Pattern formation in a chain of logical elements UNIVERSITY OF LIVERPOOL

M. I. L. Rasolonjanahary* and Dr B. N. Vasiev.

Department of Mathematical Sciences, The University of Liverpool *m.l.rasolonjanahary@liv.ac.uk

EPSRC Engineering and Physical Sciences Research Council

Abstract

Mechanisms of pattern formation have been studied in great details using continuous models, such as FitzHugh-Nagumo system [1]. However, many features of patterns observed in developmental biology suggest that they arise due to interactions of non-continuous nature between biological cells [2]. Here we present a model represented by a chain of logical elements and develop a formalism to consider pattern formation in this model. Different sets of operations reflecting interactions between logical elements can lead to formation of stationary, propagating and oscillating patterns similar to those observed in continuous dynamical systems

- There are 256 possible sets of rules
- We analyse these sets of rules in order to distinguish those which result into nontrivial patterns
- Nontrivial patterns include stationary, oscillating and propagating patterns.
- To be on safe side with the observed patterns we add a noise (say 1 %).

Example of stationary pattern forming in the chain

Results for stationary and oscillating patterns

The transition given by the binary number 11001100 does not change the state of any cell and therefore ve will call it identity transition and denote as Te=204 (shown in the first column)

T.=204	(T ₋) ⁻¹ =51	T.=77	(T ₋) ⁻¹ =178
(000)→(0 0 0)	(000)→(0 1 0)	(000)→(0 1 0)	(000)→(0 0 0)
(001)→(0 0 1)	(001)→(0 1 1)	(001)→(0 0 1)	(001)→(0 1 1)
(010)→(0 1 0)	(010)→(0 0 0)	(010)→(010)	(010)→(0 0 0)
(011)→(0 1 1)	(011)→(0 0 1)	(011)→(0 1 1)	(011)→(0 0 1)
(100)→(1 0 0)	(100)→(1 1 0)	(100)→(1 0 0)	(100)→(1 1 0)
(101)→(1 0 1)	(101)→(1 1 1)	(101)→(1 0 1)	(101)→(1 1 1)
(110)→(1 1 0)	(110)→(1 0 0)	(110)→(1 1 0)	(110)→(1 0 0)
(111)→(1 1 1)	(111)→(1 0 1)	(111)→(1 0 1)	(111)→(1 1 1)

 $T_{\rm o}$ results into formation of non-regular stationary pattern. The inverse of $T_{\rm e}~((T_{\rm o})^{-1}{=}51)$ makes the oscillating pattern (with no special periodicity). By changing the two endpoints, we obtain $T_{\rm s}$ =77=01001101-this set of rules results into formation of spatially regular stationary pattern (the special period is given by two cells). The inverse of T_s ((T_s)-1=178) makes the oscillating pattern (with regular periodicity).

Model with three and more states per cell

The transition for logical element having three states are given by 27 rules: as each cell in the triple will have three possible states (3³). The transition when logical elements have *n*-states thus would include n³ rules. The analysis of two-state systems permits to make reasonable assumptions on "interesting" sets of rules for n-state systems and therefore to avoid consideration and simulation of all possible transition sets (total number of which is 3³ for 3-state systems and 4⁶⁴ for 4-state systems).

The regular stationary patterns in two-state system has special periodicity 2 (1 white + 1 black).

- For the three-state system, the periodicity can be up to 3.

The 3-periodic stationary patterns can form under a number of transitions, for example:

3

8

6 6 For the four-state system, the periodicity can be up to 6

8 For the five-state system, the periodicity can be up to 8

 References:

 1. Jaeger, J., Modeling the Drosophila embryo, Computational and System Biology themed issue, 2009.

 2. Hoyle, R. Pattern formation: An introduction to methods, Cambridge University Press 2006.

 3. Wolpert, L., Principles of development, Oxford, 2001.

 4. Vasiev, B. N., Classification of patterns in excitable systems, Elsevier, 2004.

Segmentation pattern in the fly embryo

along the head to tail axis. These segments form at early stages of embryogenesis and associated

Rule 0	(000)→(0 S ₀0)
Rule 1	(001)→(0 S ₁ 1)
Rule 2	(010)→(0 S ₂ 0)
Rule 3	(011)→(0 S ₃ 1)
Rule 4	(100)→(1 S ₄ 0)
Rule 5	(101)→(1 S ₅ 1)
Rule 6	(110)→(1 S ₆ 0)
Rule 7	(111)→(1 S ₇ 1)

Therefore each transition set can be described by a binary number S₇S₆S₅S₄S₃S₂S₁S₀ which varies from 0 to 255 (28)

Other set of rules resulting in nontrivial patterns

The transition 15 (=00001111) results into fragmentation of triples (triple zero and triple one get an opposing symbol in the middle) and also when the states of two neighbours differ from each other the transition accepts the state of the right neighbour. As a result there appear waves moving to the left and causing a formation of a stationary pattern, which grow on the left side of the medium. Transition 85 is similar to the transition 15 except that it accepts the state of the left neighbour and therefore the waves propagate to the right. There are also other transitions resulting into combinations of stationary patterns with propagating waves. Two transitions 175 and 80 give left and right propagating waves respectively. There are many other transitions (84, 112, etc) resulting into formation of stationary patterns.

T _{srw} =15	T _{slw} =85	T ₁₀₀₀ =175	T _{rlow} =80
(000)→(0 1 0)	(000)→(0 1 0)	(000)→(0 1 0)	(000)→(0 0 0)
(001)→(0 1 1)	(001)→(0 0 1)	(001)→(0 1 1)	(001)→(0 0 1)
(010)→(0 1 0)	(010)→(0 1 0)	(010)→(0 1 0)	(010)→(0 0 0)
(011)→(0 1 1)	(011)→(0 0 1)	(011)→(0 1 1)	(011)→(0 0 1)
(100)→(1 0 0)	(100)→(1 1 0)	(100)→(1 1 0)	(100)→(1 1 0)
(101)→(1 0 1)	(101)→(1 0 1)	(101)→(1 0 1)	(101)→(1 0 1)
(110)→(1 0 0)	(110)→(1 1 0)	(110)→(1 0 0)	(110)→(1 1 0)
(111)→(1 0 1)	(111)→(1 0 1)	(111)→(1 1 1)	(111)→(1 0 1)

Biological implementation of the model

Here we presented our results in patterning due to local interactions of logical elements. Such interactions can represent contact (membrane-to-membrane) interactions between cells in biological tissues resulting into differentiation of cells. For example two-state model can represent chain of locally interacting cells, where cells in state "1" express some particular gene while in state "0" don't. Therefore the modelled interactions can be een as regulating the differentiation of cells. The periodic stationary pattern forming in a two-state model represents a chain of cells where each second cell expresses the gene. These patterns can form under various interactions (transitions) from wide range of initial conditions. Three-state model doesn't have direct biological implementation, while the four-state model can be viewed as modelling cells whose differentiation is associated with expression of pair of genes. Four-periodic pattern (i.e. 0,1,2,3,0,1,2,3... or alternating **black**, dark grey, light grey and white) can correspond to the following alternation of gene expression:

Generation of four periodic pattern: Gene 1 pattern Gene 2 pattern

Formation of periodic stationary patterns in four-state model extremely sensitive to the initial conditions, i.e. refination of periods stationary patterns in tool station index extensions, because and the multi-(four-) level of segmentation in the fly embryo. Our model can account for interactions between segment polarity genes with cific initial conditions set by above three levels of patterning