous value - contraction feedback.

� If the change in the length is zero, then the value of the current edge is equal

to its previous value.

Where this mechanism is applied to both the next edge and the previous edge and

the expansion feedback and the contraction feedback are given constant values,

these values must be chosen carefully to take into account the occurring of the

process of T1-transition, and also to avoid the death of the cells. Hence the dynamic

force can be defined as

Fdynamic = σpc ∗ gradientpc + σnc ∗ gradientnc (4.1)

where σpc and σnc are the values of the previous and next edge, respectively,

gradientpc and gradientnc are the values of the gradient of the previous and next

edges, respectively as explained in Chapter 2.

This process is applied to all the vertices simultaneously. In the simulation in

this study, the value of the parameters was chosen to be ρ = 20 with target area one,

γ = 10; the initial value of σ was 2 between cell to cell and 250 between cells and their

boundary. Each of the expansion feedback and the contraction feedback were taken

to be 1.15. Figure 4.1 indicates the variation in the positions of the cells and their

components, their vertices and edges, as well as the number of these components in

each cell as a result of applying the forces that guide the cell rearrangement via the

processes of T1-transition during the running of the simulation.

Figure 4.1a represents the initial state (t = 0) before applying the forces, where

each cell has the same area with six vertices and six edges that have the same length.

Figures 4.1b and 4.1d illustrate the situation after applying the forces (at time t = 5,

and t = 20 ). As a consequence, a series of T1-transition events occur that lead to

the area of some cells being changed and to the number of vertices for some cells to

increase and for the others to decrease. However, the most significant observation

is that some cells lose one or more of their neighbours and even the death of some

cells may occur. For example, in the Figure 4.1b and as a result of processes of

T1-transition, each of the cells 5, 10, 14 and 15 is no longer on the boundary, in
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comparison to the initial state. T1-transition events resulted in removing the edge

between the two cells 16 and 21 and adding an edge between the two cells 15 and 22;

similarly it resulted in removing the edge between the two cells 15 and 20 and adding

an edge between the two cells 10 and 21. In Figure 4.1c other T1-transition events

can be observed in comparison to the Figure 4.1b. T1-transition events resulted in

removing the edge between the two cells 10 and 21, 15 and 16 as well as 17 and 22

and adding an edge between the two cells 15 and 20, 11 and 22 as well as 16 and

23, respectively. In addition, Figure 4.1d shows that the T1-process may result in

the death of some cells, as happened here with the cell 5, this cell was removed from

the mesh because it has only three edges.

4.3 Cell-edge distribution in simulations of

dynamic tissue undergoing cellular mixing

Topological change can happen in the system as a result of the switching process, i.e.

when the two vertices that are connected by an edge change their connection with

their neighbours owing to the edge coming close within an infinitesimal length, as

can be shown in the Figure 1.10, (68). The T1-process is one of the most important

approaches that plays a pivotal role in the rearrangement of the cells and plays a

crucial role, alongside the division of the cells, in the consistency and controlling of

the topological change, and consequently in the dynamic behaviour of the epithelial

tissues.

T1 with T2 and T3 form the three deformation processes that guide the

rearrangement of the cells. In this study, the focus was the T1-process rather than

the other two processes because this process is the clearest and most prominent

in the experimental observations. It is clear from the Figure 1.10 that the two

neighbouring cells, B and C, are no longer neighbours as a result of the T1-process

occurring through losing the shared edge that they, in turn, enabling the two cells,

A and D, to be neighbouring cells by acquiring a shared edge. Therefore, this kind

of action forms the dynamical process of the tissues. In this study, the cells that

have more than three edges and that have less than ten edges were investigated, this

being compatible with the experimental observations.
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(a) (b)

(c) (d)

Figure 4.1: The cells undergo topological changes as a result of T1-transitions which
change the area and the number of vertices (and edges) of cells. (a) The initial state
of the tissue (time t = 0), where each cell is a hexagon with the same area and
the edges have the same length. (b) The tissue at time t = 5. The vertices of
the cells were subjected to the forces that generated the T1-transition events and
caused changes to the area, the number of vertices and some cells lost some of their
neighbours. (c) The tissue at time t = 10. Other T1-transition events occurred such
as the shared edge between the two cells 17 and 22 in (b) was removed and an edge
was added between the two cells 16 and 23. (d) The tissue at time t = 20. More
T1-transition occurred and one of these events resulted in the death of the cell 5.
Death means cell has three or less edges.
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A simulation was run with 40 × 40 cells that underwent the T1-process, using

the vertex dynamics model, where the vertices of the cells underwent deformation,

tension, and with the perimeter forces having the parameters value ρ = 20, σ = 1

between cells, σ = 125 on the boundary and γ = 10. The time step was put on

0.501, the time starting from 0 and running to 200 with the target area of 1. The

histograms of the cell-edge distribution that were taken from 76.152 to 199.899 have

a significant stable agreement with the biological observations, as can be illustrated

in Figure 4.2.
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Figure 4.2: Comparison of cell-edge distribution obtained in experiments (black
bars) and simulations (at different times, from blue, t=76, to yellow, t=200).

One of the most significant results that were observed by simulation is the

relationship between the occurring of a T1-transition event and the number of edges

in the cells affected by this transition. This can be described as

a+
i =

248∑
j=1

C+
ij

Nij

a−i =
248∑
j=1

C−ij
Nij

, (4.2)

where C+
ij (C−ij ) is the number of cells with i-sides that gain (lose) an edge and

become cells with (i+ 1)-sides ((i− 1)-sides) in the time 76.152 + (j− 1) ∗ 0.501 and

Nij represents the number of cells with i-sides in that time, where the simulation was

run till the simulation time became 199.899 with the time step 0.501. The result,

after normalising, can be depicted as in Figure 4.3.
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Figure 4.3: Frequency of n-sided cells gaining (a+
n ) and loosing (a−n ) an edge in the

course of T1-transitions as obtained from numerical simulations using the vertex
model. Best fit means best fitting exponential function.

