LIVERPOOL

PHYS370 — Advanced Electromagnetism

Part 9: Electromagnetism and Special Relativity

Review of Special Relativity

Special relativity is developed from two fundamental principles:

e Physical laws have the same form in all inertial frames of
reference.

e All observers find the same value, ¢, for the speed of light
in a vacuum.
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Lorentz Transformations

Consider two inertial frames S and S’ (i.e. two non-accelerating
reference frames). Suppose that the two frames have a
common origin (x =y = 2z = 0) at time ¢t = 0, and that the
coordinates are oriented so that the relative velocity of the
frames is parallel to the z axis.

Frame S

Y

velocity, v

A given event occurs at time ¢t and coordinates (z,y, z) in frame
S, and at time ¢’ and coordinates (a/,v/,2') in frame S’. The
relationship between the times ¢t and ¢/, and the coordinates
(z,y,2) and (2,4, 2') is given by a Lorentz transformation.
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Lorentz Transformations

For a given event, the time and coordinates of the event in the
frame S’ are found from the time and coordinates of the even
in the frame S using a Lorentz transformation:

= y(z—ot) (1)
v =y (2)
Z = z (3)
t = ’y(tfz;—;) (4)
where:
. (5)
1-%

and v is the relative speed of S’ with respect to S.
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The Inverse Lorentz Transformations

The “inverse” transformation gives the time and coordinates of
an event in S, in terms of the time and coordinates of the same
event in S’

= (' +ot') (6)
=y (7)
z = 72 (8)
!

v = (r+2) (©)

C

where, as before:
1

v=— (10)

i

c2
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Time Dilation

The Lorentz transformations have two immediate consquences.
The first is that the time interval t, — t; between two events in
frame S is greater than the time interval t;, — ¢} between the
same two events, occuring at a given point &’ in frame 5’.

Since:
vm’
1 = 7<t/1+62> (11)
UJ}/
o = ’Y(t/2+62> (12)
it follows that:
th —t1 = y(th —t}) (13)

Note that v > 1 for all v; therefore, “moving clocks run slow" .
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Time Dilation
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Length Contraction

The second immediate consequence of the Lorentz
transformation is that the distance :c’2 — :1:’1 between two events
in frame S’ is less than the distance x5 — 1 between the same
two events, occuring at a given time ¢ in frame S.

Since:
oy = y(x1—ot) (14)
th = ~(xp—vt) (15)
it follows that:
1
Tp — ] :;(m&—x&) (16)

The dimension along the z axis of an object moving parallel to
the z axis appears to be shorter than if the same measurement
was made on the same object at rest.
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Time Dilation
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Lorentz Invariance

A physical quantity that is unchanged under the Lorentz
transformation is said to be Lorentz invariant. For example,
consider a pulse of light that leaves the origin at time

t =t/ = 0, and propagates as a spherical wave. An observer at
rest in S describes the locus of the spherical wavefront at time
t by the equation:

x2+y2+22202t2 = x2+y2+22—02t220 (17)
But, from the fundamental principles of special relativity, an
observer at rest in S’ sees the light pulse travel at the same

speed ¢, so writes a similar equation for the locus of the
spherical wavefront in S’

o + y'2 +22 -2 =0 (18)

The quantity 22 4 y2 + 22 — ¢2¢2 has the same value (zero) for
all inertial observers: it is said to be Lorentz invariant.
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Electric Charges Seen by Different Observers

Electric charge does not depend on time or position: therefore,
the net charge carried by an object is Lorentz invariant.

However, from Maxwell's equations, an electric field is
generated by a charge density, p:

V-E=p (19)

The charge density is the charge per unit volume. Since the
volume of an object is not Lorentz invariant (because of
Lorentz contraction), charge density is not Lorentz invariant.

This suggests that electric (and magnetic) fields are not
Lorentz invariant. Observers in different inertial frames will
agree on how an electromagnetic system behaves, but will give
different explanations for its behaviour.

We can illustrate this with a simple example...
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Electromagnetic Forces Seen by Different Observers

Consider a long straight wire at rest in a frame S with zero net
charge, but carrying a current I.

A charge ¢ moving in the same direction as the current in the
wire feels a magnetic force pushing it towards the wire.

v

.—P
q

d >
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Electromagnetic Forces Seen by Different Observers

An observer in S sees an electrically neutral wire, with the same
number of negative and positive charges per unit length.

Let us suppose that the current arises from positive charges
moving with speed v in the same direction as the charge q.

Since the wire is electrically neutral, the charge line densities of
the stationary negative charges and the moving positive
charges are the same.

