LIVERPOOL

PHYS370 — Advanced Electromagnetism

Part 7: Electromagnetic Potentials

Electromagnetic Potentials

In this section, we consider:

e The electric scalar and magnetic vector potentials.

e The wave equations for the electromagnetic potentials.
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Potentials

A potential is a function whose derivative gives a field. Fields
are associated with forces; potentials are associated with
energy.

The magnetic vector potential A is defined so that the
magnetic field Bis given by:

B=VxA (1)

The electric scalar potential ¢ is defined so that the electric
field E is given by:

" 0A
E=-Vj—— (2)
ot
Note that in general, the scalar and vector potentials are
functions of position and time.
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Electrostatic Potential

source

origin

The electric field in the presence of a static charge distribution
p(7) is found from Coulomb’s law:

= 1 rp()(F=7)

B0 = e / F—p 3
where the integral extends over all space. Note that the prime
on the coordinates indicates that the coordinate is associated
with the charge.
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Electrostatic Potential

source

origin

In terms of the scalar potential, for a static charge distribution,
we have:

1 1 p(7)

—» !

o) = 4meq ) |F— 7 v )
Calculating the potential is simpler than calculating the field
directly; and one can then use E = —V¢ to find the electric
field.
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Electrostatic Potential

Since we have from Maxwells’ equations:

V-D=p (5)
where
D =c¢cE (6)
it follows that in an homogeneous, isotropic medium:
V.E:—vw:g )
and so:
v24(7) = 20 ®)

Equation (8) is called Poisson’s equation.

Equation (4) is the solution to Poisson’'s equation, expressed as
an integral.
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Electrostatic Potential

The behaviour of a charged particle in an electric field is
determined by the field E, rather than by the potential.

Since E = —V¢ for an electrostatic field, we can add any
function with vanishing gradient to the potential ¢, and obtain
the same physics. In other words, the behaviour of any
electrostatic system is the same under the transformation:

o(7) = ¢(7) + ¢o (9)

where ¢q is a constant (independent of position).

The freedom that we have in choosing the potential is called
gauge invariance.

This allows us to choose arbitrarily the point at which ¢(7) = 0.
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Electrostatic Potential

Note that if we write the solution to Poisson’s equation (4):

1 1 p(™)
4reg ) |F— 7|

o(F) = av’ (10)

then implicitly (assuming that all charges are within a finite
distance from the origin), we make the gauge choice:

o(r) =0 as |7] — oo (11)
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Magnetic Vector Potential

In the presence of sources for the magnetic field (i.e. a current
distribution), the magnetic field B can be found from the
Biot-Savart law:

B(7) =10 /wd‘/’ (12)

4m |7 — |3

where the integral extends over all space.
Generally, the Biot-Savart law is difficult to apply.
It is often easier to first calculate the magnetic vector

potential; but first, we need to derive the differential equation
for the vector potential.
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Magnetic Vector Potential

In a static case (constant fields, charges and currents), the
magnetic field is related to the current density by:

VXE:Mj (13)

Substituting B = V x A, and using the vector identity:
VxVx A=V (V-A)-v24 (14)
we find:

VQ/Y—V(V-A’) =_—uJ (15)

This looks like a complicated equation; but there is a way to
simplify it...
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Magnetic Vector Potential

Suppose that:
V- A=Ff (16)

where f is some function of position. Let us define a new
vector potential A’

Al = A+ Vi (17)
Since:
V x Vipg =0 (18)

for any function g, the new vector potential A gives exactly
the same magnetic field as the old vector potential A.
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Magnetic Vector Potential

However, if we choose g such that:
Vo = —f (19)
then:
V- A=V - A4+V%y=0 (20)

In other words, given a vector potential, we can always choose
to work with another vector potential that gives the same field
as the original one, but that has zero divergence.

