LIVERPOOL

PHYS370 — Advanced Electromagnetism

Part 5: Cavities and Waveguides

Cavities and Waveguides

In previous parts of this course, we have considered
electromagnetic waves in unbounded media, and
electromagnetic waves on plane boundaries between two media.

We have seen that electromagnetic waves are reflected almost
completely from the surfaces of good conductors.

This suggests that we can use metal tubes to guide
electromagnetic waves from one place to another; and metal
boxes to store electromagnetic energy in the form of standing
waves.

Electromagnetic cavities (boxes) and waveguides (tubes) do in
fact have a number of important practical applications. In this
part of the course, we shall investigate the properties of these
devices.
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History of Waveguides

1884 Sir Oliver Lodge detected electromagnetic waves from a
spark at the end of a cylinder, and found that the
amplitude did not fall off as 1/r2.

1897 Lord Rayleigh showed that two classes of waves are
possible, “transverse electric” (TE) and ‘“transverse
magnetic” (TM). For each class, there is a minimum
frequency for propagation.

1936 Barrow-Southworth showed that for practical guides, the
attenuation in waveguides was much less than in wires or
coaxial cables.
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An Application of Cavities and Waveguides

The Next Linear Collider Test Accelerator (NLCTA) at the
Stanford Linear Accelerator Center (SLAC), California.
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Rectangular Cavity with Perfectly Conducting Walls

We consider first a rectangular cavity with perfectly conducting
walls.
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We assume that the interior of the cavity consists of a uniform,
uncharged dielectric with no electric currents. The wave
equation inside the cavity is:

V2E — ueE =0 (1)
where p is the permeability inside the cavity, and ¢ is the
permittivity.
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Rectangular Cavity with Perfectly Conducting Walls

The boundary conditions at the walls of the cavity are:
E, = 0 (2)
B, = 0 (3)
where E; is the component of the electric field tangential to

the wall, and B, is the component of the magnetic field normal
to the wall.

Solutions to the wave equation must also satisfy Maxwell’s
equations.
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Standing Waves

Plane wave solutions will not satisfy the boundary conditions.

However, the situation is analogous to mechanical waves on a
stretched wire.

On stretched wire, the wave equation for the displacement ¢ as
a function of position z and time t is:

¢ 19%¢ _
ot2  128t2

(4)

On an infinite wire, the solution is given by (the real part of):
¢(a,t) = Coel (Wihe) (5)

where the frequency w and wave vector k satisfy the dispersion
relation:

= (6)
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Standing Waves

If the wire is of length L and is fixed at each end, we can
satisfy the boundary conditions:

¢(0,t) =¢(L,t) =0 for all ¢ (7)
with a solution of the form:
¢(z,t) = (psin (Wn%) eJwt (8)

The boundary conditions are satisfied if n is any integer.

1
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Standing Waves

The standing wave solution (8) can be obtained from the
travelling wave solution (5), by superposing waves with equal
frequencies and amplitudes, travelling in opposite directions:

I (wi—ke) _ j(withr) — —2jsin(kz) e?*t (9)

We can satisfy the boundary conditions on electromagnetic
waves in a conducting box in the same way...
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Rectangular Cavity with Perfectly Conducting Walls

In free space, the wave equation for the electric field had the
solution:

B(F 1) = Eyel W=k (10)

To satisfy the boundary conditions inside a conducting cavity,
we write a solution of the form:

Ey = E,q COSkyx sin kyy sin k,z e/t (11)
Ey = Ey sinkez coskyy sink.z el (12)
E. = E.qg sinkga sinkyy cosk.z e/t (13)

Notice that we write a cosine dependence on the coordinate
corresponding to the component of the field; and a sine
dependence on the other coordinates.
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Rectangular Cavity with Perfectly Conducting Walls

Ay,

Az

a
Y
Consider the x component of the field:
Ey = Euq COS kg Sin kyy sin kyz e/t (14)
This component is parallel to the walls defined by:
y=0, y = ay, z =0, z2 = ay (15)

For perfectly conducting walls, E; must vanish on these
surfaces.
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Rectangular Cavity with Perfectly Conducting Walls

Since Ey ~sinkyy and Ey ~ sink;z, the requirement that E;
vanishes on y = 0 (for all z and z) and on 2z = 0 (for all z and
y) is automatically satisfied.