—
v
q [
/\ — — — — — —
S [ e O o o ® 0
\ ®* O e e e o
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Electromagnetic Forces Seen by Different Observers

At a radial distance r» from the wire, the observer in S sees a
magnetic field:

pol

B = 20
27r (20)
The charge ¢ moving at speed v parallel to the wire at a
distance r from the wire experiences a force:
I
F =quB = —qv& (21)
27r

where the minus sign indicates a force towards the wire for
positive ¢, v and 1.

Using Newton’s second law of motion, the acceleration of the
charge resulting from the magnetic force is:

d’r F I
4 — - _ q ,U:U'O (22)
dt ym ym 27r
where m is the mass of the charge in its rest frame.
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Electromagnetic Forces Seen by Different Observers

Now consider an observer in S/, the rest frame of the charge q.
This observer should also see the charge accelerate towards the
wire.

Using time dilation, dt = vdt’; so the rate of acceleration in S’
should be:
d2r 2d2r q pol

a2~ a2 T Vo (23)

But in S/, the charge is at rest: this means that it will feel no
force from the magnetic field around the wire.

So why does the charge accelerate in S'?
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Electromagnetic Forces Seen by Different Observers

Consider the wire as viewed by the observer in .

Suppose there are N charged particles per unit length of the
wire when viewed in S.

The number of negative charges per unit length when viewed in
S’ is yN (since the negative charges were at rest in S, and are
moving with speed v in §').

The number of positive charges per unit length when viewed in
S’ is N/~ (since the positive charges were moving with speed v
in S, and are stationary when viewed in S’).
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Electromagnetic Forces Seen by Different Observers
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Electromagnetic Forces Seen by Different Observers

The densities of the negative and positive charges do not
cancel in S’: the net charge line density X is:

1
No= Ne(’y)
gl
1
= —7Ne<1—2>
i

02
= —yNe—5 (24)
c

Since the current I comes from positive charges e with charge
density Ne per unit length moving with speed v, we can write:

I = Nev (25)

Hence the charge line density is:

N=-~v21 (26)
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Electromagnetic Forces Seen by Different Observers

Distances perpendicular to the direction of motion are not
affected by relativistic contraction, so the charge ¢ is at the
same distance r from the wire in the frame S’ as in the frame S.

The electric field at the position of the charge is:

N 1
B = =5 Ay (27)
2meqr 2meQr c2
Using 1/c2 = ppep, this can be written:
I
E = —'yv& (28)

27r
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Electromagnetic Forces Seen by Different Observers

The electrostatic force on the wire in S’ is:

1
F'=qF = —fyqv—uo (29)
27r

Hence, the acceleration of the charge in S’ is:
d2r  F’ q pol
dt'? m 7m’0271'1" (30)

This is in agreement with equation (23) — even though we
derived the result in a completely different way.
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Electromagnetic Forces Seen by Different Observers

The force on the particle which was purely magnetic in S
appears purely electrostatic in S’.

Observers in the two frames agree about the acceleration, but
disagree about the origin of the force causing the acceleration.

Electric and magnetic fields are ‘“interchangeable”: whether
one sees an electric or a magnetic field in a given situation
depends on one's frame of reference.

This example represents a special case of the transformation of
electric and magnetic fields in special relativity.

In what follows, we will first show that Maxwell’'s equations are
compatible with special relativity, then derive the general form
of the field transformations.
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Four-Vectors and the Geometry of Space-Time

The Lorentz transformation is a linear transformation
connecting space and time coordinates in one frame with those
in another frame. Can we devise a more natural notation that
treats space (z,y,2) and time t coordinates on an equal
footing?

The answer is Yes! We simply extend the concept of a
three-dimensional vector:

(z,y,2) (31)
to four dimensions; thus we write a four-vector:
(a;? y7 Z? Ct) (32)

Note that we write ¢t for the fourth component of a
four-vector, so that it has the same units (i.e. units of length)
as the other three components. Three-vectors obey certain
rules of geometry. We need to be careful about how we extend
these rules to four-vectors.
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Three-Vectors and Rotations

The length (or rather, the length squared) of a three-vector is
found by taking the scalar product:

P ==z +y°+2° (33)

The quantity r2 is invariant under rotations of the axes. For
example, consider a rotation through angle ¢ about the z axis:

z — o’ =zcos¢p+ysing (34)
y — 3y = —xsing +ycose (35)
z = 2=z (36)
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Three-Vectors and Rotations

We can write the rotation about the z axis as a matrix:

7 7@ = R(¢) -7 (37)
where:
T cos¢ sing O
r=1|y R(¢) =| —sing cos¢ O (38)
z 0 0o 1
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Three-Vectors and Rotations

We observe that the rotation matrices are orthonormal, i.e.:

R($)" - R(¢) = I3 (39)

where I3 is the 3 x 3 identity matrix.