Assuming that we make such a choice, then equation (15) for
the vector potential becomes:

V2A = —uJ (21)

This is again Poisson’s equation — or rather, three Poisson
equations, one for each component of the vectors involved.
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Magnetic Vector Potential

Since we already know the solution to Poisson’s equation for
the scalar potential, we can immediately write down the
solution to Poisson’s equation for the vector potential:

() = to [ T

av’ 22
4r ) |7 — | (22)

This integral is generally easier to perform than the one
involved in the Biot-Savart law.

Once we have obtained the vector potential, we can derive the
magnetic field from B=VxA.
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Gauge Transformations of the Magnetic Vector Potential

Notice that to derive equation (22), we made use of a gauge
transformation of the vector potential: the magnetic field is
unchanged if we make the transformation:

A s A+ Vg (23)

for any scalar function q.

In particular, we made a gauge transformation so that:

V-A=0 (24)

The gauge condition (24) is known as the Coulomb gauge, and
is implicit in equation (22).

The Coulomb gauge is a convenient choice for static systems;
but as we shall see later, there is a better choice for dynamic
systems.
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Summary (so far)

For time-independent fields, we can perform calculations more
simply using the electric scalar and magnetic vector potentials.
The potentials obey Poisson’s equation in the presence of
sources:
p(7)
-
The physics is invariant under gauge transformations of the
scalar and vector potentials:

¢ — ¢+ o, A A4 Vg (26)

where ¢q is a constant, and g is any scalar field. One possible
choice of gauge is such that:

V2¢(F) = — V2A(F) = —pJ(7F) (25)

#(|f] = o0) =0, V-A=0 (27)
The potentials can be calculated directly from the sources:
1 p(7) e po [ I,
7)) = dv’, A(r) = — dv 28
0 = areo ] 77 e (28)

Advanced Electromagnetism 14 Part 7: Electromagnetic Potentials

Wave Equations with Sources

We are interested in the case of electromagnetic waves
produced by time-dependent sources, i.e. charge and current
distributions that vary with time.

Note that we can (somewhat artificially) divide electric currents
into two sorts:

e “External’ currents that cause electromagnetic waves.

e “Induced"” currents caused by electromagnetic waves.

We will consider only the case where the conductivity o of the
medium is zero; then we can neglect induced currents, and
include only external sources of power.
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Wave Equations with Sources

As usual, we start from Maxwell’'s equations:

VxE=_B VxH=J+D
Taking the curl of V x E we find:

VXVXxE=V(V-E)-V2E=—uVx H=—pJ—pucE (29)

We find that the wave equation for the electric field, in the
presence of sources, is:

. 0%E oJ
V2E —pe 5 = poo 4 V(p/e) (30)
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Wave Equations with Sources

Following a similar procedure, starting by taking the curl of
V x H, we obtain the wave equation for the magnetic field H:

. 02H

V2H — pe o =V J (31)

Note that as the sources p and J approach zero, we obtain the
usual source-free wave equations.

Also note that the wave equation for the magnetic field has
only a source term dependent on the electric current f,
whereas the wave equation for the electric field includes a
source term for the electric charge p.

This is a consequence of the fact that there are no magnetic
monopoles.
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Wave Equations with Sources

Equations (30) and (31) are best solved using the electric
scalar and magnetic vector potentials, and with an appropriate
gauge choice. For static electromagnetic fields, we have
already seen the Coulomb gauge:
V-A=0 (32)
Recall that by making an appropriate gauge transformation:
A A+ Vg (33)
we can fix V- A to be anything we like, while leaving V x A
unchanged. For time-dependent fields, we make the choice of
gauge:
- 1o]
V’A+“€£:0 (34)
The condition (34) is called the Lorenz gauge. Working in the
Lorenz gauge simplifies the solution of the wave equations.
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Wave Equations for the Potentials

Let us substitute:

B=vVx A4, BE= vo- A (35)
into Maxwell’s equation:
Vx§=uf+usﬁ (36)
We obtain:
V(V-A)—V2A=puJ — ueve — psz (37)

Imposing the Lorenz gauge (34):

