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Part 6: Transmission Lines

Transmission Lines

Transmission lines are used (as are waveguides) to guide
electromagnetic waves from one place to another. A coaxial
cable (used, for example, to connect a radio or television to an
aerial) is an example of a transmission line.

Transmission lines may be less bulky and less expensive than
waveguides; but they generally have higher losses, so are more
appropriate for carrying low-power signhals over short distances.
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Transmission Lines

In this part of the course, we shall consider:

a simple LC model of a general transmission line;

the speed of propagation of a wave in a transmission line;

e the characteristic impedance of a transmission lineg;

impedance matching at the termination of a transmission
line;

practical transmission lines (parallel wires; coaxial cable).
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LC Model of a Transmission Line

Consider an infinitely long, parallel wire with zero resistance.

In general, the wire will have some inductance per unit length,
L, which means that when an alternating current I flows in the
wire, there will be a potential difference between different
points along the wire.

If V is the potential at some point along the wire with respect
to earth, then the potential difference between two points
along the wire is given by:

w
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LC Model of a Transmission Line

In general, as well as the inductance, there will also be some
capacitance per unit length, C, between the wire and earth.

LC Model of a Transmission Line

Let us take Equations (1) and (2) above:

ov oI
o = L 3)
or ot
oI ov
— = -0 (4)
ox ot
Differentiate (3) with respect to t:
92V 921
=—-L—— 5
Oxot ot? 5)
This means that the current in the wire can vary with position: and (4) with respect to x:
8[ 8V 82[ 82‘/
—0r = —Coézx—— 2 —5=-C 6
oz ot () dx2 otox (6)
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Current and Voltage Waves Phase Velocity and Characteristic Impedance
Hence: The solutions to the wave equations may be written:
921 927 (wi—kz)
Z = LC— 7 V = VW (10)
o2 ot2 40
I = Ipe/Wiko) 11
Similarly (by differentiating (3) with respect to = and (4) with o€ (11
respect to t), we find: where the phase velocity is:
92V 02V p=Y=_1 (12)
o2~ L% ®) ko VLC

Equations (7) and (8) are wave equations for the current in the
wire, and the voltage between the wire and earth.

The waves travel with speed v, given by:

V= (9)

)]
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Note that the inductance per unit length L and the capacitance
per unit length C are real and positive.

Therefore, if the frequency w is real, the wave number k will
also be real: this implies that waves propagate along the
transmission line with constant amplitude. This is expected,
given our assumption about the line having zero resistance.
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Phase Velocity and Impedance

The solutions must also satisfy the first-order equations (1)
and (2). Substituting the above solutions into these equations,
we find:

kVo = wLlig (13)
klp = wCVy (14)

VO:\F:Z (15)
Ve

The ratio of the voltage to the current is called the
characteristic impedance, Z, of the transmission line. Z is
measured in ohms, 2. Note that, since L and C are real and
positive, the impedance is a real number: this means that the
voltage and current are in phase.

Hence:
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Summary (1)

The current and voltage in a transmission line propagate as
waves:

V o= Vel (Wi—he) (16)
I = Iged@i=ho) an
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Summary (2)

The phase velocity v is given by:

w 1
Tk T VIic (18)
and the ratio of the voltage to the current is given by the
characteristic impedance Z:
= E = £ (19)
Ig C
Here, L is the inductance per unit length, and C is the
capacitance per unit length.

Z
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Impedance Matching

So far, we have assumed that the transmission line has infinite
length. Obviously, this cannot be achieved in practice.

We can terminate the transmission line using a “load” that
dissipates the energy in the wave while maintaining the same
ratio of voltage to current as exists all along the transmission
line.

