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An important property of developmental processes is their robustness with respect to the developmental conditions and particularly their scaling with the size of developing object. Simple 
patterns like that described by the “French Flag” model do indeed scale. However the exponential patterns forming in systems with decay or Turing patterns do not. In this presentation we 
show the way of extension of common models describing morphogenetic patterns, which allows their scaling and gives a possible explanation for it.    
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Case of unique unstable mode 
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Scaling in the extended (three-variable) Turing model 
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To introduce scaling into the Turing model we have ex-
tended it with the third variable satisfying two conditions: 
1. Additional variable (z) is maintained at a constant level 

which depends on the size of the medium. 
2. Additional variable affect the kinetics rate of two origi-

nal variables so that space scaling of the pattern is pro-
portional to the medium size.   

Conclusion 
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Case of multiple unstable modes 

2

1 12

u u
D k u

t x

 
 

 

This observation can be used to scale exponential pro-
files by constructing a system when a scaled horizontal 
profile is bound to the exponential. 
The system:   

Boundary conditions: 
 
 
 

Solution:  
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Let us consider a morphogenetic profiles occurring in two objects of 
different sizes, say L1 and L2. These profiles can be described by 
functions u(ξ, L1) and u(ξ, L2) where ξ=x/L gives a coordinate in the 
range [0,1] for both objects.  
Definition: The profile is scaled across the two objects if  

u(ξ, L1)=u(ξ, L2) for any ξ.  
Generally this is not true and from u(ξ1, L1)=u(ξ2, L2) it doesn’t follow 
that ξ1=ξ2. For this case we can introduce the scaling factor in the 
following way. Assume that u(ξ1, L1)=u(ξ2, L2). For small differences 
in L and in ξ we can write:    
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In our simulations, we set the values of the model parameters so that only one unstable mode 
exists for a wide range of medium sizes. For example, in the model illustrated by this figure, in 
the case of the medium size L=160, we can only have 3 stripes.   
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One of the most intriguing and important features of biological patterns is their ability to scale with 
the size of the object where they form [1]. This feature is a manifestation of a more general property 
of morphological structures to be robust with respect to variations in the developmental conditions. 
Developing embryos are exposed to a certain “development noise” i.e. environmental factor, genetic 
variability and random difference. Despite these fluctuations, the outcome of development is precise 
and reproducible, indicating that the mechanisms regulating patterning and growth of organs are ro-
bust and able to damp the effects of the variations.  

In Drosophila, development along the anterior-
posterior axis is scaled with embryo length [2]. Scaling of sea urchin larva in  

Hans Driesch experiment [1] 

From the above formula the relocation of the level point is given as: 

so that from u(ξ1, L1)=u(ξ2, L2) it follows  

 2 1 2 1
Lu

L L
u

 


   


i.e. the deformation of the profile is proportional to the change in the size  
of the system with the coefficient of proportionality representing scaling factor:   

Generally the patterns forming due to Tu-
ring instability are not unique. There can 
be many unstable special modes in the 
same system [4]. Extending the Turing 
model with cubic terms on the RHS: 
 
 
 
 
 
lets to avoid infinite concentrations arising 
for unstable modes of solution and ob-
serve patterns of different periodicity aris-
ing in the same system. Coexistence of 
different patterns creates difficulties in 
maintenance of scaling.   
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Turing model is commonly used for describing of spatially extended activator-inhibitor systems:  
 
 
 
 
where (a, c)>0 (activation) and (b, d)<0 (inhibition) [4].  
 
Patterning takes place due to diffusion of the inhibitor. That is, when morphogens don’t diffuse 
the homogeneous state (u=v=0) is stable:   
 
 
 
The loss of stability is associated with high diffusion of the inhibitor and takes place under the 
following condition:   
 

Let us consider the system with degradation:  
 
 
 
Morphogen in this system forms a stationary ex-
ponential profile of characteristic length given as:  
 
 
 
In the system with fast diffusion and/or slow deg-
radation the concentration profile can be readily 
represented by a horizontal line associated with a 
constant level of morphogen. This constant level 
is scaled with the size of the medium if constant 
flux boundary conditions are implemented [3].     

 

 

2
3

1 1 12

2
3

2 2 22

;

.

u u
D au bv u

t x

v v
D cu dv v

t x

 

 

 
   

 

 
   

 

Each horizontal line between red and blue lines corresponds 
to a pattern of different special periodicity.   

Stationary two– and three-periodic patterns forming in the 
same model medium in computer simulations   

By variation of model parameters it is possible to reduce the number of unstable modes 
(bring closer the blue and red lines bounding the region of instability).   

The above graphs show patterns forming in the extended Turing model for the case of two different 
medium lengths (L2=2L1). The green curve represents the concentration of the new variable (z)  which is 
constant. The blue and red curves show u- and v-profiles respectively.  Profiles of u and v are identical 
for these two medium sizes—indicating the perfect scaling.  

There is either none or only one unstable mode in a shown range of medium sizes when 

1=0.04 and 2=0.053. 
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 Robustness and scaling are important features of developing biological systems. Recent observations 
[3] confirm that scaling of biological patterns takes place at the level of morphogen gradients.  

 Many research groups are working to reveal mechanisms underlying robustness and scaling of biologi-
cal patterns. There are many indications that the scaling is based on the discrete nature (with discrete 
entities represented by cells or nuclei) of biological objects. This comes to play even the patterning is 
considered in continuous models [5].  

 Here we have proposed a hypothetical mechanism of scaling which can take place during morphoge-
netic patterning and differentiation of cells in tissues and which is not necessarily relied on the discrete 
nature of biological objects. This mechanisms is based on two assumptions:  

1. There is a morphogen which is produced with a constant rate and this rate doesn’t depend on 
the size of the tissue. This morphogen is degraded everywhere in the tissue so that the overall 
degradation rate is proportional to the size of the medium. In addition this morphogen diffuses 
quickly enough to maintain the same level all over the tissue.  

2. This morphogen affects the kinetics rates in the activator/inhibitor system responsible for 
patterning in the tissue in a way that the kinetics of morphogens depends on the size of the tis-
sue and scaling of morphogenetic pattern can take place.  

 The next task would be to explore whether there are experimental evidences supporting proposed  
mechanism of scaling.   

Shown simulations are per-
formed using the following pa-
rameter values: a=1, b=−2, c=3, 

d=−4, D1=1, D2=20, 1=2=0.1 

and 1=2=0.04 

Exponential profiles as functions 
of relative position (ξ=x/L) for two 
mediums of different sizes.  