Another way of saying this, is that the rotation matrices
preserve the identity matrix, i.e.:

R(¢)"-I3-R(¢) =1I3 (40)

This is true for rotations around the x axis and around the y
axis, as well as rotations around the z axis.
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Three-Vectors and Rotations

Note that the scalar product of two three-vectors can be
written as a matrix multiplication:

r2 =7 - I3-7 (41)
Under a rotation R, we have:
F—R-7 (42)
and the length of the vector is transformed:
22 =7 RT.I3-R-7 (43)
But since the rotation matrix R preserves the identity matrix:
R"-I3-R=13 (44)
the length of the vector 7 is invariant under R:

r/2=FT-I3-F=T2 (45)
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Four-Vectors and the Geometry of Space-Time

The square of the length of a three-vector r2 is invariant under
rotations.

To extend this concept to four-vectors, we recall that the
quantity:

2 =22+ y2 4 22— 2t (46)

is invariant under Lorentz transformations.

Let us write this as:
r2=7".g.7 (47)

where 7 is now a four-vector, and g is a four-by-four matrix:

x 1 00 O
N ~lo10 o0
L 9 loo01 o0 (48)
ct 000 —1
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Four-Vectors and the Geometry of Space-Time

We note that, like the identity matrix I3 in three dimensions,
the matrix g is invariant under rotations.

For example if we write the rotation about the z axis as:

cos¢ sing 0O O
_ | —sing cos¢p O O
0 0 01
then we have:
R(®)T-g-R($p) =g (50)
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Four-Vectors and the Geometry of Space-Time

The fourth dimension gives us an extra set of transformations
under which the matrix g is invariant.

The minus sign on the (4,4) component of ¢ means that these
transformations look a little different from normal
transformations.

Four-Vectors and the Geometry of Space-Time

Let us write:
~ = cosh 6 (52)

where 6 is the parameter in one of the transformations A(6).

Using the identity:

cosh?6 —sinh?26 =1 (53)
An example of one of these transformations is: we can write:
cosh® 0 O —sinh6 sinh @ = B~ (54)
0 10 0
A(O) = 0 01 0 (51) where )
—sinh® 0 0O coshé o — e — (55)
V1 —p2
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Four-Vectors and the Geometry of Space-Time Four-Vectors and the Geometry of Space-Time
Summary: By combining the spatial coordinates and the time
coordinate into a single four-vector:
Then the transformation A(8) becomes: z
- )
vy 00 —By =1 (58)
AO) = 8 ; 2 8 (56) ct
—By 0 0 and considering transformations A(#) that leave the matrix g
K K invariant:
) ) ) 1 00 O
With 8 = v/c, the transformation A(0) gives the Lorentz . 010 O
transformation (1) - (4): NO) g NO) =g 9=loo01 o (59)
000 -1
7 =N 7 (57) _ _
we have obtained the Lorentz transformations:
v 00 —By
0O 10 O .
A(O) = O 01 o , v =cosh@, B~ =sinho
-8y 0 0 ~«
(60)
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Four-Vectors and the Geometry of Space-Time

A Lorentz boost is just a kind of “rotation” in space-time. The
matrix g, sometimes called the metric, is invariant under normal
rotations (in three-dimensional space) and under Lorentz boost
“rotations” in space-time.

The metric provides a rule for constructing invariant quantities.
We have already seen that for ¥ = (x,y, 2, ct) describing the
motion of a spherical wavefront of a light wave, the quantity:

=7 g F=a’+y?+:2-c2°=0 (61)

is invariant under Lorentz transformations.

In general, if p and ¢ are four-vectors, then the quantity:

P g-q (62)
is invariant under Lorentz transformations. This is because the
metric g is preserved under Lorentz transformations.
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Four-Vectors and Index Notation

The product of two four vectors:

P g-q (63)
appears all the time in special relativity. To simplify things, we

write the puth component (= 1...4) of a four-vector p as p#.
Note that u is written as a superscript.

We define a four-vector associated with g with components:

4
P = Z PVQV/L (64)

v=1
The components of the new four-vector are distinguished from
those of the original four-vector by writing the index u as a
subscript. The square of the “length” of the four-vector g is
given by:

4 4
=T - _
P g-p= Y gt =Y pupt (65)
=1 p=1
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Four-Vectors, Index Notation and the Summation Convention

In general, the ‘“scalar product” of two four-vectors can be
written as:
4 4
P g d= > pPoud" = > pud" (66)
=1 pn=1

A product of two four-vectors constructed in this way is
Lorentz invariant.

