LIVERPOOL

PHYS370 — Advanced Electromagnetism

Part 4: Waves on Boundaries

Reflection and Transmission of EM Waves

When plane waves are incident on a boundary between different
media, some energy crosses the boundary, and some is
reflected.

We define transmission and reflection coefficients to quantify
the transmission and reflection of wave energy. These
coefficients are properties of the two media.

The transmission and reflection coefficients are determined by
matching the electric and magnetic fields in the waves at the
boundary between the two media.
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Reflection and Transmission of EM Waves

In this part of the course, we shall consider:
e Boundary conditions on electric and magnetic fields.
e Boundary conditions on fields at the surfaces of conductors.

e Monochromatic plane wave on a boundary:

directions of reflected and transmitted waves (laws of reflection and
refraction);

amplitudes of reflected and transmitted waves (Fresnel's equations);

the special case of a boundary between two dielectrics;

the special case of the surface of a conductor.

e Monochromatic plane wave on a boundary between two dielectrics:
— polarisation by reflection;

— total internal reflection.

o Reflection coefficient for a conducting surface.
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Boundary Conditions 1: Normal Component of B

We can use Maxwell's equations to derive the boundary
conditions on the magnetic field across a surface. Consider a
“pillbox" across the surface.
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Boundary Conditions 1: Normal Component of B

Take Maxwell's equation:
V-B=0 (1)

integrate over the volume of the pillbox, and apply Gauss’
theorem:

/v-éw:%é-aﬁs:o 2)
1% S

where V is the volume of the pillbox, and S is its surface. We
can break the integral over the surface into three parts: over
the flat ends (S; and S5) and over the curved wall (S3):

/é.d§+/ B.d5+ [ B-d5=o0 (3)
51 S5 S5
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Boundary Conditions 1: Normal Component of B

In the limit that the length of the pillbox approaches zero, the
integral over the curved surface also approaches zero. If each
end has a small area A, then equation (3) becomes:

—Bi,A+ Bo,A=0 (4)
or:
By, = Boy, (5)

In other words, the normal component of the magnetic field B
must be continuous across the surface.
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Boundary Conditions 2: Tangential Component of E

Consider a loop spanning the surface.
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Boundary Conditions 2: Tangential Component of E

Take Maxwell’s equation:
VxE=-B (6)

Integrate over the surface bounded by the loop and apply
Stokes’' theorem to get:

/vXﬁ.dézf{E.diz_ﬁ/é.dé @
S e} ot Js

Now take the limit in which the width of the loop becomes
zero. The contributions to the integral around the loop C from
the narrow ends become zero, as does the integral of the

magnetic field across the area bounded by the loop. We are
left with:

Eltl — EQtl = O (8)
which means that:
E1y = FEo¢ 9)

Therefore, the tangential component of the electric field is
continuous across the boundary.
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Boundary Conditions 3: Normal Component of D

Consider a pillbox crossing the boundary.

e

surface charge density ps
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Boundary Conditions 3: Normal Component of D

Take Maxwell’s equation:
V-D=p (10)

Integrate over the volume of the pillbox, and apply Gauss’
theorem:

V~5M/:%j7d3:/ dv 11
/V JS Vp ( )

Now we take the limit in which the height of the pillbox
becomes zero. We assume that there is a surface charge density
ps. If the flat ends of the pillbox have (small) area A, then:

—D1p A+ DopA = psA (12)
Dividing by the area A, we arrive at:
D2y, — D1y = ps (13)

Note that if the surface charge density is zero, the normal
component of D is continuous across the surface. However,
this is not true for the normal component of E, unless the two
materials have identical permittivities.
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Boundary Conditions 4: Tangential Component of H

Consider a loop across the boundary.

N,
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surface current density Js
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Boundary Conditions 4: Tangential Component of H

Take Maxwell's equation:
Vxd=J+D (14)

Integrate over the surface bounded by the loop, and apply
Stokes' theorem to obtain:

[V xi-ds=§ ﬁ.az/f.d@+3/5.dtg (15)
S C S otJs

As before, take the limit where the lengths of the narrow edges
of the loop become zero. Then we find that:

Hyyl — Hopl = J, (16)
or:
Hiy— Hop = Jg 1. 17)

where Jg | represents a surface current density perpendicular to
the direction of the tangential component of H that is being
matched.
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Boundary Conditions 4: Tangential Component of H

The concept of surface current density is analogous to that of
surface charge density: it represents a finite current in an
infinitesimal layer of the material.