4.4 Analytical model for cell-edge distribution in

tissue with cellular mixing

4.4.1 Master equations

In this model, a system of master equations was built to demonstrate the

development of cellular fractions in the process of rearranging cells. The order

of the vertices plays an important role because this model is based on the vertex

model and the T1-process uses a mechanism that depends on changing the positions

of the vertices. Irreversible deformations take place as a result of the processes of

T1 occurring, where the epithelial tissues undergo elongation in the direction of the

two neighbouring cells that shared an edge and that were lost, whereas the tissues

confront shrinking in the orientation of the two cells that participate in a newly

generated edge. Hence, the T1 processes represent the main factor of plasticity in the

epithelial tissues. Here, only the cells with four to nine edges were taken into account

and the cells beyond that neglected, as this is more compatible with experimental

observations (25). The process of T1 in this model happens asynchronously (e.g.

a small number of individual T1-processes occur in a small given time interval).

Nevertheless, the T1-process is the only process that is involved in the development
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of epithelium.

In this study, to construct a master equation, the total number of cells was

denoted as N(t) at time t; Ni(t) denoted to the number of i-sided cells, whereas

pi(t) = Ni(t)/N(t) represents the fraction of i-sided cells in the population. The

rate of change of fraction of pi with time can be given as

dpi
dt

=
pi(t+ dt)− pi(t)

dt
=

Ni+dNi

N − Ni

N

dt
=
dNi

Ndt
(4.3)

The Equation (4.3) was used to reproduce the cell-edge distribution in the epithelial

tissues, analytically, in the case of applying the process of T1 that drives the

rearrangement of cells. The master equation describing the dynamics of CEDH

in a tissue without cell division can be written as:

ṗi = αFi, (4.4)

where (similarly to Equation (3.1)) α defines the rate at which T1-transitions take

place and Fi defines the probability of appearance/disappearance of i-sided cell in

a single T1-transition event.

Linear model

The mathematical model of master equations with the assumption that cells can

undergo the T1 topological change without depending on its sidedness was used for

the illustration of histograms of the cellular fractions. Each individual T1 event

causes the vanishing of one edge and the creation of a new one. Thus the two cells

that have the vanishing edge lose their neighbour relationship and the two cells that

have one end of the vanishing edge and share in the newly created edge gain an

additional edge. Hence Fi can be constructed as

Fi =


−2pi + 2pi+1 if i = 4

2pi−1 − 4pi + 2pi+1 if i = 5, ..., 8

2pi−1 − 2pi if i = 9

(4.5)
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where pi represents the probability for i-sided cell to lose or gain an edge in the

case of a random T1-transition event, where all cells are assumed to have the

same probability to undergo a T1-transition. Equations (4.4) and (4.5) define

a linear system whose solution converges to the eigenvector corresponding to its

zero-eigenvalue, which can be seen in the next subsection. The histogram differs

significantly from the distribution of experimental data as shown in Figure 4.4,

where the percentage acquiring a cell with any number of sides is equal. The
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Figure 4.4: Cell-edge distribution predicted by the linear model is uniform (yellow
bars) and is not comparable with experimental data, LZED, (grey bars).

results obtained from this linear model depends on the assumption that the same

probability exists for all cells to undergo the T1 process, which is not supported

by the simulations results. The results that were observed by the simulations

show that there is a relationship between the number of edges in a cell and the

probability of that cell undergoing the T1-transition event, as discussed later in

this chapter. Moreover, the histograms of the cell-edge distribution obtained by

simulation results are in good agreement with the experimental observations related

to the cell divisions, as shown in Figure 4.2.

4.4.2 Eigen-solution for the linear model

The eigenvalue and eigenvectors were used here to confirm the results of the linear

models. Through finding the eigenvalues of these systems, it was demonstrated

117



CHAPTER 4. MODELLING CELLULAR MIXING IN EPITHELIAL TISSUE

that all except one zero eigenvalue are negative and the solution converges to

the eigenvector that corresponds to the zero-eigenvalue, which can be described

as follows.

The matrix that defines the linear model is

AT1 =



−2 2 0 0 0 0

2 −4 2 0 0 0

0 2 −4 2 0 0

0 0 2 −4 2 0

0 0 0 2 −4 2

0 0 0 0 2 −2


The characteristic equation for this matrix which is the expansion of the equation

det(A− λI) = 0, Therefore

λ6 + 20λ5 + 144λ4 + 448λ3 + 560λ2 + 192λ = 0 (4.6)

The vector of eigenvalues λ that provide the solution of the characteristic equation

λT1 =
[
−7.4641,−6.0000,−4.0000,−2.0000,−0.5359, 0

]
gives the solution of the Equations (4.6), using Matlab 17a, for finding the vales of

λ. The corresponding eigenvectors are

EV eT1 =



0.1494 0.2887 0.4082 −0.5000 0.5577 0.4082

−0.4082 −0.5774 −0.4082 −0.0000 0.4082 0.4082

0.5577 0.2887 −0.4082 0.5000 0.1494 0.4082

−0.5577 0.2887 0.4082 0.5000 −0.1494 0.4082

0.4082 −0.5774 0.4082 0.0000 −0.4082 0.4082

−0.1494 0.2887 −0.4082 −0.5000 −0.5577 0.4082


Furthermore, the normalization of the eigenvector corresponding to the zero

eigenvalue is

NEV CZT1 =
[
0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667

]
which has the same values that were obtained by solving the linear model,

if it is assumed that all cells have the same probability of undergoing T1-transition.