Products such as these occur so frequently in special relativity,
that we introduce a short-hand notation that avoids writing the
summation symbol all the time.
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Four-Vectors, Index Notation and the Summation Convention

The summation convention states: where a “down’” index on
one four-vector also appears as an “up” index on another
four-vector, we sum over the components of the two
four-vectors, thus:

4 4
pud" = Y pud = Y pguud" (67)
p=1 pr=1

In general, any index should appear a maximum of two times in
any expression: once as a “down’” index and once as an “‘up”
index.

When an index appears twice in this way, summation over the
index is implied.

If an index appears twice or more as either a “down’” index or
an “up” index, you are doing something wrong! Stop, go back,
and check what you have written.
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Lorentz Transformations of Four-Vectors

The transformation of a four-vector p# from one inertial frame
S into a second intertial frame S’ can be written very easily as:

Pt = AL pY (68)

where the summation convention applies, and the matrix A",
has components (in the case of a boost along the z axis):

v 0 0 —py
0 10 O

Mo=1 0 01 o (69)
By 00 ~

Note that to maintain consistency with the summation
convention, the matrix A", is written with one index “up” and
the other index “down’.
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The Momentum Four-Vector

A four-vector can be constructed from the energy of a particle
and its momentum. If the energy (the sum of the mass energy
and the kinetic energy) of a particle is E and its momentum is
P = (px, py, Pz), then the vector:

Px

Py
P o= 70
P s (70)
E
(&
is a four-vector, called the momentum four-vector of the

particle.

The “length” squared of the momentum four-vector is given by:

E2
pupt = p2 + ps +p2 — 2= —mpc? (71)

where mgq is the rest mass of the particle.
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The Momentum Four-Vector

We can re-write this as:
E? = ﬁQCQ + m%c4 (72)
which is familiar from special relativity.

Since all observers agree on the rest mass of a particle, the rest
mass is Lorentz invariant.

So the quantity p,p* is Lorentz invariant; hence, p* must be a
four-vector.
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The Differential Operator O#

The differential operator 9# is a four-vector whose components
are:

gl

&l

oM = (73)

o

To see that O is indeed a four-vector, we must check its
transformation rules.
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The Differential Operator o#

The first component transforms as:

1 0 _ 0r 0 oy 0 0z O ot o
T ox T od oz ' 0/ Oy @ O’ 0z ' O Ot

Using the inverse Lorentz transformation (6) - (9) for a boost

in the 4« direction:

b, (74)

0 vl1ld
8/1 =’7£+’Ygza =’Yal —/3784 (75)

Altogether, we find the components 9% transform as:

ot = 49l — gy o? (76)
9% = 52 (77)
93 = 83 (78)
a9t = —pyol+0* (79)

Hence, 0 transforms the same way as xz# under a Lorentz
transformation, and is therefore a four-vector.
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The Differential Operator 0¥, and the D'Alembertian O

Associated with 0* is the differential operator Jy:

0 0 0 10
O = Val/ = \a a5 A, 80
w= In <5‘x Oy 0z 08t> (80)

We define the differential operator O as:
0 = §,0H (81)

Note that we use the summation convention, so that a
summation over the repeated index p is implied.

From the components of the vectors, we can write:
92 9% 92 18? 5 182

=S+t 5t 5—55= — === 82
0x2 + oy 022 2012 c29t2 (82)
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The Differential Operator 0¥, and the D'Alembertian O

The second-order differential operator O:
_ R R ARy 1
dx2 8y2 022 2ot2 2 0t2
is called the D'Alembertian.

(83)

Since the D'Alembertian is the product of two four-vectors, we
expect it to be Lorentz invariant.

This is indeed the case, as can be verified by calculating its
transformation properties directly.
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The Current Density Four-Vector

The current density (Jz, Jy, J:) and the charge density p can be
combined into a four-vector:

JH = (J, Iy, Jzycp) T (84)

The correct transformation properties for a four-vector follow
from the Lorentz invariance of electric charge, together with
time dilation and length contraction.

The continuity equation can be written:

Ot = 222 4 =Y ‘L=v.J+L=0 85
" 8x+8y+82+8t o (85)

The left-hand side is the product of two four-vectors, and so
should be Lorentz invariant. The right-hand side is a constant
(zero) which is obviously Lorentz invariant.
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Covariant Form

An equation expressed purely in terms of four-vectors and
Lorentz invariants is said to be in covariant form.

If an equation can be put into covariant form, it means that the
equation will still have the same form (i.e. will look the same)
if all the quantities involved undergo a Lorentz transformation.