This would not be the case if E; had cosine-like dependence on
y and z.

We also need E; to vanish on y = ay (for all z and z) and on
z = a, (for all z and y).

These requirements can be satisfied if:

ky = —, and k= (16)
ay az

for any integers ny and n..
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Rectangular Cavity with Perfectly Conducting Walls

Similar considerations apply to the other field components, Ey
and E..

Overall, the condition that the tangential component of the
electric field vanishes at all the conducting walls imposes the
constraints on the components of the wave vector:

TNy Ty TNy

ky = s k;y:77 k=

Qg ay az

(17)

for any integers ng;, ny and n;.

ng, ny and n; are called mode numbers: they specify the
dependence of the electric field on the coordinates.

Note that at least two of the mode numbers must be non-zero,
otherwise the field vanishes everywhere.
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Rectangular Cavity with Perfectly Conducting Walls

We have seen that the boundary conditions on the electric field
in a rectangular cavity can be satisfied by an electric field of
the form:

Ey = E,0 COskgx sinkyy sink,z e/t (18)
Ey = Eyo sinkgz coskyy sink.z el (19)
E. = E.q sinkgx sinkyy cos k.z e/*t (20)

if bz, ky and k. satisfy certain constraints.

To satisfy Maxwell’s equation:
V-E=0 (21)

the wave vector components and the field amplitudes must be
related:

kxEro + kyEyO +kzE,0=0 (22)
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Rectangular Cavity with Perfectly Conducting Walls

To satisfy the wave equation:

s 10%E
V<E — a2 = 0 (23)
the wave vector and the frequency must be related:
EQ:kz2—|—k2+k2=w—2 (24)
T Yy z c2

Since the components of the wave vector are constrained to
discrete values (since the mode numbers must be integers), the
frequency is only allowed to take certain values:

2 2 2
n n n
w=Tmc —g + —g —; (25)
az = ag a2

c is the speed of light in the cavity.

The possible values of w are called the resonant frequencies.
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Oscillation Frequencies in a Rectangular Cavity

aw/nc

In a cube-shaped cavity (az = ay = a, = a), many of the modes
are degenerate, i.e. have the same frequency: see the top row
in the diagram above.

If two sides are of different lengths (middle row), or all sides
are different (bottom row) then the mode spectrum becomes
more complicated.
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Oscillation Frequencies in a Rectangular Cavity

An oscillation mode is specified by particular values of the
integers ng, ny and n,. Different modes may have the same
frequency or different frequencies.

The lowest allowed frequency wy, is found by setting to zero
the integer ng, ny oOr n, associated with the smallest dimension
ag, ay Or az; and setting the other mode numbers to 1.

For example, if a; < agz and a; < ay, then:

Wmin = TC

1
+ o (26)

)
&zm‘ =
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Magnetic and Electric Fields in a Rectangular Cavity

Given an electric field in a particular mode, the associated
magnetic field may be found from Maxwell's equation:

VxE=-_-B (27)

To satisfy Maxwell's equations at all times, the time
dependence of the magnetic field must be the same (to within
a constant phase angle) as the time dependence of the electric
field.

Therefore, equation (27) becomes:

—

V x E =—jwB (28)
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Magnetic and Electric Fields in a Rectangular Cavity

Since the spatial dependence of the electric field Eis given by
real-valued trigonometric functions, it follows from equation
(28):

VxE= —jwé (29)

that the electric and magnetic fields are 90° out of phase.