In that case, our above analysis for the infinite line will remain
valid for the finite line, and we say that the impedances of the
line and the load are properly matched.
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Impedance Matching

What happens if the impedance of the load, Z;, is not properly
matched to the characteristic impedance of the transmission
line, Z7

In that case, we need to consider a solution consisting of a
superposition of waves travelling in opposite directions:

V = Voel Wi=k) 4 yped (Witke) (20)

The corresponding current is given by:

7= %ej(wtfk:r) _ K%ej(wt—kkx) (21)

Note the minus sign in the second term in the expression for
the current: this comes from equations (3) and (4).
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Impedance Matching

Let us take the end of the transmission line, where the load is
located, to be at z = 0. At this position, we have:

V o= Vped“' (14 K) (22)

I = %ej“’t(l—l() (23)

If the impedance of the load is Zj, then:

1+ K
ZL:Z:Z +
1 1-K

(24)

Solving this equation for K (which gives the relative amplitude
and phase of the ‘“reflected” wave), we find:
_Zip]Z -1 _ Zp—Z
 Zp)Z4+1 Zp+Z

(25)
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Impedance Matching

If a transmission line of impedance Z is terminated by a load of
impedance Z; # Z, then current and voltage signals incident on
the load are reflected back down the transmission line.

The ratio K of the reflected wave amplitude to the incident
wave amplitude is given by (25):
Zy — 7
e (26)
Zr,+ 2
If Z;, = Z, then there is no reflected wave, and the impedance
of the load is correctly matched to the impedance of the
transmission line.

Note that for a lossless transmission line, Z is real, which
implies that to match the impedances correctly, the load must
be a pure resistance. In that case, all the energy in the wave is
dissipated in the load.
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Voltage Standing Wave Ratio

Note that the voltage in a terminated transmission line can be
written, from equation (20):

V = Vel (eijkx + Kejkx) (27)
If we write:
K= |K|ej¢ (28)

the voltage can be written:

V= Voej (Wt+%> {e_j (km+%> + \K|ej (kx—%)} (29)

The physical voltage is the real part of this expression:

ReV = 1 {(1+\K|)cos (wt+%> cos (kx+g>

+ (1 —|K])sin (wt—l—%) sin <km+%>} (30)
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Voltage Standing Wave Ratio

At any given time, the voltage varies sinusoidally with position

along the transmission line.

But the amplitude of the variation varies (with time) from

1—|K|to1l+|K|

The voltage standing wave ratio (VSWR) is defined as the
ratio of the maximum to the minimum voltage amplitude:

1+ K|

VSWR =
1-|K]|

(31)

The VSWR is frequently used to characterise the impedance

mismatch at the termination of a transmission line.
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Voltage Standing Wave Ratio
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Voltage Standing Wave Ratio
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Voltage Standing Wave Ratio
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“Lossy" Transmission Lines

So far, we have assumed that the conductors in the
transmission line have zero resistance, and are separated by a
perfect insulator.

Usually, though, the conductors will have finite conductivity;
and the insulator will have some finite resistance.

To understand the impact that this has, we need to modify our
transmission line model to include:

e a resistance per unit length R in series with the inductance;

e a conductance per unit length G in parallel with the
capacitance.
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“Lossy” Transmission Lines
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“Lossy" Transmission Lines

I(x) I(x+ %)
— T —
Lox Rox
1
V(x) — —— | V(x+x)
Cox Gox

L

The equations for the current and voltage are then:

I
Vo 9 gy (32)
ox ot
oI 121%
— = —C— -GV 33
ox ot (33)
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“Lossy” Transmission Lines

We can find solutions to the equations (32) and (33) for the
voltage and current in the lossy transmission line by considering
the case that we propagate a wave with a single, well-defined
frequency w.

In that case, we can replace each time derivative by a factor
jw. The equations become:

oV =0l
— = —jwLlI— RI = —-L— 34
ox Jw ot 34
ol oV
— = —jwCV -GV = -(C— 35
ox Jw ot (35)
where
- R ~ G
L=L+— and C=C+— (36)
Jw Jw
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“Lossy" Transmission Lines

The new equations (34) and (35) for the lossy transmission line
look exactly like the original equations (3) and (4) for a lossless
transmission line, but with the capacitance C and inductance L
replaced by (complex) quantities & and L.