An equation that is in covariant form will be consistent with
the first principle of special relativity.

We expect to be able to express the laws of physics (in so far
as they are compatible with special relativity) in covariant form.
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The Electromagnetic Potential Four-Vector

Consider the wave equations for the magnetic vector and
electric scalar potential:

OA = —ugd (86)
Op = -2 (87)
€0
Write the second equation as:
¢ cp
O0-=——5 = —pocp (88)
c EQC

We can combine equations (86) and (88) as follows:
OAH = —pgJH (89)

where JH = (Jgz, Jy, Jz,cp) T is the current density four-vector,
and we have defined the quantity A* as:

AF = (Ax,Ay,AZ,?)T (90)
C
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The Electromagnetic Potential Four-Vector

The operator O is Lorentz invariant, as is the physical constant
uo, and the current density J# is a four-vector. We assume
that A* is a four-vector, called the electromagnetic potential
four-vector. Then, the wave equation (89):

OA* = —pgJH
involves only Lorentz invariants and four-vectors, and hence is

in covariant form.

The Lorenz gauge condition:
V- A+ —=5—=0 (91)
can be written in covariant form:

DAt =0 (92)
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A Moving Point Charge: The Liénard-Wiechert Potentials

We can apply a Lorentz transformation to the potentials
around a stationary point charge to find the potentials around
a point charge moving at a constant velocity.

The resulting potentials are known as the Liénard-Wiechert
potentials.

We start with the familiar Coulomb potential around a
stationary point charge gq:

o) = .4 (93)

dreq |F— 7yl

A@) =0 (94)
where 7 is the location of the point charge.
We now make a Lorentz transformation from a frame in which

the point charge is at rest, to one in which it is moving with
some non-zero velocity.
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A Moving Point Charge: The Liénard-Wiechert Potentials

Let us choose a coordinate system in which the charge is at
rest, and the charge and the observation point lie on the z-axis.

We shall first consider a boost along the z-axis, and then
generalise our result to include boosts in other directions.

In the inertial frame S, the point charge is at rest.

In the inertial frame S/, the charge is moving with velocity v
along the z’-axis.

Therefore, frame S’ is moving with velocity —v along the z-axis
with respect to frame S.

Advanced Electromagnetism 48 Part 9: EM and Special Relativity

A Moving Point Charge: The Liénard-Wiechert Potentials

The Lorentz transformations of the potentials are then:

¢ = 7 (6+vAr) =7 (95)
Ay = o (A +g) =e =154 (96)

Since the vector potential A/, is readily expressed in terms of
the scalar potential ¢/, we concentrate on finding the scalar
potential in frame S’

Substituting from equations (93) and (94) into equation (95),
we have for the scalar potential:

¢ =vp=1~ g

4reg ' |z — 4]

(97)

To find an expression for ¢’ in terms of coordinate in S/, we use
the Lorentz transformations of the coordinates:

x =" (:c/ — vt’) (98)
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A Moving Point Charge: The Liénard-Wiechert Potentials

Substituting from (98) into (97) gives:
1 q
747?80 . "y (! —vt') — v (mfl — vt@))
1 q

= (100)

4reqg . )(ZL‘, —wt!) — (x{] — Utfl)‘

¢ = (99)

Note that the charge is at coordinate ;vfl at time t{z (as measured
in frame S’), and that the potentials ¢’ and A/, are measured at
coordinate z/ and time ¢’ (again, as measured in frame S’).
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A Moving Point Charge: The Liénard-Wiechert Potentials

Since any change in the source takes time Ax’/c to propagate
a distance Az’/, we must have:

r_
T atq‘

' —tg = } (101)

@
Therefore, we can write equation (100) for the potential in
frame S’

/ 1 q

- o (102)
4meg ‘x —xq‘(liFv/c)

where the minus sign holds for z’ > x{] (charge moving towards
the observer) and the plus sign holds for =’ < xf; (charge moving
away from the observer).
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A Moving Point Charge: The Liénard-Wiechert Potentials

Since coordinates in directions transverse to the boost are not
changed by the Lorentz transformation, we can generalise
equation (102) to a boost in an arbitrary direction:

1 q
¢/ ('F/,t/) — 2 . ” » - . (103)
e — — .
0 ‘r ’I“q‘ (1 B n)
where:
- oA o o
N v . r =7 ‘ —T ‘
f=-, il = q =t + g (104)
c ‘F’ — 7 c
q
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A Moving Point Charge: The Liénard-Wiechert Potentials

Dropping the prime, we can use equations (103) and (96) to
write expressions for the potentials around a point charge
moving with constant velocity v = Ec:

1 q

Ft) = . - 105
PED = e, |77l (1 - B 7) (109)

A(Ft) = gqb (7, 1) (106)

where 7 is a unit vector from the charge at ; to the observer
at r, and the charge is at 7y at time ¢4, given by:

t=t,+ I =7l (107)
Equations (105) and (106) give the Liénard-Wiechert
potentials for a point charge moving at constant velocity.
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A Moving Point Charge: The Liénard-Wiechert Potentials

From the Liénard-Wiechert potentials (105) and (106):

1 q
p(rt) = . —
Ameq |7 — 7y (1 -G -')

n

A(Ft) = gd) (7, 1)

we see that there is a relativistic enhancement of the potential
for a charge moving towards an observer, and a relativistic
reduction of the potential for a charge moving away from an
observer. The enhancement or reduction compared to the
static case is a relativistic effect, since it vanishes in the limit

c — oo (in which case, the expressions for the potentials around
a moving point charge are the same as those for the potentials
around a static charge).

Finally, note that the Liénard-Wiechert potentials satisfy the
Lorenz gauge condition:

- 10
VA —Qi’ =0. (108)
c? Ot
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The Electromagnetic Field

The components of the magnetic field (Bm,By,Bz) and the
electric field (E,, Ey, E,) cannot be combined into a four-vector.
However, they can be combined into a matrix that will allow us
to write Maxwell’s equations in explicitly covariant form.

Recall that the electromagnetic field is obtained from the
derivatives of the potential. Let us define the matrix F#:

FHY = 9k AY — ¥ AK (109)

where A* is the four-vector electromagnetic potential, and 9* is
the four-vector differential operator. Since the right-hand side
of equation (109) involves only four-vectors, it transforms
under a Lorentz transformation as:

oA — oAM= NN 0% AP — N N5 0P A (110)

Therefore, the matrix FA transforms under a Lorentz
transformation as:

FM = N, N P (111)
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The Electromagnetic Field

Since '™ transforms appropriately under Lorentz
transformations, this is a valid quantity to use in explicitly
covariant expressions. Now we inspect the components of FHY,

For example, we find that:
0Ay 0Ay

F1,2 — al A2 —82A1 —
Oz Ay

=B, (112)

As another example, we find that:

109 & 10A, E,

— 4= =" 113
c Oz c Ot c ( )
We also note that the diagonal components of F'#¥ are zero:

F3’4=63A4—84A3 —

F‘.U'V:O7 uw=v (114)
and that FHY is antisymmetric:

FVH = _phv (115)
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The Electromagnetic Field

Overall, we find that the components of FHA are:

0 B, -By, —Egjec
~B. 0 Bp -BEyc

By, -B: 0 —E./c
Ex/c Ey/c E./c 0

Y = (116)

We observe that the six independent components of the 4 x 4
antisymmetric matrix FH*¥ are the six components of the
electromagnetic field.

The transformation properties of the electromagnetic field
under Lorentz transformations follow immediately from the
transformation properties of the matrix F*:

F'*% = A%, N8, P (117)
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The Electromagnetic Field

We now have an explicitly covariant quantity F#¥ that contains
the components of the electromagnetic field.

If we are able to write Maxwell’s equations purely in terms of
FHY and other quantities (four-vectors and Lorentz invariants)
with the proper transformation properties, then we will have
shown that Maxwell’'s equations are consistent with special
relativity.
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Explicitly Covariant Form of Maxwell's Equations

First, consider the expression:
OuFH (118)

This may be evaluated explicitly using equation (116); but note
that we can also write it using (109):

OuFH = 9,0 AY — 9, 0" AH (119)
Note that:
Ou o =0 (120)

In the Lorenz gauge, the four-vector potential A# satisfies the
wave equation:

OAY = —pugJ” (121)
We can also choose the Lorenz gauge condition:
At =0 (122)
and hence:
OuFHM = —pgJ” (123)
Advanced Electromagnetism 59 Part 9: EM and Special Relativity




Explicitly Covariant Form of Maxwell's Equations

Consider the explicitly covariant equation (123):

OuFH = —pgJ” (124)

If we take v = 4, we find that:
0 Ey 0 Ey 0 E,
ox ¢ dy c 0z ¢
which can be written:

= pocp (125)

—

V-E= u0c2p (126)

Using ¢2 = 1/pgeg, we obtain the familiar form of Maxwell's
equation:

V-D=p (127)
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Explicitly Covariant Form of Maxwell's Equations

Now consider the case v = 1 in the explicitly covariant equation
(123):