Taking the real part to find the physical field, if the electric
field varies as:

E ~ cos(wt + ¢g) (30)

then the magnetic field varies as:

B ~ sin(wt + ¢g) (31)
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Energy Flow in a Rectangular Cavity

Hence, the Poynting vector at any point varies in time as:

S =F x H ~ cos(wt + ¢g) sin(wt + ¢g) = %sin 2(wt + ¢g) (32)

At any given point in the cavity, the energy flux oscillates at
twice the frequency of the fields.
The time-averaged value of the Poynting vector is:

(S)i ~ (sin2(wt + ¢0))e = 0 (33)

There is no net energy flow within the cavity: the waves are
standing waves. Energy is transferred between the electric and
magnetic fields.
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Example: (0,1,1) Mode in a Cube-shaped Cavity

The (0,1,1) mode is the mode with the lowest frequency in a
cube-shaped cavity. The wave numbers are given by:

Example: (0,1,1) Mode in a Cube-shaped Cavity

Solving Maxwell's equation:

VxE=_B (38)
ives for the magnetic field:
ke =0,  ky=k,="_" (34) ? ?
a
where a is the length of the side of the cavity. Bz = Ok ' (39)
By = jon sin(kyy) cos(k.z) e“* (40)
The electric field is given by: k .
J v B. = —j"WEy cos(kyy) sin(ksz) /" (41)
Er = Eqsin(kyy) sin(kzz) e*! (35) v
By =0 (36) Notice that the magnetic field is perpendicular to the electric
E. =0 (37) field:
E-B=0 (42)
Advanced Electromagnetism 20 Part 5: Cavities and Waveguides Advanced Electromagnetism 21 Part 5: Cavities and Waveguides
Example: (0,1,1) Mode in a Cube-shaped Cavity

Electric field (left) and magnetic field (right) in the (0,1,1)
mode in a rectangular cavity.
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Higher modes: (1,1,1)

Advanced Electromagnetism
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Higher modes: (0,2,1)
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Higher modes: (1,2,1)
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Example: (0,1,1) Mode in a Cube-shaped Cavity

The stored energy in the cavity can be found by integrating the
energy density over the volume of the cavity.

The electric and magnetic energy densities (energy per unit
volume) are given respectively by:

1 -

Up = §EE2 (43)
1 -

Ug = EMHQ (44)

First, consider the total energy stored in the electric field:

1 5 (@ a 5 a 5 >
/UEdV — 5aEO/O da:/o sin kyydy/o sin2 ksz dz cos?(wt) (45)

= SsEOa 3 cos?(wt) (46)
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Example: (0,1,1) Mode in a Cube-shaped Cavity

Now consider the total energy stored in the magnetic field:

. 1 k32 -a
/UHdV = £ EO/ dsc/ sin?(ky) dy/ cos?(kz) dz sin?(wt)

2,uw
—|———EO/ da:/ cos?(ky) dy/ sin?(kz) dz sin?(wt)

2
— ;(kyWQ) 3sin2(wt) (47)

Since:
K2 4 k2 =2 (48)
Y T2

the magnetic energy can be written:

1
/UH dv = g—Eza?’ sin2(wt) = Sean 3sin2(wt) (49)

where the last step follows from 1/c2 = pe
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Example: (0,1,1) Mode in a Cube-shaped Cavity

The total electric energy in the cavity at time t is:
1
Ep = / U dV = ZeEa® cos(wt) (50)
and the total magnetic energy in the cavity at time t is:

1
£y = /UH 4V = ZeBga’ sin?(wt) (51)

The electric and magnetic energies are out of phase; as a result,
at any time t, the total electromagnetic energy in the cavity is:

1
Ep+ &y = §€E8a3 (52)

which is independent of time: the total electromagnetic energy
in the cavity is constant in time.
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Example: (0,1,1) Mode in a Cube-shaped Cavity

As an example, consider a cavity with side length a = 0.5 m,
with a vacuum in the interior.

The lowest frequency mode is the (0,1,1) mode, which, from
equation (26), has angular frequency:

2
w= 7T£C (53)
a
so the frequency f is:
2
f=2 — Y2, ~ 424 MHz (54)
27 2a

If the peak field is 10 MV /m, then the stored energy is:

1
E= §5E8a3 ~ 14 J (55)
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Energy Dissipation and Quality Factor

Since the tangential component of the electric field vanishes at
the walls of the cavity, there are no currents induced in the
walls by the fields, and no mechanism for dissipating the energy.

In practice, there will always be some currents induced in the
walls of the cavity, which will dissipate the energy.

The rate of energy dissipation is characterised by the quality
factor, Q:

E) =& e @ (56)

Q@ is the number of cycles made by an oscillator, before the
energy falls by a factor 1/e.