The imaginary parts of ¢ and L characterise the losses in the
lossy transmission line.

Mathematically, we can solve the equations for a lossy
transmission line in exactly the same way as we did for the
lossless line. In particular, we find for the phase velocity:

1 1

“Lossy” Transmission Lines

Since the impedance (38) is now a complex number, there will
be a phase difference (given by the complex phase of the
impedance) between the current and voltage in the
transmission line.

Note that the phase velocity (37) depends explicitly on the
frequency. That means that a lossy transmission line will
exhibit dispersion: waves of different frequencies will travel at
different speeds, and a the shape of a wave “pulse” composed
of different frequencies will change as it travels along the
transmission line.

V== (37)
VI - e -59)
' This is one reason why it is important to keep losses in a
and for the impedance: transmission line as small as possible (for example, by using
7 high-quality materials). The other reason is that in a lossy
Z = &= (38) transmission line, the wave amplitude will attenuate, much like
an electromagnetic wave propagating in a conductor.
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Attenuation in a “Lossy” Transmission Line Attenuation in a “Lossy” Transmission Line
Recall that we can write the phase velocity: . )
Finally, we write:
v=" (39)

k k=a-j3 (43)
where k is the wave number appearing in the solution to the and equate real and imaginary parts in equation (42) to give:
wave equation:

V= Voej(wt_kx) (40) a~wVLC (44)
- . . and:
(and similarly for the current I). Using equation (37) for the 1/ R
phase velocity, we have: B~ > (Z + GZo) (45)
0
k= (,d\/LC\/<1 — ﬁ) (1 — ﬁ) (41) where Zg = /L/C is the impedance with R = G = 0 (not to be
wL wC 0= o

Let us assume R <« wL (i.e. good conductivity along the
transmission line) and G <« wC (i.e. poor conductivity between
the lines); then we can make a Taylor series expansion, to find:

ol L(049] w
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confused with the impedance of free space). Note that since:
V= Voej(wt—k’:v) — Voe—ﬁzej(wt—az) (46)

the value of « gives the wavelength A = 27 /«, and the value of
B gives the attenuation length § = 1/5.
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Attenuation in a “Lossy” Transmission Line

Note that:

e The real part of the wavenumber is given by a =~ wvVLC,
which is independent of R and G. Therefore, the
wavelength of a wave propagating down the transmission
line will not be significantly affected by losses in the
transmission line.

e Slow attenuation corresponds to a low value of g, for which
we want to keep both the conductance between the lines
and the resistance along the lines as small as possible.

e T he attenuation length depends on the losses in such a way
that for a high impedance, the conductance between the
lines becomes more important; while for a low impedance,
the resistance long the lines becomes more important.
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Inductance and Capacitance in a Transmission Line

A lossless transmission line has two key properties: the phase
velocity v, and the characteristic impedance Z.

These are given in terms of the inductance per unit length L,
and the capacitance per unit length C:-

L
VIC c (47)

The problem, when designing or analysing a transmission lineg,
is to calculate the values of L and C. These are determined by
the geometry of the transmission line, and are calculated by
solving Maxwell's equations.

We shall consider two important (commonly used) examples:

e a parallel wire transmission line;

e 2 coaxial cable transmission line.
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Parallel Wire Transmission Line

Let us first consider the case of two infinite parallel wires of
radius a, with the centres of the wires separated by distance d.

We shall first calculate the capacitance per unit length, and
then the inductance per unit length.
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Parallel Wire Transmission Line: Capacitance

The capacitance per unit length is given by the charge per unit
length on each wire, divided by the potential difference between
them:

C= (48)

<I>

where one wire carries charge +X\ per unit length, and the other
—A per unit length.