8MF/“’ = —pugJ¥ (128)
This gives:
53] 0 10
-—B —B ——FE; = —ugplJ. 129
oy Z+8z y+028t * oz ( )
which can be written:
_ 1 0FE,
[V x B]z — 2 ot = poJz (130)

We obtain similar expressions from the cases v =2 and v = 3;
combining the equations from all the cases v =1,2,3, we
obtain Maxwell's equation:

Y5,

VxH-"2=17 131
p (131)
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Explicitly Covariant Form of Maxwell's Equations

We find that the explicitly covariant equation (123):
OuFHY = —pgJ" (132)

gives (by considering different values of the index v), the
inhomogeneous Maxwell's equations:

vV-D = p (133)

. 8D .
VxH-—"= =] 134
H T (134)
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Explicitly Covariant Form of Maxwell's Equations

Now consider the definition of the matrix FHV:
FHY = gAY — oY AF (135)
Using this definition, we find that:
ONFM 4 gV FM 4 gFYA = 0 (136)

Note that this is an identity for any values of the indices A, u
and v: it holds for any components of the matrix FAY.

If we choose:
p=1, v=2, A=3 (137)

we find:

3] 15] 0

—B —B —B, =0 138
ox + oy vt 0z~ ( )
which can be written in the form familiar from Maxwell's

equations:
V-B=0 (139)
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Explicitly Covariant Form of Maxwell's Equations

Now let us take the equation (136):

ONFHY 4 9V FM 4 oA = 0 (140)
with the values for the indices:

pw=1, v =2, A=4 (141)
We find that:

10 10 10

B, 4+~ FE,——

cOot cOy cOx
which can be written:

Ey=0 (142)

[V x E]Z+%Bz=o (143)

We find similar equations for y =1, v =3 and A = 4; and for
u=2, v=3and A =4. Combining the equations together, we
obtain the familiar Maxwell's equation:

—

V x E+ 0 (144)

ot
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Explicitly Covariant Form of Maxwell's Equations

To summarise, the explicitly covariant equation (123):

OuFH = —pgJ” (145)
can be written using three-vectors:
. . 9D -
V-D =p, VXH—-——=1J (146)
ot
The explicitly covariant equation (136):
ONFHY 4 9V FM 4 OHFYA = 0 (147)
can be written using three-vectors:
, . 0B
V-B=0, VxE—i—a:O (148)
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Lorentz Transformation of the Electromagnetic Field

Explicit expressions for the transformations of the
electromagnetic field can be found from equation (111):

M = NNV FOP (149)

Since the electromagnetic field FoB s represented by a matrix,
and the Lorentz transformation A, is also represented by a
matrix, applying the transformation just involves matrix
multiplication.
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Lorentz Transformation of the Electromagnetic Field

For a Lorentz boost of velocity v along the z axis, we find for
the electric field:

E., = E, (150)

E, = ~(Ey—vB:) (151)

E. = ~y(E:+4vBy) (152)

And for the magnetic field:

B, = By (153)
v

By = 4 (By+ 5E:) (154)
v

B, = 7(83—6—2Ey> (155)

The inverse transformations are obtained simply by replacing v
by —wv.

Note that the electric field in the S’ frame depends on the
magnetic field in the S frame; and that the magnetic field in S’
depends on the electric field in S.
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Lorentz Transformation of the EM Field: Example 1

An stationary observer measures the Earth’'s magnetic field to
be 30 uT. What field would be measured by an observer in an
aeroplane flying past the stationary observer at 900 km/h (250
m/s) perpendicular to the direction of the Earth's field?

Choose the x axis to be the direction of motion of the
aeroplane, relative to the stationary observer, and the z axis to
be in the direction of the magnetic field. For the stationary
observer, the magnetic field is:

B.’L‘ =0
B, = 30uT
and the electric field is:
Eq; = 0
E, = 0
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Lorentz Transformation

of the EM Field: Example 1

For the moving observer, 8 =

8.3x 1077 and v~ 1. The fields

measured by the moving observer are:

B, =0
A
B, =0
B, = ~B,~30uT
and the electric field is:
E. =0
E, = —yvB;~-7.5 mV/m
E, =0
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Lorentz Transformation of the EM Field: Example 2

A neutral hydrogen atom moves with kinetic energy 100 keV in
a laboratory frame. Suppose the atom enters a magnetic field
of strength 1 T perpendicular to its direction of motion. What
fields will the atom experience in its rest frame?