In this case, the Equations (4.3-4.5) define a linear system whose solution converges
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to the eigenvector corresponding to its zero-eigenvalue. It can be shown analytically

as well as numerically (by solving the system 4.3-4.5) that all components of this

eigenvector are equal, resulting in uniform CEDH (see Figure 4.4). This solution

obviously does not match experimental data.

4.4.3 Nonlinear model

As noted above, if it is assumed that any existing edge can undergo T1-transition

with the same probability, the conclusion is that cells with more edges should loose

edges more frequently. Frequencies at which cells with different sidedness gain or

loose edges found from simulations using the vertex model are shown in Figure 4.3. It

is evident that the probability that the cell gains/ loses an edge decreases/increases

with the number of its edges. Thus in the reconstructed Equation (4.5), the

probabilities for i-sided cells to gain/lose edge is adjusted according to the simulation

data. Thus Fi can be rewritten as

Fi =


−2p+

i + 2p−i+1 if i = 4

2p+
i−1 − 2p−i − 2p+

i + 2p−i+1 if i = 5, ..., 8

2p+
i−1 − 2p−i if i = 9

(4.7)

where p−i and p+
i are probabilities for i-sided cell to lose or gain an edge. Here we

have

p+
i →

a+
i pi

Σa+
i pi

p−i →
a−i pi

Σa−i pi
, (4.8)

where the values of a+
i and a−i can be represented as in the equations in (4.2). The

histogram representing the stationary solution of this model is in agreement with

experimental data, Figure 5.1.

4.4.4 Cellular automata model for the dynamics of cell-edge

distribution in the course of cell mixing

To enhance understanding of the impact of T1-transitions on the tissue topology,

a cellular automata model, very similar to the one described in Chapter 3 was

developed. The histogram in Figure 4.6 shows a virtual model in which each step
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Figure 4.5: Cell-edge distribution in nonlinear model (red bars) as compared with
the experimental observations (grey bars) and simulations (black bars). The Matlab
codes are given in Appendix A.5

began by two cells chosen randomly to undergo the T1 process (avoiding 4-sided

cells), switching their connected edge with their neighbours, thereby each losing one

edge, and then another two cells also chosen randomly (avoiding 9-sided cells), to be

the neighbours of the initial two cells. To each of them is added an extra edge. The

process was repeated many times and then the result represented as a histogram.

The outcomes show a very good agreement with the experimental observations. This

was implemented using a Matlab code which is presented in Appendix A.6.

4.5 Conclusion

To study the cell rearrangements in epithelial tissues for the distribution of the cell

edges, the case of the cells undergoing the process of T1-transitions was examined.

Firstly, the simulations approach were used using the vertex dynamics model for a

tissue of hexagonal cells. After the appropriate values for the parameters of forces

that act on the vertices were chosen, the histograms of the cell-edge distribution show

significant stable agreement with the biological observations of proliferating cells.

Moreover, a new dynamics code was built inside the Chaste software to deal with

the cell rearrangements, especially the T1-transitions. The simulation observations

indicated that there is a relationship between the number of edges in the cells that are
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Figure 4.6: Cell-edge distribution in three realisations of cellular automata model
as compared with the experimental observations, LZED, (grey). The first numbers
in the brackets associated with the attempts refers to the number of cells and the
second number refer to the number of iterations.

influenced by T1-transition and the probability of this T1-transition event occurring.

In this study, a new mathematical model using the master equations was constructed

to study the dynamical processes pertaining to the plastic deformations as a result

of T1-processes.

The histogram of the results for this model shows significant disagreement

with both the simulation observations and also with the experimental data, this

being a result of assuming the equal probability of all cells to be undergoing the

T1-transitions. Hence reformulating the model using the relationship between

the number of edges of cells and the probability of the events of T1-transition

occurring resulted in the histogram (Figure that shows that the model matches

the experimental data for cell division.
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Chapter 5

Conclusions and discussion

The aim of this thesis was to investigate some properties of the development of

epithelial tissues using the vertex model. The study included the elasticity of the

relaxations, the cell divisions and the rearrangements of the cells, limited to studying

the process of T1-transition. This chapter starts with brief conclusions of the most

fundamental results then presents the characteristics of the investigated topics by

demonstrating the notable results in more detail. The results were compared with

previous results where necessary. Finally, some aspects of future research relating

to this study are raised.

5.1 The fundamental findings

This research focused on some behavioural aspects of the mechanical and dynamical

properties of the epithelial tissue cells.

Chapter two dealt with the relaxation behaviour of the cells undergoing slight

stretching/shrinking to test whether it is elastic or plastic. Initially, a single

hexagonal cell was taken which had been subjected to forces: the tension force,

the deformation force and the perimeter force. Consequently, the computational

simulations and theoretical results indicated that the relaxation following slight

stretching/shrinking is an exponential relaxation and, therefore, elastic. Moreover,

the relaxation time when using three forces is half the relaxation time when exerting

two forces, one necessarily the deformation force. Moreover, the relaxation behaviour

when stretching /shrinking more than one cell and stretching a single cell with
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different target lengths were examined. The simulation results in all these cases

demonstrated that the relaxations are elastic and hence the relaxation times were

determined. Finally, the analytical solution illustrated that the relaxation behaviour

when stretching a tissue with an infinite number of cells (Tissues are composed of

many cells. Therefore, considering infinite tissue in the model is justified) is elastic

and has infinity relaxation time.