If the material has finite conductivity, then an infinitesimal layer
of the material has infinite resistance, and no current can flow
(if the electric field is finite).

Therefore, for a material with finite conductivity, we have:

Hip = Hyy (18)

That is, the tangential component of H is continuous across
the boundary.
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Summary of Boundary Conditions

The general conditions on electric and magnetic fields at the
boundary between two materials can be summarised as follows:

Boundary condition: | Derived from... | ...applied to:
Bo, = Bip V-B=0 pillbox
Eo = Eqy VxE=-B loop
Dy, — D1, = ps V-D=p pillbox
Hoy—Hyy=—J,, |VxH=J+D loop
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Boundary Conditions on Surfaces of Conductors

Static electric fields cannot persist inside a conductor. This is
simply because the free charges within the conductor will
re-arrange themselves to cancel any electric field; this can
result in a surface charge density, ps.

We have seen that electromagnetic waves can pass into a
conductor, but the field amplitudes fall exponentially with
decay length given by the skin depth, §:
PR (19)
wuo
As the conductivity increases, the skin depth gets smaller.

Since both static and oscillating electric fields vanish within a
good conductor, we can write the boundary conditions at the
surface of such a conductor:

Eqy
Dln

0 FEopy
—Ps Doy,

0
0

Q
Q
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Boundary Conditions on Surfaces of Conductors

Lenz's law states that a changing magnetic field will induce
currents in a conductor that will act to oppose the change.

In other words, currents are induced that will tend to cancel
the magnetic field in the conductor.

This means that a good conductor will tend to exclude
magnetic fields.

Thus the boundary conditions on oscillating magnetic fields at
the surface of a good conductor can be written:

Bln ~ O BQTL ~ 0
Hlt ~ JSJ_ H2t ~ 0
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Boundary Conditions on Surfaces of Conductors

We can consider an “ideal” conductor as having infinite
conductivity.

In that case, we would expect the boundary conditions to
become:

By, = 0 By, = 0
Elt — O EQt — O
Dip = —ps Dy, = 0
Hy = Jsy Hy = O

Strictly speaking, the boundary conditions on the magnetic
field apply only to oscillating fields, and not to static fields.

But it turns out that for superconductors, static magnetic
fields are excluded as well as oscillating magnetic fields. This is
not expected for classical “ideal” conductors.
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Superconductors and the Meissner Effect

Although superconductors have infinite conductivity, they
cannot be understood in terms of classical theories in the limit
o — 00.

Superconductivity is a quantum phenomenon: one aspect of
this is the Meissner effect, which refers to the expulsion of all
magnetic fields (static as well as oscillating) from within a
superconductor.

In fact, even in a superconductor, the magnetic field is not
completely excluded from the material but penetrates a small
distance (the London penetration depth, typically around
100 nm) into the material.
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Superconductors and the Meissner Effect

As long as the applied magnetic field is not too large, a sample
of material cooled below its critical temperature will expel any
magnetic field as it undergoes the phase transition to
superconductivity: when this happens, a magnet placed on top
of the sample will start to levitate.
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Superconductors and the Meissner Effect

The Meissner effect allows us to classify superconductors into
two distinct classes:

e Type I superconductors: above a certain critical field H,
(which depends on the temperature), superconductivity is
abruptly destroyed.

e Type II superconductors: above one critical field value
H_.1, the magnetic field starts to penetrate, but the
electrical resistance remains zero. Above a second, higher
critical field value H.o, superconductivity is abruptly
destroyed.
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Critical Fields in Niobium (Type II Superconductor)
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R.A. French, “Intrinsic Type-2 Superconductivity in Pure Niobium,”
Cryogenics, 8, 301 (1968). Note: t = T/T.. The critical temperature for
niobium is T, = 9.2 K.
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Waves on Boundaries

We now apply the boundary conditions to an electromagnetic
wave incident on a boundary between two different materials.