First, we calculate the velocity of the hydrogen atom. The rest
mass of the hydrogen atom is m = 0.938271 GeV/c2. So the
total energy of the hydrogen atom is:

ymc? = 0.938271 GeV + 100 keV = 0.938371 GeV  (156)

Hence:
_0.938371

= 7221 ~1.000107 157
77 0.0938271 (157)
Hence:
1
B=,/1-—5~0.0146 (158)
y
and:
v=Bca 4.38 x 10° m/s (159)
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Lorentz Transformation

of the EM Field: Example 2

Let the hydrogen atom be moving along the z axis, and the

magnetic field be parallel to t
seen by the hydrogen atom is

he z axis. The initial electric field
zero; the magnetic field is:

=0
=0
= 1T

The magnetic field seen by the hydrogen atom in its rest frame

By
By
B
is:
B, = 0
/I
B, = 0

B, = ~B,~1.000107T
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Lorentz Transformation of the EM Field: Example 2

The electric field seen by the hydrogen atom in its rest frame is:

El. =0
E, = —yvB;~ —4.38 MV/m
E. = 0

The hydrogen atom sees an electric field of over 4 megavolts
per meter! This is an extremely strong electric field, and can
result in ionisation of the hydrogen atom (an effect called
Lorentz ionisation).
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Lorentz Transformation of the EM Field: Example 3

What are the fields around a moving point charge?

Let the charge ¢ be moving along the z axis with velocity v. In
the rest frame S’ of the charge, there is no magnetic field, and
the electric field is given by:

_,/
— q T
E = — 160
4meqr!3 ( )
In cartesian coordinates, the field components are:
/
q T
E! = 161
z 4dreq (22 + y/2 4 z’2)3/2 ( )
/ q Yy
Y 4reg (22 + 2 + 212)3/2 ( )
B =1 ? (163)
z Ameq (22 4 y/2 + 2/2)3/2
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Lorentz Transformation of the EM Field: Example 3

Now we apply the inverse Lorentz transformations to find the
fields in the laboratory frame. Note that we have to transform
the coordinates as well as the fields.

= ~(xz—ot) (164)
Yy =y (165)
Z = 2z (166)

With zero magnetic field in S/, the electric field transforms as:

E; = E, (167)
Ey = 7E, (168)
E. = E, (169)

and the magnetic field transformations are:

By = 0 (170)
v

By = —v,E; (171)
v

B, = ~y—E 172

z ’702 ] ( )
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Lorentz Transformation of the EM Field: Example 3

We find that the electric field in the frame S is given by:

a y(x — vt)
b 173
4req (v2(x — vt)2 4+ y2 + 22)3/2 (173)
i 7Y
By = 174
Y 4meg (v2(x — vt)2 4 y2 + 22)3/2 (174)
E, = q Yz (175)

4req (v2(x — vt)2 + y2 + 22)3/2

Notice the factor ~ that appears in the xz-dependence of the
fields. This means that with increasing velocity, the fields
become “flattened” towards the plane perpendicular to the
direction of motion of the charge.
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Lorentz Transformation of the EM Field: Example 3

The magnetic field is given by:

v
v
B: = 3By (178)

The magnetic field is “flattened” at high particle velocities, in
the same way as the electric field. There is also a direct
dependence of the size of the magnetic field on the velocity (as
we expect): at v = 0, the magnetic field vanishes altogether.
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Lorentz Transformation of the EM Field: Example 3

To visualise the fields, consider the fields along the axes for the
case t = 0:

q 1
Ex(y=2=0) = 179
I(y z ) 471'60’723}2 ( )
Ee=2=0) = L (180)
4Amegy
Ee=y=0) = =L (181)
4megz

and the magnetic field is given by:

By = 0 (182)
v oq v
u( Y ) c?4meq 22 ( )
v o q 7
Aw==2 ) 2 4meqgy? (184)
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Lorentz Transformation of the EM Field: Example 3

The electric and magnetic fields around a relativistic charged
particle are “flattened” towards a plane perpendicular to the
direction of motion of the charged particle.
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Summary of Part 9: Electromagnetism and Special Relativity

You should be able to:
e Explain what is meant by a “Lorentz invariant”.

e State that electric charge is a Lorentz invariant, and show that electric
and magnetic fields are not Lorentz invariants.

e Write the Lorentz transformations using four-vector index notation.

e Write down and use the four-vector equivalents of the grad, div and
laplacian differential operators.

e Write down the components of the four-vectors representing current
density and electromagnetic potentials.

e Derive a 4 x 4 matrix representing the electromagnetic fields, by taking
the “grad” of the electromagnetic potential four-vector.

e Write down Maxwell's equations and the continuity equation using
four-vector notation, and show the equivalence of the equations in this
form to the equations written in the usual three-vector notation.

e Perform Lorentz transformations of the current density, electromagnetic
potentials and electric and magnetic fields.
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