The resonant modes (integer mode numbers) in a cavity will
have high @ values. Fields can exist in other modes
(non-integer mode numbers), but the energy will be rapidly
damped (low @Q values), because the fields on the walls will be
large.
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Practical Applications of RF Cavities

Cavity resonators display similar properties to LC circuits, but
at higher frequencies (GHz), and with high @ (quality) factors.

Cavity resonators have applications in:
e Microwave ovens
e radar systems

e particle accelerators

Superconducting cavities have very small losses, and can
achieve Q factors of the order of 1010; i.e. once excited, the
fields will make of order 1010 oscillations before the energy is
dissipated.
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Normal-Conducting RF Cavity in PEP-II

COUPLER BOX
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Superconducting RF Cavity for ILC
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Electromagnetic Waves in Waveguides

Consider a perfectly conducting tube with rectangular
cross-section, of height and width a; and ay. This is essentially
a cavity resonator with length a, — co.
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Electromagnetic Waves in Waveguides

The electric field must solve the wave equation:
18%E
2 ot2
together (as usual) with Maxwell's equations.

V?2E (57)

By comparison with the rectangular cavity case, we expect to
find standing waves in x and y, with plane wave solution in z.

Therefore, we write a solution of the form:

E; = E,q coskzx Sin kyy e (Wi—k=2) (58)
Ey = E, sin kg cos kyy el @—k:2) (59)
E. = —jE.q sinkex sin kyy el (@Wi—k=2) (60)
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Electromagnetic Waves in Waveguides

x

Now we apply the boundary conditions. Consider the field
component E:

Electromagnetic Waves in Waveguides

T

Similarly, for the field component Ey:

- E, = E, Sin kyx cos kyy ¢l (@t—F=2) 64
Ey = Egq COS kya sin kyy e (W0F=2) (61) v vO * vy (64)
This must vanish where it is tangential to a wall: This must vanish where it is tangential to a wall:
y =0, Yy =ay (62) z =0, T = ag (65)
Thus, we require, for any integer ny: Thus, we require, for any integer ny:
™ ™
ky = — (63) ky = —+ (66)
ay ay
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Electromagnetic Waves in Waveguides Electromagnetic Waves in Waveguides
As usual, we must satisfy Maxwell's equation:
~ V-E=0 (69)
for all z, y and z.
Y
This leads to a relation between the amplitudes and the
With the constraints on ky and ky: components of the wave vector:
™ ™
ky = —2, ky = —Y (67) keEqy0 + kyEyo + kzE,0 = 0 (70)
Ay ay
(for any integers n; and ny) the longitudinal field component:
E. = —jE,q sin kyx sin kyy el (Wi—h=2) (68)
always vanishes on the walls: there is no constraint on k..
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Electromagnetic Waves in Waveguides

We must also satisfy the wave equation:

L 10%FE
V2E - - = 71
c2 ot2 (71)
This leads to the dispersion relation:
2 2 2 w?
ki kg + k2= (72)
C

where ¢ = 1/,/pie.

In a cavity, kz, ky and k; were all constrained to take discrete
values, so there were only certain “resonant” frequencies
allowed.

However, in a waveguide, there is no constraint on k.. This
means that there is a continuous range of frequencies allowed
in a waveguide.
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The "Cut-Off"” Frequency in a Rectangular Waveguide

Although there is a continuous range of frequencies allowed in
a waveguide, there is still a minimum frequency allowed in any
given mode.

For a travelling wave, k£, must be real. This means that kg > 0.

Hence, from the dispersion relation (72):

2 2
w> e\/k2 4+ k2 = me %+a—g (73)
T y

The minimum frequency for a propagating wave is called the
cut-off frequency, wco:

2 2
n n
— x Y
wco = TC 5 + > (74)
az ay
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The “Cut-Off" Frequency in a Rectangular Waveguide

It is possible for fields to oscillate in a waveguide at frequencies
below the cut-off frequency. However, such fields do not
constitute travelling waves.

If w < wco, then k2 < 0, so k, must be imaginary:

k. = jp (75)

The horizontal field component (for example) in this case
would be:

Ey = Euq COS kg Sin kyy e 7 It (76)

Note that there is an exponential decay of the field amplitude
in the z direction, rather than an oscillation.