We shall use the boundary conditions to derive the properties of
the reflected and transmitted waves, for a given incident wave.

Consider a monochromatic wave incident at some angle on a
boundary. We must consider three waves: the incident wave
itself; the reflected wave, and the transmitted wave on the far
side of the boundary.

The electric field components for these waves can be written
(respectively):

Br(t) = Boped@rt=Fr (20)
Bp(rt) = Eopel@nt—kr) (21)
Br(ft) = Bypel@rt—Fr) (22)
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Waves on Boundaries
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permittivity £1 permittivity 9
conductivity o1 conductivity oa
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Waves on Boundaries

Let us first consider the time dependence of the waves. The
boundary conditions must apply at all times: for example, the
tangential component of the electric field, E¢, must be
continuous across the boundary at all points on the boundary
at all times.

This means that all waves must have the same time
dependence, and therefore:

Reflection at a boundary cannot change the frequency of an
incident monochromatic wave. Some surfaces reflect some
wavelengths better than others, which is why they can appear
coloured under white light; but the frequency of the light does
not change.
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Laws of Reflection and Refraction

Now let us consider the relationships between the directions in
which the waves are moving.

We shall find that these relationships are just the laws of
reflection and refraction that we are familiar with from basic
optics.

However, our goal is now to derive these laws from Maxwell's
equations, by applying the boundary conditions on fields in
waves across boundaries.
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Laws of Reflection and Refraction

We start from the fact that the boundary conditions must be
satisfied at all points on the boundary.

This means that the waves must all change phase in the same
way as we move from one point to another on the boundary.

Since the phase of each of the waves at a position 7 is given by
k-7, where k is the appropriate wave vector, we must have:
ki p=kp-p=kr 7 (24)

where p'is any point on the boundary.

Advanced Electromagnetism 25 Part 4: Waves on Boundaries

Laws of Reflection and Refraction

For simplicity, let us choose our coordinates so that the
boundary lies in the plane z = 0. Then any point p on the
boundary can be written:

p= (z,y,0) (25)

Now we can (without loss of generality) further specify the
coordinate system so that l_c} lies in the x — z plane, i.e. the y
component of EI is zero:

EI: (k}[Sinel,O,k}ICOSQI) (26)

where 67 is the angle between the direction of travel of the
incident wave and the boundary.
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Laws of Reflection and Refraction

Now let us apply equation (24):

kp-p=kr-p=kr-p

to points on the boundary with z =0, i.e. = (0,y,0). We
find:

kpy = kpy = kp, =0 (27)

Therefore, the directions of the incident, reflected and
transmitted waves all lie in the plane y = 0.
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Laws of Reflection and Refraction

Now let us consider points on the boundary with y =0, i.e.
p = (z,0,0). This time, using equation (24) gives:
krz = kpy = kry = kysinfy (28)
which (since the vertical components of the wave vectors are
all zero) can be written:
krsin 9[=kIRSiﬂ GRszsin O (29)

But since the incident and reflected waves are travelling in the
same material with the same frequency, the magnitudes of the
wave vectors must be the same:

ki = kg (30)
Combining equations (29) and (30) we find:
0 = 0Ogr the law of reflection (31)
SSii: g; = % the law of refraction (Snell’s law) (32)
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Reflection and Refraction at a Boundary Between Dielectrics

As an example, consider a monochromatic wave incident on a
boundary between two dielectrics (e.g. air and glass).

Since the conductivity is zero on both sides of the boundary,
the wave vectors of all waves must be real.

Also, we have:

w w

kfj_ = 71, E = V2 (33)
where v1 is the phase velocity in medium 1, and vy is the phase
velocity in medium 2.

Then equation (32) gives us:

sin @y _v (34)
sinfr  wvo
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Reflection and Refraction at a Boundary Between Dielectrics

We define the refractive index n of a material as the ratio of the
speed of light in a vacuum to the speed of light in the material:

n=- (35)

Then equation (34) can be written:

sing n
—L==2 (36)
sin O ny

This is the familiar form of Snell’s law.
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Reflection and Refraction at the Surface of a Conductor

For a wave incident on a conductor, ET will be complex:
kr=a—jB (37
For a good conductor (i.e. o> wes):

W02

~ B, 38
anpfr [ (38)
So:
kr =\ & + B2 = Jwpzos (39)
Applying the law of refraction (32):
sin @ k
L T 72 s (40)
sin O kr we1q

where we have assumed that po ~ p1.