Chapter three was concerned with examining the cell divisions to find the

distribution of cell edges, which has long been the subject of research, as reflected in

the literature (25; 55; 79). The vertex dynamics model approach was employed using

the open software, Chaste, to simulate the cell division behaviour. The simulation

results showed that there exists an exponential relationship between the number

of edges in the cells and the probability of these cells dividing, the opportunity

for a cell to divide increasing as the number of edges increases. The histograms

built for the cell-edge distribution obtained from the simulation results depicted a

significant agreement when compared to those obtained from the biological data. A

novel theoretical model was built to reproduce the cell-edge distribution using the

master equations for three different scenarios: the uniformly oriented divisions, the

binomially oriented divisions and the equal split divisions.

The histograms that were constructed showing the results for the cells in

terms of the number of edges for these three models failed to be compatible with

the biological observations. However, the models were reformulated using the

exponential relationship and consequently the equal split histogram reflected a very

good agreement with the biological observations, while the histograms relating to

the two other scenarios improved significantly. In addition, an automata model was

built to find the histogram of cell-edge distribution. This virtual model was based on

the approach of the equal split model and the exponential relationship for dividing

mother cells. The results also displayed a considerable agreement with the biological

data observed in vitro (LZED).

Chapter four dealt with the dynamical behaviour of the epithelial tissues cells. To

ease this area of investigation, first, some parts of the software Chaste was developed

to render it more useful for the epithelial dynamical process. This new approach was

based on the value of the tension force parameter. The dynamical behaviour of the
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cells occurs as a consequence of the cell rearrangements. In biological observations,

three of the different cell rearrangement processes were observed: T1-transitions,

T2-transitions and T3-transitions. The focus of this research was T1-process as

it is predominant in biological observations. The almost exponential relationship

between the number of edges of the cells influenced by T1-process and the process

of T1-transition occurring is one of the most interesting observations noted in the

simulation outcomes. The cell-edge distribution histogram constructed from the

simulation results show a very good agreement with the biological data of the cell

divisions (Figure ). In addition, a new theoretical model was presented to reproduce

the cell-edge distribution for a tissue undergoing the T1-process, plastic deformation.

Consequently, the CEDH associated with this exponential relationship also provides

a considerable agreement with the biological observations of the cell divisions. An

automata model was also built to reproduce the process of T1-transition using a

Matlab code, the results of which are compatible with the simulation results for

different times.

5.2 Elasticity behaviour in epithelial tissue

Elasticity is one of the material properties that provides resistance ability to any

deformation and enables the material to be restored to its original status after

removal of the external forces responsible for these created deformations. The

deformation, in this case, is known as elastic; if not elastic, it is known as plastic.

No ideal elastic material exists in nature; the materials that exhibit an elasticity are

either those subjected to a slight deformation or subjected to external forces for a

short time-scale. In physics, the elasticities for many materials have been studied

intensively and the relating mathematical formulae found, such as the laws that

govern the elasticity of stretching or compressing a spring (53; 58). In this research,

the focus is the behaviour of epithelial cells when stretched/shrunk then released,

having been subjected to some mechanical forces and for certain parameter values.

Undoubtedly, the cytoskeleton, represented by its three principal elements, actin

filament intermediate filaments and microtubule filaments, in addition to myosin,

has a decisive influence in many cellular operations, such as cell divisions, motility,
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adhesion and cell rearrangements. The cytoskeleton elements are polymer materials

whose range of elasticity varies, the actin filaments possessing a wide range of

elasticity in comparison to the other two filaments, and they together compose the

elasticity of the cytoskeleton. Hence, the actomyosin is essential for providing the

elasticity and maintaining the integrity of the epithelial cells (45; 48; 71). Moreover,

a tissue which undergoes prolonged stretching or robust stretching may generate a

plastic deformation (32).

This research concentrated on applying the mechanical forces Fi, Fd, and Fp to

epithelial cells and stretching/shrinking these cells to show whether the produced

relaxation after release from stretching/shrinking is elastic or not. Initially, it was

proved numerically and analytically, that a cell stretched/shrank and subjected to

two or three mechanical forces, so that the force Fd is always present, then released,

shows an exponential relaxation and is therefore elastic.

For chosen arbitrary parameter values (see details in section 2.3), the relaxation

time was halved from 16 in the case of applying two forces, to 8 in the case of

applying the three forces. Then it was indicated numerically that the relaxation after

stretching/shrinking more than one cell, alongside the application of the mechanical

forces on the vertices of these cells, is also exponential and therefore elastic.

Also, the configuration shows an approximately linear relationship between the

number of the cells and the relaxation times after a particular number of cells.

In addition, a new force, the elastic force Fe (the modification of tension force by

including the non-zero target length), was introduced instead of the tension force.

The relaxation investigated for stretching is associated with applying the forces

Fe, Fd, and Fp or the same forces without Fp on the vertices of a single cell for

different edge target lengths to show the relaxation type that follows the release of

stretching. The numerical work demonstrated that this relaxation is exponential

and hence elastic. The results illustrate that the correlation between the relaxation

times and the edge target lengths is quadratic in the first case and a bell curve in

the second case.

Finally, the relaxation after stretching then releasing an infinite number of

hexagonal epithelial cells after applying the three forces, which are tension,

deformation and perimeter, indicated that this relaxation is exponential (elastic)
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and has infinite relaxation time. In all these cases the values of the parameters of

the forces-tension, deformation and perimeter- were σ = 0.05, ρ = 1 and γ = 0.007

respectively. These values were taken as default parameter values.