If the system consisted of a single charged wire, then the
electric field around the wire would be the same as that around
a line of charge. From Maxwell's equations, we have:

V-D=p (49)

Integrating around a cylinder of length [ enclosing the line
charge and coaxial with it, and applying Gauss' theorem we
have:

/'v-ﬁdv:/ﬁ-ds*:Az (50)
JV JS
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Parallel Wire Transmission Line: Capacitance

By symmetry, the electric field is normal to the curved surface
of the cylinder, and has uniform intensity over the curved
surface.

If the cylinder has radius r then the surface area is 2x«rl, and
hence:

/Sﬁ -d§ = 2nrl| D] = Ml (51)

If the wire is in @ medium with permittivity e:

D =c¢E (52)
and hence:
- A
|E| = (53)
2mer
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Parallel Wire Transmission Line: Capacitance

In the case of two parallel charged wires, the field is modified.
It is not simply the superposition of the fields from two line
charge densities at the centres of the wires.

The surface of each wire must be an equipotential surface.
This can be achieved if the line densities representing the

charged wires are ‘“displaced” slightly from the centres of the
wires.
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Parallel Wire Transmission Line: Capacitance

\ 4

The voltage between the wires is found by integrating the field:

174 BE’ dr 54
=/ B-ar (54)

If d > a, then we can neglect the small displacement of the line
densities from the centres of the wires, and write:

., A rddr

d—2a
Vo~ / \Bldr ~ > (55)
a TeJa T
Hence:
A d
Vain (7> (56)
e a
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Parallel Wire Transmission Line: Capacitance

Hence, the capacitance per unit length between the parallel
wires is:

A _ me

V()

where the approximation is valid for d > a.

C = (57)

We now have an expression for the capacitance per unit length
in terms of the geometry of the transmission line.

The next step is to calculate the inductance per unit length.
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Parallel Wire Transmission Line: Inductance

Lon-LanLo Ly L
— | — || — || — || —
1 1 1 1 1

To calculate the inductance, we imagine completing a set of
“current loops” by bridging the wires in the transmission lines
with lengths of conductor at regular intervals.

Since the current is (approximately) constant along the
transmission line, the “imaginary” lengths of conductor actually
carry zero current — so it makes no difference whether they are
there or not.
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Parallel Wire Transmission Line: Inductance

I I
|| —
1 1

~HOlF
~1 Ol‘

I
-
1

However, we can now calculate the total flux in each current
loop. From Maxwell's equations, we have:
VxH=J4+" (58)

Integrating over a circular surface perpendicular to one wire
and normal to it, we have:

/'vXﬁ-d§=/'f-d§=I (59)
JS JS
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Parallel Wire Transmission Line: Inductance

Applying Stokes' theorem:
/Vxﬁ~d§=/f_f‘dl_'=l (60)
S C

where the circle C bounds the circular disc S.

By symmetry, the magnetic field strength must be the same at
all points around C, and tangential to C.

Hence:

2nr|B| = 2nru|H| = pl (61)
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Parallel Wire Transmission Line: Inductance

Considering a current loop of length [, and taking into account
the field generated by each of the two wires in the transmission
line, the total flux through the current loop is:

o d—2a
> = 2/|B|dS = Ell/ & (62)
™ a T

With the approximation d > a, we have:

d
o ~H"rin <7) (63)
s a
The inductance per unit length L is defined by:
dd dl
E=——=—-Ll— (64)
dt dt
Hence, we write:
oo} d
L=—~Fmn (7) (65)
ir a
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Parallel Wire Transmission Line

For the parallel wire transmission line, we find for the
capacitance per unit length (57):

Crm—rr (66)
In (5>
and for the inductance per unit length (65):
L~"n (§> (67)
™ a

Both approximations are valid for d > a. Assuming this
condition is true, we can write for the phase velocity of waves
along the transmission line:

11

= 68
VvVLC  \Jue (68)
and for the characteristic impedance:
L 1
Z=yZ~" £ (69)
cC = €
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Coaxial Cable Transmission Line

:

I

As a second example, we consider a coaxial cable transmission
line, consisting of a central wire of radius a, surrounded by a
conducting “sheath” of internal radius d.