V-A+psd=0 (38)
we obtain:
" 924 -
2 _

This is the wave equation for the vector potential A. Note that
in the static case, it reduces to equation (21).
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Wave Equations for the Potentials

Now we substitute:

E=-vV¢- A (40)
into Maxwell’s equation:
V.E= g (41)
to obtain:
—v2¢—v-ﬁ’:§ (42)
Imposing the Lorenz gauge (34):
V-A+puep=0 (43)
we find:
V2 - ME% =~ (44)

Equation (44) is the wave equation for the electric scalar
potential, with sources. In the static case, it reduces to
Poisson’s equation (8).
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Wave Equations for the Potentials

We have derived, using Maxwell’'s equations and the Lorenz
gauge condition, the wave equations (39) and (44) for the
magnetic vector and electric scalar potentials:

5 82\ - -
(V - MEW) A = —uJ (45)
82

Let us take the divergence of equation (45), plus pue multiplied
by the time derivative of equation (46):

<v2 - u5§;> (v A4 ua%f) =—u (V T+ %) (47)

But from the Lorenz gauge condition (34), the left hand side
of equation (47) must be zero. Hence:

- dp
v-J+L=0 48
+5 (48)

Equation (48) is the continuity equation, that expresses the
local conservation of electric charge.
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Wave Equations for the Potentials

In free space, p = pg and € = gg. Recall that:

1
c= (49)
v/ H0EQD
where c is the speed of light in a vacuum. We define the
d’Alembertian operator .
1 92
EES v 50
c2 ot? (50)

In terms of the d’Alembertian operator, the wave equations for
the potentials in free space can be written:

OA = —uod (51)
O = -2 (52)
€0
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Solution to the Wave Equation with Sources

The final step is to write down the solution to the wave
equations (39) and (44) for the vector and scalar potentials in
the presence of sources.

The equations have essentially the same form, so let us
consider just the equation for the scalar potential:

V3¢ —pe—z = —= (53)

In the absence of any charge, we know there are solutions in
which changes in ¢ propagate through space at speed

v=1/\/ne.

In the presence of a static charge, we know that a solution can
be written:
. 1 p(™)
oM =,

4me ) |7— 7|

av’ (54)
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Solution to the Wave Equation with Sources

Putting aside conservation of charge for a moment, imagine a
system in which a point charge ¢ appears at some point # in
space at time t/, and then disappears a moment later.

An observer measuring the potential at point 7 and time ¢ will
find a potential:

b= q

= 55
Are|r — 7| (55)

S
tth.u (56)

v

This suggests the solution to the wave equation with sources:

1 7p(,t)

av’ 57
4re ) |7 — 7| (57)

o(7,t) =

where t and t' are related by (56).
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Solution to the Wave Equation with Sources

source

origin

Equation (57) is in fact a correct solution to the wave equation
with sources.

The integral is very similar to the static case; but the finite
speed of propagation of signals through space is taken into
account by evaluating the charge density at the source at an
earlier time than the observation time.
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Solution to the Wave Equation with Sources

Having obtained the solution to the wave equation for the
scalar potential, we can immediately write down the solution to
the wave equation for the vector potential:

1T o H f(fl7t/) !
A(rt) =— | ———=dV 58
R (58)
where, as before:
= A
t=1t 4+ u (59)
v

In the next part of the course, we shall apply these equations to
find the electric and magnetic fields generated by an oscillating
dipole. In other words, we shall investigate the generation of
electromagnetic waves.
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Electromagnetic Potentials: Summary

You should be able to:

e Write expressions for the electric and magnetic fields in
terms of the scalar and vector potentials.

e Explain that under a gauge transformation of the scalar and
vector potentials, the electric and magnetic fields remain
unchanged.

e Starting from Maxwell's equations and the expressions for
the fields in terms of the potentials, derive wave equations
for the potentials in the Lorenz gauge.

e Write integral expressions for the scalar and vector
potentials in terms of the source charges and currents, for
both static and dynamic systems.
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