The fields in this case constitute an ‘“evanescent” wave.
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Phase Velocity of Waves in a Waveguide

For waves above the cut-off frequency, the variation of E, with
longitudinal position and time is:

By ~ &J(Wi—kz2) 77)
and similarly for all other field components.
The phase velocity, vp is the speed at which a particle would

have to move along the waveguide to stay at constant phase
with respect to the fields, i.e.:

wt — k,z = constant (78)

Hence, the phase velocity is:

="=" (79)
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Phase Velocity of Waves in a Waveguide

Using the dispersion relation (72) we can write the phase

velocity:
w k2 k24 k2 (80)

vp=-—=c¢

kz ij

For a travelling wave, kz, ky and k. are all real. Hence:

Vk2 4+ k2 4+ k2 > ke (81)
Therefore:
Up >c (82)

The phase velocity in the waveguide is greater than the speed
of light.
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Group Velocity of Waves in a Waveguide

The phase velocity of a wave in a waveguide is greater than the
speed of light.

However, the energy travels with the group velocity, vg:

d: k
vy = S . (83)
dkz /K2 4+ k3 + k2
so we have:
'Ug <c (84)

Note that for a rectangular waveguide, the phase and group
velocities are related by:

Uptg = c? (85)
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Group Velocity of Waves in a Waveguide

Equation (83) expresses the group velocity, for a given mode,
in terms of the longitudinal wave number, k..

It is sometimes convenient to express the group velocity in
terms of the frequency.

Using the dispersion relation (72) we find:

2
_ c 2 2
vy = c\/l - (k2 4+ k7) (86)
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Group Velocity of Waves in a Waveguide

Energy in the wave propagates along the waveguide only for
w > weo (Where weo is the cut-off frequency).

Note the limiting behaviour of the group velocity, for w > wco:

lim =
Jim g c (87)
lim =
Lim v 0 (88)
Vg
A
Cl--- —
weo »
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Modes of Transmission

In practice, waveguides are often used so that either the electric
field or the magnetic field has no longitudinal component:

e Transverse electric, or TE modes: E, =0

e Transverse magnetic, or TM modes: B, =0

In the TE mode, E,g = 0, so it follows from equation (70) that:

kxEro + kyEyO =0 (89)
or:
kg
EyO = —7L20 (90)
k
Y
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Example: TEg; Mode in a Rectangular Waveguide

Electric field (left) and magnetic field (right) in the TEp; mode
in a section of rectangular waveguide.
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Example: TM11 Mode in a Rectangular Waveguide

Electric field (left) and magnetic field (right) in the TMq;
mode in a section of rectangular waveguide.
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Manipulating Modes

By using an appopriate geometry in a waveguide, it is possible
to convert from one mode to another...
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Manipulating Modes

The behaviour of a mode depends on the geometry of the

waveguide...

B
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Modes of Transmission: TE Modes

As an example, let us consider the energy flow in a waveguide
in a TE mode.

In the TE mode of propagation in a waveguide, there is a
phase difference of m between the horizontal electric field

component E; and the vertical electric field component E,.

The electric field is given by:

Ey = EocCoSkgx sin kyy el (Wi—kz2) (91)
k .
Ey = —k—xEO sin kzx COS kyy el (wi—kz2) (92)
Y

There is a standing wave pattern in z and y, and the wave is
travelling in the z direction.

The lowest mode has (nz,ny) = (0,1) or (1,0).
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Modes

of Transmission: TE Modes

The magnetic field associated with the electric field can be

obtained from:

VXE=—§=—jw§ (94)
We find that:
By = kzkwEo Sin kg COS kyy el (Wi—h=2) (95)
wky
By = %Eo COS ko Sin kyy el (W1—k=2) (96)
B, = —jWEO cos kzyz COS kyy e (wt—k3z) (97)

Notice that the B, component is 90° out of phase with the

other components.
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Modes of Transmission: TE Modes

The energy flow within the waveguide is given by the Poynting
vector, S:

S=ExH (98)

In a TE mode, E, = 0, and B, is 90° out of phase with respect
to the other field components.