The central wire and surrounding sheath are separated by a
dielectric of permittivity € and permeability u.
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Coaxial Cable Transmission Line: Capacitance

Suppose that the central wire carries line charge 4\, and the
surrounding sheath carries line charge —\ (so that the sheath is
at zero potential).

We can apply Maxwell's equations as before, to find that the
electric field in the dielectric is given by:
A

2mer
where r is the radial distance from the axis. The potential
between the conductors is given by:

V= / 27r5 2" (j) (71)

Hence the capacitance per unit length of the coaxial cable is:

A 2ne
=V T inwa 2

|E| =

(70)
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Coaxial Wire Transmission Line

‘ANANAN
| s |
VIT/ / } j/I

To find the inductance per unit length, we consider a length [
of the cable. If the central wire carries a current I, then the
magnetic field at a radius r from the axis is given by:

uI
27r
The flux through the shaded area shown in the diagram is

given by:
—z/ |Bldr = “” () (74)

|B| = (73)
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Coaxial Wire Transmission Line

‘NANN
s =

1\

The change in voltage between two points at either end of the
section of cable will be (by Faraday’'s law):
dd l d\ dI
=_K In ( )

AV=re-n=— = @

: (75)

The change in voltage can also be expressed in terms of the
inductance per unit length of the cable:

dI
AV = —IL— (76)
dt
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Coaxial Wire Transmission Line

Hence the inductance per unit length is given by:

d
L="n <f> (77)
27 a
With the expression (72) for the capacitance per unit length:
2me
C=—— 78
In(d/a) (78)
the phase velocity of waves along the coaxial cable is given by:
1 1
V= = 79
vV LC /HE (79)
and the characteristic impedance of the cable is given by:
L 1 d
7= —:—In(—)ﬁ (80)
C 27 a €
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Impedance in Practical Cases

As we shall see in Part 8 of this lecture course, television aerials
have an impedance of around 75 2.

This is determined by the geometry of the aerial, which is
designed to maximise its interaction with electromagnetic
radiation.

The impedance of the aerial means that the transmission line
(usually a coaxial cable) used to connect the aerial to the
television should also have an impedance of around 75 2. Of
course, the “receiver” circuitry in the television should have the
same impedance.

Items of scientific equipment in laboratories, such as signal
generators and oscilloscopes, usually have an impedance of

50 Q. These items are best connected using coaxial cable with
the same impedance.
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Parallel Wire and Coaxial Cable Transmission Lines

In a coaxial cable, the outer conductor is usually earthed. This
means that:

e The fields outside the cable are very small, so the cable
does not emit significant amounts of electromagnetic
radiation.

e Fields from external sources cannot penetrate into the
cable. As a result, the cable is effectively shielded from
noise that may otherwise be induced on the signal that is
being propagated.

By contrast, a parallel wire transmission line is not shielded,
and is thus susceptible to noise. Also, a parallel wire
transmission line will emit electromagnetic radiation, that will
lead to attenuation of the signal as well as being a possible
source of noise for other devices.
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Summary of Part 6

You

should be able to:

Use the LC model to derive the wave equations for the voltage and
current in an infinitely long transmission line.

Derive expressions for the phase velocity and characteristic impedance
of a transmission line, in terms of the capacitance per unit length and
inductance per unit length.

Explain the significance of impedance matching at the termination of a
transmission line.

Calculate the relative amplitude of the wave reflected from the end of a
transmission line, given the characteristic impedance of the line and the
impedance of the load terminating the line.

Explain the sources of losses in a transmission line, and explain the
impacts of such losses.

Derive an expression for the attenuation length in a lossy transmission
line.

Derive expressions for the capacitance per unit length and inductance
per unit length in parallel wire and coaxial transmission lines, in terms
of the geometries of the lines.
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