5.3 The characteristics of the cell-edge

distribution model for the cell divisions

The apical side of epithelial cells take the polygonal shape with a different number

of edges, for the study of which the vertex dynamics model is suitable. This

model represents each cell geometrically, in two-dimensions, as a polygon. The

vertex model has been used successfully in many cellular mechanisms, such as cell

divisions and cell rearrangements (20; 68). The cell-edge distribution (CED) give

the fractions with a various number of edges in a tissue. CED was intensively

studied, experimentally, in the first half of the twentieth century by Lewis (54; 55)

and has recently received attention in many studies, such as in GPNP and SWCN

models (25; 79). However, all the theoretical attempts have failed to reproduce the

CEDH that agrees with the empirical observations. Gibson and his co-workers have

shown that the experimental data for different kinds of species exhibit a universal

CEDH (25). However, in this research, a novel theoretical model was presented to

reproduce the experimental observations with a significant agreement. The vertex

dynamics model was also employed through the framework, Chaste, to simulate

the CEDH, the outcomes being compatible with the theoretical and experimental

results. The CEDH in all these approaches demonstrates that the hexagonal cells

are predominant, with more than 40%, followed by the pentagonal and heptagonal

cells, with each not less than 20%, then by the quadrilateral and octagonal cells,

with each not less than 3%.

The GPNP model (25) is one of the main models used to study the CEDH which

depends on some non-realistic assumptions. GPNP is a synchronous model which

forces all cells to divide in each round of division, contradicting the fact that the

division of the cells in a tissue is an asynchronous process by which a few cells can

be divided with a short period of time. The other weakness of the GPNP model is

in the way in which the edges of a mother cell are distributed between the two new
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daughter cells, where the edges are distributed in a binomial random way between

the daughter cells, following the donation of two of the mother edges to each new

daughter. Moreover, this discrete model does not respect the order of the edges

or vertices around the boundary of the cells. There is a congruence between the

CEDH calculated by the GPNP model and that of the experimental observations

for the wing disc Drosophila, except for one contradiction represented in the absence

of quadrilateral cells.

SCWN models (79) have attempted to correct the drawbacks of the GPNP model

whether related to the assumptions or related to the results. There are three SCWN

models. The first model tried to solve the problem of the absence of the quadrilateral

cells by allowing the three-edged cells to play the role of transition for acquiring the

four-sided cells. The second and third models tried to solve the problem of the

way in which the edges, and thereby the vertices, of a mother cell are distributed

between the two daughter cells in order to render the results more unbiased, where

the second model ignored the cells of less than four edges and distributed all the

edges of the mother cells randomly between the two daughter cells, retaining the

cells with four to nine edges. However, the absence of the four-sided cells in this

model is inevitable as required by the mechanisms used in this model. The third

model is similar to the second model except in allowing three-sided cells in order

to acquire the cells with four edges. The CEDHs of all three of these models failed

to agree with those of empirical observations. Therefore, a theoretical approach to

reproducing the cell division process and its CEDH are presented in this thesis.

The mathematical model depends on creating master equations which depend

on a basic formula that gives the rate of change of the fractions of the number of

cells with respect to time. In this model, more realistic assumptions than the GPNP

model or the SCWN models are taken. This model is asynchronous and respects

the order of the vertices around the cells and also is a continuous model. The vertex

dynamics model was the most suitable tool for dealing with the cell divisions as the

apical sides of the epithelial cells take polygon shapes with the vertices and the edges

are clear. Also, the results can be easily compared with those in vitro. However,

the model outcomes remain far from those observed in vitro, unless the relationship

between the number of edges in a cell and the probability of dividing this cell is
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taking into account. In other words, the chance of dividing any cell depends on its

number of edges: the more edges a cell has the faster it will divide. The CEDH

of the equal split scenario, in this model, is in an approximate congruence to the

CEDH of the empirical observations.

5.4 The characteristics of the cell-edge

distribution model pertaining to plastic

deformation

In this part of the research, the plastic deformations occurring that have run

as a result of the cell rearrangement processes and precisely as a result of the

T1-transitions were studied to describe the CEDH. For this, the vertex dynamics

model was used through the open framework, Chaste, where an efficient part of

a code was built within this framework to facilitate the case of the dynamical

process of epithelial tissues, which depends on the parameter of the tension force.

The dynamical mechanism enables a cell to move within the tissue that belongs

to, through the processes of T1-transition. This process can occur as a result of

removing an edge and generating a new edge shared between the two cells that

contain the ends vertices of the removed edge. Moreover, since the length of a cell

can be controlled through the value of the parameter σ, the code contains feedback

factors that can increase or decrease the length of an edge which, in turn, may lead

to the T1-transition occurring. The T1-transition with the other two processes,

T2-transition and T3-transition, have the crucial role during the process of cell

rearrangement.

As an initial condition, a dynamical simulation was implemented of a tissue

with 1600 hexagonal cells subjects to T1-transitions. The outcomes illustrated two

interesting observations. Firstly, the CEDHs for the results in different simulation

times starting from 75 till 200, are almost identical to that CEDH related to the

experimental observations of the cell divisions. Secondly, there is a relationship

between the T1-transition occurring and the number of edges of the cells that are

manipulated under the influence of this process. Moreover, a new theoretical model
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was presented through building master equations that depend on a basic formula

that takes into account the derivative of the fraction for the number of the cells

with a certain number of edges with respect to time. The CEDH for the theoretical

approach associated with the second observation of the simulation mentioned above

is compatible with the CEDH of the outcomes of the simulation.

5.5 Future research

While working on this thesis, some concepts have been noted relating to this research

which are anticipated to be the subject of future research. Here, these can briefly

be summarized.