It then follows that the time-average values of the transverse
components of the Poynting vector vanish:

(Sz)t = (Sy)t =0 (99)

On average, there is no energy flow in the transverse direction
in the waveguide.

The same is true for other modes (e.g. TM modes).
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Modes of Transmission: TE Modes

The z component of E x H has a non-zero time average:

<SZ>t = 2k

w

& (cos2 kox sin? kyy +
m

k2
k—gsmzkxx cos2kyy> (100)

Y

Hence, there is a net flow of energy along the z axis.

In the lowest frequency mode, TEgq:

z

k
(Sz)t = Ef sin® kyy = %EES sin® kyy (101)

2w

The total (time average) power transmitted along the

waveguide is:

Qg ay l 2
W = /O /0 (Sz)¢dxdy = ZaxayvgsEO (102)

Advanced Electromagnetism

56

Part 5: Cavities and Waveguides

TEgpp Mode: Rectangular Waveguide Examples

The maximum power for a waveguide is limited by the
maximum electric field that can be supported before the
dielectric inside the waveguide breaks down and starts to
conduct.

For dry air, the breakdown field is approximately 3000 kV/m.
If we assume a maximum electric field of around 1500 kV/m,

then we obtain the following estimates for the power that can
be transmitted in waveguides of typical dimensions:

Dimensions Trin, Typical f Power Rating

8mm x 16 mm 9.5 GHz 12 - 18 GHz 145 kW
34 mm x 72 mm 2 GHz 2.6 - 4 GHz 2.8 MW
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Field Plots for TEg; Mode
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Comments on Waveguides (in All Modes)

Lines of the magnetic field B form closed loops (V - B = 0).

On the walls, lines of the electric field E start from positive
charges, and end on negative charges.

Lines of E and B are orthogonal.

Lines of E meet a perfect conductor at 90°.
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Comments on Waveguides (in All Modes)

e As time increases, the field pattern moves along the z axis
with the group velocity vyg.

e The charge distribution on the walls moves in response to
the changing field pattern. This means that there is a
current flow, which leads to conversion of the
electromagnetic energy in the wave into heat.

e The wall currents flow in a depth of the wall of order of the
skin depth. Coating or plating the inside walls of the
waveguide with a good conductor (e.g. silver) can help to
reduce energy losses.

e \We have not considered attenuation in detail. Typical
power attenuation lengths (for 1/e of the initial power) are
of the order of 40 m.
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Comments on Waveguides (in All Modes)

e In practice, waveguides are often constructed so that

ay = 2ag.

e The terminal devices for transmitting and receiving signals
are constructed so that the conductors inside the waveguide
coincide with the lines of the electric field £ in the desired
mode. The conductors then need to be “fed” a current of
the appropriate frequency for transmitting the wave.

e By suitable design, a particular mode can be transmitted to
almost total exclusion of all others.
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Dielectric Waveguides

Consider electromagnetic radiation at an interface between two
dielectric media.

Total internal reflection occurs if the angle of incidence 6 is
greater than the critical angle 6., i.e. if:

0> 6, =sin"! <”2> (103)

ni
where nq is the refractive index of the material in which the
wave is travelling, and no is the refractive index of the material
on the other side of the interface.
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Dielectric Waveguides

Hence, a rectangular block of dielectric can act as a waveguide.

However, there are some important differences that result from
the boundary conditions.

We will not solve the general problem, but look only at some
specific cases.
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Dielectric Waveguides

Points to note about dielectric waveguides:

e Wave propagation is limited to modes for which 6 > 6.

e There will be effects resulting from phase shifts on
reflection.

e In practice, dielectric waveguides are constructed with a
circular, rather than a rectangular cross section.
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Example of a Dielectric Waveguide: Optical Fibre

Step index fibre:

optical fibre
diameter 3-80 um

jj@j/ refractive index n,

/

protective cover cladding
~ 50 pm thick diameter 100-150 pm
refractive index n,

Note that 1 um = 1/1000 mm. Optical fibres have very small
diameters!

