Tutorial 3

These questions cover Parts 6 and 7 of the Lecture Course.

Please give your solutions to your tutor by noon on Wednesday $26^{\text {th }}$ March.

Question 1

a) A transmission line has capacitance per unit length C and inductance per unit length L. Show that the voltage between the conductors in the transmission line satisfies the equation:

$$
\frac{\partial^{2} V}{\partial x^{2}}=L C \frac{\partial^{2} V}{\partial t^{2}}
$$

b) With reference to the peak current and peak voltage in the transmission line, explain what is meant by the "characteristic impedance", Z. Show that the characteristic impedance is given by:

$$
Z=\sqrt{\frac{L}{C}}
$$

c) A coaxial cable is designed to have a characteristic impedance of 75Ω. If the inner conductor has a diameter of 2 mm , calculate the diameter of the outer conductor. (Assume that the conductors are separated by a non-magnetic dielectric with relative permittivity 1).

A 75Ω cable is used to connect a signal source with characteristic impedance 75Ω to a load with characteristic impedance 50Ω. Calculate the fraction of power reflected from the load.

Question 2 (This question is from the 2007 exam)
a) Write down expressions for the electric field \vec{E} and magnetic field \vec{B} in terms of the scalar potential ϕ and vector potential \vec{A}.
b) The potentials ϕ^{\prime} and \vec{A}^{\prime} are obtained from the potentials ϕ and \vec{A} by:

$$
\begin{aligned}
& \phi^{\prime}=\phi+\dot{\psi} \\
& \vec{A}^{\prime}=\vec{A}-\nabla \psi
\end{aligned}
$$

where ψ is a function of time and position. Show that the electric and magnetic fields derived from the potentials ϕ^{\prime} and \vec{A}^{\prime} are the same as the fields derived from the potentials ϕ and \vec{A}.
c) Suppose that the potentials ϕ^{\prime} and \vec{A}^{\prime} satisfy the equation:

$$
\nabla \cdot \overrightarrow{A^{\prime}}+\mu \varepsilon \dot{\phi}^{\prime}=f
$$

for some function f of time and position. Show that, if ψ satisfies the equation:

$$
\nabla^{2} \psi-\mu \varepsilon \ddot{\psi}=-f
$$

then the potentials ϕ and \vec{A} satisfy the Lorenz gauge condition:

$$
\nabla \cdot \vec{A}+\mu \varepsilon \dot{\phi}=0
$$