� In this study and through simulation, the elastic behaviour for the relaxation

of stretching/shrinking a tissue was confirmed for many states, including for

one cell or more than one cell. The relaxation behaviour that followed a slight

stretching/shrinking was investigated with many different numbers of cells at

zero and non-zero edge target length. However, in this work, the elasticity for a

single cell and a tissue with an infinite number of cells was proven analytically.

The analytical solutions for the other situations have been left aside for future

research.

� Explore mechanisms that cause plastic deformations in tissues. Moreover,

future work needs to focus on studying more properties and behaviours of the

cell rearrangement, including studying behaviours of the T1-transition as well

as T2-transition and T3-transition.

� During epithelial tissue development, cells migrate and this manifested by

T1-transition events. However, experimental data on this process are not yet

collect. This kind of experimental data would be used to validate our model.

� Analysis of mechanical properties of heterogeneous tissue.

� Any future work should focus more attention on the biological background

to further understanding of the mechanical and dynamical properties of the

cytoskeleton and its components, taking these properties into account in
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simulations and theoretical research. Attempting to understand accumulated

biological observations of the cell divisions, cell rearrangement and movement

of cells will result in more realistic and robust mathematical approaches. More

cooperation with biologists will be necessary for any future work.

� Understanding the behaviour of the tissue development and understanding the

role of the cytoskeleton components will help to determine deviant behaviour

such as abnormal divisions that can occur within the tissues and lead to serious

diseases. This requires more thorough investigation and consideration in future

research.
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Appendix A

Codes

In this appendix, the Matlab codes are presented using different models for

calculating the cell-edge distribution of cell divisions and as follows:

A.1 GPNP model and the second SCWN model

Lines 4 and 5, respectively, represent the formulae that used in the GPNP model

and the second SCWN model. We constructed this code to make Figure 1.8 and the

green histogram in Figure 1.9.

1 for n=4:9

2 for m=4:9

3 if (m≤n) && (m≥4)

4 T(n,m)=nchoosek(n-4,m-4)*1/(2ˆ(n-4)); %GPNP Model

5 T(n,m)=nchoosek(n,m-2)*1/(2ˆn-2-2*n); %Second SCWN Model

6 else

7 T(n,m)=0;

8 end

9 if m==n+1

10 S(n,m)=1;

11 else

12 S(n,m)=0;

13 end

14 end

15 end

16 T=T(4:9,4:9);

17 S=S(4:9,4:9);

18 U=T*S

19 P0=[0 0 1 0 0 0]'

20 P=(U.'ˆ10000)*P0
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21 P normalize= P/sum(P)

A.2 First and third SCWN models

Lines 4 and 5, respectively, represent the formulae that used in the first and third

SCWN models. We constructed this code to make the first and third SCWN models

Figure 1.9.

1 for n=3:9

2 for m=3:9

3 if (m≤n+1) && (m≥3)

4 T(n,m)=nchoosek(n-2,m-3)*1/(2ˆ(n-2)); % Second SCWN Model

5 T(n,m)=nchoosek(n,m-2)*1/(2ˆn-2); % Third SCWN Model

6 else

7 T(n,m)=0;

8 end

9 if m==n+1

10 S(n,m)=1;

11 else

12 S(n,m)=0;

13 end

14 end

15 end

16 T=T(3:9,3:9);

17 S=S(3:9,3:9);

18 U=T*S;

19 P0=[0 0 0 1 0 0 0]';

20 P=(U.'ˆ10000)*P0;

21 P normalize Third SCWN = P/sum(P)

A.3 Analytical model represented by master

equations in the case of cell division.

We constructed this code to make Figures 3.10 and 3.11. In the thesis σi is used

instead of ai, i=4,5,...,9.

1 function L=CED(S,C)

2 if S==1

3 a4=1; a5=1; a6=1; a7=1; a8=1; a9=1;

4 else
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5 a4=0.0028;

6 a5=0.0080;

7 a6=0.0278;

8 a7=0.0939;

9 a8=0.2385;

10 a9=0.6290;

11 end

12 P=[0 0 1 0 0 0]';

13 for i=1:1:100000;

14 s=1/(a4*P(1)+a5*P(2)+a6*P(3)+a7*P(4)+a8*P(5)+a9*P(6));

15 s4=a4*s;s5=a5*s;s6=a6*s;s7=a7*s;s8=a8*s; s9=a9*s;

16 if(C==1)

17 %--------------------------------------------------------------------------

18 % display('Uniformly oriented divisions')

19 %---------------------------------------------------------------------------

20

21 A=[s4-3 s5 2/3*s6 2/4*s7 2/5*s8 2/6*s9;

22 2 -3 2/3*s6 2/4*s7 2/5*s8 2/6*s9;

23 0 2 -1/3*s6-3 2/4*s7 2/5*s8 2/6*s9;

24 0 0 2 -2/4*s7-3 2/5*s8 2/6*s9;

25 0 0 0 2 -3/5*s8-3 2/6*s9;

26 0 0 0 0 2 -4/6*s9-1];

27 elseif(C==2)

28 %--------------------------------------------------------------------------

29 % display('Binomially oriented divisions')

30 %--------------------------------------------------------------------------

31 A=[s4-3 s5 2/4*s6 2/8*s7 2/16*s8 2/32*s9;

32 2 -3 s6 6/8*s7 8/16*s8 10/32*s9;

33 0 2 -1/2*s6-3 6/8*s7 12/16*s8 20/32*s9;

34 0 0 2 -6/8*s7-3 8/16*s8 20/32*s9;

35 0 0 0 2 -14/16*s8-3 10/32*s9;

36 0 0 0 0 2 -30/32*s9-1];