To understand fully the wave propagation, we need to solve the
wave equation in cylindrical coordinates with boundary
conditions for two dielectrics. The wave equation in cylindrical
coordinates involves Bessel functions - we will not go into the
mathematics.

Advanced Electromagnetism 65 Part 5: Cavities and Waveguides

Example of a Dielectric Waveguide: Optical Fibre

Some fibres have a ‘“graded” refractive index.

A — step index
— graded index

ni

Typically, ny —np =~ 0.01, and the variation of the refractive
index is roughly parabolic.
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Comments on Optical Fibres

e Optical fibres are packaged using polymer materials, and do
not contain any metal. This means that there are no
“pick-up” problems: they are insensitive to external
electromagnetic noise.

e Optical fibres are waveguides operating at optical
frequencies, of the order 101% Hz. This means that there is
the possibility of a large bandwidth for carrying large
volumes of information.

e By using high quality materials, attenuation can be very
small; optical “repeater” stations can be separated by up to
10 km. In the UK, phone and TV links between cities often
use optical fibres.
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Comments on Optical Fibres

e Optical fibres are cheap and small (< diameter of a human
hair). Their packaging is very compact, and they are easier
to install than conventional (metal) electric cable.

e Optical fibres are difficult to join if broken; this can be an
advantage in providing security (the fibres are hard to
Htap”).
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Spread in Arrival Time of Light Signals

A light pulse reflects of the walls as it travels down an optical
fibre. The time taken for the light to travel down the fibre
depends on the path taken. Consider the case of a step-index
fibre.

The minimum time between points A and B is:
l

bin = —— (104)
c/ny
The maximum time is determined by the critical angle:
1 l
sinfcc/n1
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Spread in Arrival Time of Light Signals

The time difference is:

l 1 Il n1—no
At =1t — g =7( —1>=77 106
e ¢/n1 \sinf. ¢/n1  no ( )

Assuming a difference in refractive index (n; —ny)/no ~ 1072,
and nq = 1.5, then over a distance [ = 1 km, the difference in
arrival time of the two light pulses is 50 ns.
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Spread in Arrival Time of Light Signals

Now consider the case of a parabolic-profile fibre.

The refractive index decreases with distance from the centre of
the fibre.

This means that the speed of light increases; so a light pulse
taking a "long" trajectory between two points along the fibre
makes up some of the lost time by an increase in speed.

In addition, because the trajectory is smooth, rather than
having angular corners, the path length is reduced.

Advanced Electromagnetism 71 Part 5: Cavities and Waveguides




Spread in Arrival Time of Light Signals

When these two effects are taken into account, the difference
between the maximum and minimum times to travel between
two points in a parabolic-profile fibre is given by:

2

l - l

At = (”1 "2> ~1074 " (107)
c/ny no c/ny

where we have again assumed that (n1 —ns)/no = 10

_2.

In this case, over a distance [ = 1 km, the difference in arrival
time of the two light pulses is 0.5 ns.
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Summary of Part 5: Cavities

You should be able to:
e EXxplain what is meant by “modes” in a cavity or waveguide.

e Solve Maxwell’'s equations with the appropriate boundary conditions to
find the modes in a rectangular cavity or waveguide with perfectly
conducting walls.

e Find an expression for the frequency of a given mode in a rectangular
cavity or waveguide, in terms of the dimensions of the cavity or
waveguide.

e Show that, in a rectangular cavity with perfectly conducting walls, the
average energy flow at any point is zero.
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Summary of Part 5 (continued): Waveguides

You should be able to:

e Explain how the boundary conditions on the fields in a rectangular
waveguide lead to solutions that represent standing waves in the
transverse directions, and travelling waves in the longitudinal direction.

e Derive expressions for the phase velocity and the group velocity in a
rectangular waveguide.

e Explain what is meant by the ‘“cut-off frequency” in a waveguide, and
sketch a plot showing how the group velocity in a waveguide varies with
frequency.

e Explain the principles behind “dielectric waveguides” (optical fibres),
and describe the structure of step-index and graded-index optical fibres.

e Describe some of the advantages of optical fibres over conducting wires
for carrying signals.

e Explain how graded-index fibres can reduce the spread in arrival times
of signals transmitted along the fibre, compared to step-index fibres.
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