37 elseif(C==3)

38 %--------------------------------------------------------------------------

39 % display('Equal split divisions')

40 %--------------------------------------------------------------------------

41 A=[ s4-3 s5 0 0 0 0;

42 2 -3 2*s6 s7 0 0;

43 0 2 -s6-3 s7 2*s8 s9;

44 0 0 2 -s7-3 0 s9;

45 0 0 0 2 -s8-3 0;

46 0 0 0 0 2 -s9-1];

47 end

48 B=0.01*A+eye(6);

49 P=B*P;

50 end

51 P;

133



52 N=P/sum(P)

53 av N=4*N(1)+5*N(2)+6*N(3)+7*N(4)+8*N(5)+9*N(6);

54 tot=sum(N)

55 end

A.4 Cellular automata model in the case of cell

division

We constructed this code to make Figure 3.13

1 MinEdges= 4;

2 MaxEdges= 9;

3 MaxIterations= 100000;

4 N= 101;

5 format rat

6 %PC is the population of the cells accordingto the number of edges.

7 for i= 1:MaxEdges

8 PR(i)= 0;

9 PC(i)=0;

10 end

11

12 for i= MinEdges:MaxEdges

13 PR(i)= 4E-05*exp(1.1004*i);

14 % PR(i)=1.;

15 end

16 x=4:1:9;

17 plot(x,PR(x))

18 for i=MinEdges:MaxEdges

19 if mod(i,2)== 0

20 s(i)= (1/2)*i;

21 else

22 s(i)= (i+1)*(1/2);

23 end

24 DaughterOne([i],[1])=s(i)+2;

25 DaughterTwo([i],[1])= i+2-s(i);

26 end

27 for cell=1:N

28 CellEdges(cell)=randi([MinEdges,MaxEdges]);

29 PC(CellEdges(cell))=PC(CellEdges(cell))+1;

30 ICs(cell)=CellEdges(cell);

31 PC

32 end

33 for i=1:MaxIterations
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34 DividingCell=randi([1,N]);

35 [m,n]=GetRandomNeighbours(DividingCell,CellEdges,N);m;n;

36 NumDividingCellEdges=CellEdges(DividingCell);

37 S=CellEdges(DividingCell);

38 R=randi([1,N])/N;

39 if R< PR(NumDividingCellEdges)

40 PC(CellEdges(DividingCell))= PC(CellEdges(DividingCell))-1;

41 NumOfDaughterEdges=randi([1,numel(DaughterOne(NumDividingCellEdges))]);

42 CellEdges(DividingCell)=DaughterOne([NumDividingCellEdges],[NumOfDaughterEdges]);

43 PC(CellEdges(DividingCell))=PC(CellEdges(DividingCell))+1;

44 CellEdges(N+1)=DaughterTwo([NumDividingCellEdges],[NumOfDaughterEdges]);

45 PC(CellEdges(N+1))=PC(CellEdges(N+1))+1;

46 CellEdges(m)=CellEdges(m)+1;

47 PC(CellEdges(m)-1)=PC(CellEdges(m)-1)-1;

48 PC(CellEdges(m))=PC(CellEdges(m))+1;

49 CellEdges(n)=CellEdges(n)+1;

50 PC(CellEdges(n)-1)=PC(CellEdges(n)-1)-1;

51 PC(CellEdges(n))=PC(CellEdges(n))+1;

52 N=N+1;

53 end

54 end

55 x = linspace(4,9);

56 PC;

57 F1=sum(PC);

58 FF1=PC/F1;

59 FFF1=[FF1(4),FF1(5),FF1(6),FF1(7),FF1(8),FF1(9)]

60 V=4:1:9;

61 p=plot(V,FFF1,'r','LineWidth',3)

62 PC=PC;

63 SumPC=sum(PC)

Subroutine to pick two neighbours randomly.

1 function [m,n]=GetRandomNeighbours(DividingCell,CellEdges,N)

2 NumIters=0;

3 %Find the first random cell...

4 notfound=1;

5 while notfound==1

6 if NumIters > N

7 print('Max Iterations Reached!')

8 return

9 end

10 cellid=randi([1,N]);

11 CellEdges(cellid);

12 if DividingCell6=cellid && CellEdges(cellid)6=9

13 m=cellid;

14 notfound=2;
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15 end

16 NumIters=NumIters+1;

17 end

18 NumIters=0;

19 %Find the second random cell...

20 notfound=1;

21 while notfound==1

22 if NumIters > N

23 print('Max Iterations Reached!')

24 return

25 end

26 cellid=randi([1,N]);

27 if DividingCell6=cellid && cellid 6= m && CellEdges(cellid)6=9

28 n=cellid;

29 notfound=2;

30 end

31 NumIters=NumIters+1;

32 end

33 end

A.5 Analytical model that is represented by

master equations in the case of plastic

deformation

We constructed this code to make Figures Figures 4.4 and 5.1.

1 function L=CED T1(S)

2 if S==1

3 a4d=1;a5d=1;a6d=1;a7d=1;a8d=1;a9d=1;a4i=1;a5i=1;a6i=1;a7i=1;a8i=1;a9i=1;

4 else

5 a4d= 0.015665993 ; a4i= 0.379026104;

6 a5d= 0.036343297 ; a5i= 0.301917398;

7 a6d= 0.134422909 ; a6i= 0.151273031;

8 a7d= 0.259634634 ; a7i= 0.073738651;

9 a8d= 0.265765941 ; a8i= 0.052671697;

10 a9d= 0.288167226 ; a9i= 0.041373119;

11 end

12 P=[0 0 1 0 0 0]';

13 for i=1:1:1000000

14 sd=1/(a4d*P(1)+a5d*P(2)+a6d*P(3)+a7d*P(4)+a8d*P(5)+a9d*P(6));

15 s4d=a4d*sd;s5d=a5d*sd;s6d=a6d*sd;s7d=a7d*sd;s8d=a8d*sd;s9d=a9d*sd;

16 si=1/(a4i*P(1)+a5i*P(2)+a6i*P(3)+a7i*P(4)+a8i*P(5)+a9i*P(6));
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17 s4i=a4i*si;s5i=a5i*si;s6i=a6i*si;s7i=a7i*si;s8i=a8i*si;s9i=a9i*si;

18 A=[-2*s4i 2*s5d 0 0 0 0;

19 2*s4i -2*s5d-2*s5i 2*s6d 0 0 0;

20 0 2*s5i -2*s6d-2*s6i 2*s7d 0 0;

21 0 0 2*s6i -2*s7d-2*s7i 2*s8d 0;

22 0 0 0 2*s7i -2*s8d-2*s8i 2*s9d;

23 0 0 0 0 2*s8i -2*s9d];

24 B=0.01*A+eye(6);

25 P=B*P;

26 end

27 P;

28 tot=sum(P);

29 N=P/sum(P)

30 end

A.6 Cellular automata model in the case of

plastic deformation

We constructed this code to make Figure 4.6.

1 MinEdges= 4;

2 MaxEdges= 9;

3 MaxIterations=7000;

4 N= 10001;

5 for i= 1:MaxEdges;

6 PD(i)=0;

7 end

8 for cell=1:N;

9 CellEdges(cell)=6;

10 ICs(cell)=CellEdges(cell);

11 end

12 for i=1:MaxIterations;

13 T1CellDecreamentEdges1=randi([1,N]);

14 while CellEdges(T1CellDecreamentEdges1)==4

15 T1CellDecreamentEdges1=randi([1,N]);

16 end

17 T1CellDecreamentEdges2=randi([1,N]);

18 while T1CellDecreamentEdges2==T1CellDecreamentEdges1

19 |CellEdges(T1CellDecreamentEdges2)==4

20 T1CellDecreamentEdges2=randi([1,N]);

21 end

22 T1CellIncreamentEdges1=randi([1,N]);

23 while T1CellIncreamentEdges1==T1CellDecreamentEdges1
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24 | T1CellIncreamentEdges1==T1CellDecreamentEdges2

25 |CellEdges(T1CellIncreamentEdges1)==9

26 T1CellIncreamentEdges1=randi([1,N]);

27 end

28 T1CellIncreamentEdges2=randi([1,N]);

29 while T1CellIncreamentEdges2==T1CellDecreamentEdges1

30 | T1CellIncreamentEdges2==T1CellDecreamentEdges2

31 | T1CellIncreamentEdges2==T1CellIncreamentEdges1

32 | CellEdges(T1CellIncreamentEdges2)==9

33 T1CellIncreamentEdges2=randi([1,N]);

34 end

35 CellEdges(T1CellDecreamentEdges1)=CellEdges(T1CellDecreamentEdges1)-1;

36 PD(CellEdges(T1CellDecreamentEdges1)+1)=PD(CellEdges(T1CellDecreamentEdges1)+1)+1;

37 CellEdges(T1CellDecreamentEdges2)=CellEdges(T1CellDecreamentEdges2)-1;

38 PD(CellEdges(T1CellDecreamentEdges2)+1)=PD(CellEdges(T1CellDecreamentEdges2)+1)+1;

39 CellEdges(T1CellIncreamentEdges1)=CellEdges(T1CellIncreamentEdges1)+1;

40 PD(CellEdges(T1CellIncreamentEdges1)-1)=PD(CellEdges(T1CellIncreamentEdges1)-1)+1;

41 CellEdges(T1CellIncreamentEdges2)=CellEdges(T1CellIncreamentEdges2)+1;

42 PD(CellEdges(T1CellIncreamentEdges2)-1)=PD(CellEdges(T1CellIncreamentEdges2)-1)+1;

43 end

44 format short

45 PD;

46 F=sum(PD);

47 FF=PD/F;

48 FFF=[FF(4),FF(5),FF(6),FF(7),FF(8),FF(9)]'

49 V=4:1:9;

50 plot(V,FFF)
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Appendix B

Installing and dealing with Chaste

B.1 How to install and deal with Chaste

To install the open software Chaste which is described in detail at http://www.cs.

ox.ac.uk/chaste, the following steps need to be taken

1. Download the operating system Linux, Ubuntu 14.04 LTS.

2. Download Qt Creator 3.0.1, for visualization of results.

3. Install the software Chaste that corresponds to Ubuntu 14.04 LTS, with trust

Ubuntu code name, and all other required dependencies. Instructions for

installing the open software Chaste can be found at https://chaste.cs.

ox.ac.uk/trac/wiki/InstallGuides/UbuntuPackage.

4. Many other items need to be checked to ensure that they are installed.

Some of them are mandatory for running the software Chaste, such

as CMake, SCONS, Boost, PETSc, XMLTools and PyCml with its

dependencies, and others are optional, such as VtkStatic and TextTest.

All these details are given at https://chaste.cs.ox.ac.uk/trac/wiki/

InstallGuides/InstallGuide and https://chaste.cs.ox.ac.uk/trac/

wiki/DeveloperInstallGuide.

5. Install the integrated development environment, Eclipse IDE for C/C++

Developers. Version: Luna Service Release 2 (4.4.2) or any other version

that deals with C++.
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More details about how to deal with the software Chaste can be found on the CD

disc/README.
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