Since the largest value of sinfy is 1, equation (40) tells us that
sinfp ~ 0, so the direction of the transmitted wave in a good
conductor must be (close to the) normal to the surface.
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Intensity of Reflected and Refracted Waves

Having derived the relationships between the directions of the
incident, reflected and refracted waves, we turn now to the
amplitudes of the waves.

We can again apply the boundary conditions on the
electromagnetic fields at a boundary to derive relationships
between the wave amplitudes.

It turns out that the relative amplitudes and phases of the
waves depend on the electromagnetic impedances of the
materials on either side of the boundary.

The results we find are summarised in a set of equations known
as Fresnel’'s equations.
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Intensity of Reflected and Refracted Waves

Consider an electromagnetic wave incident on a boundary with
the electric field in the wave normal to the plane of incidence.

We call this “N polarisation’.

T
Hopr
Lor kp _ For
k.
FIOT
OR 0 T
0]
Eor /b1
H()j
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Intensity of Reflected and Refracted Waves

Since the tangential component of the electric field is
continuous across the boundary (at any time and any point on
the boundary), we have:

Eor + Eor = Eor (41)

The tangential component of the magnetic field must also be
continuous across the boundary:

HOICOSGI—HORCOSQI=HOTCOSGT (42)
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Intensity of Reflected and Refracted Waves

The ratio of the electric field to the magnetic intensity in a
wave is given by the impedance of the medium:
E
0 _ 5 (43)
Hy

Substituting from (43) into (42) we get:

Eor

Eqr — E
Mcos 0y = Z—cos Or (44)
2

Al
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Intensity of Reflected and Refracted Waves

Now we solve equations (41) and (44) for the amplitudes of
the reflected and transmitted waves, as fractions of the
amplitude of the incident wave:

Eor _ ZpCcosO; — Z1 cosOrp (45)
Eor )y ZpcosOr + Z1 cosbr
EOT _ 222 COoSs 9] (46)
Eor/n Zp cosOr + Z1 cosbrp

It is important to remember that equations (45) and (46) apply
only to the case that the incident wave is polarised with the
electric field normal to the plane of incidence, i.e. for N
polarisation.
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Reflection and Refraction at a Boundary Between Dielectrics

Consider equations (45) and (46) in the special case of a
boundary between two dielectrics.

Since the refractive index n of a dielectric is given by:
n="°= | (a7)
v HOEOD

Z
g [F_nrZ
€ Hmo n

we can write:

(48)

For non-magnetic dielectrics, we have p1 = pp = pg, so that:

Z A
=20 Zo =29
n1 no

Z1 (49)
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Reflection and Refraction at a Boundary Between Dielectrics

Then, equations (45) and (46):

<E0R> _ Zpcosb — Zycosfr
N

Epor ZopcosOr + Z1 cosbr

Eqr o 275 cos0y

Eor)y ~ ZacosOr+ Zycosbr

become:

Eor _ n1Cosf; —mnopCosOr (50)
Eor )y ~ m1cosér+ npcosbr

EOT _ 2n1 COS 9[ (51)
Eor)n n1 Cos O 4+ no Ccos Op

The Fresnel equations above are frequently written in terms of
the refractive index rather than the impedance; but then the
equations are valid only for non-magnetic dielectrics.
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Reflection and Refraction at the Surface of a Conductor

Now consider the special case of a plane wave incident on the
surface of a good conductor, again polarised so that the
electric field is parallel to the surface.

Recall that the impedance of a conductor is given in general by:
. we

z=a+n" = (52)
eV 20

If the conductor is non-magnetic, so that u =~ ug, and if the
permittivity is also close to the permittivity of free space, then
for a good conductor with o > we:

\Z) ~ Zoy |25 < Zg (53)
o
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Reflection and Refraction at the Surface of a Conductor

If we assume that the wave is incident on a good conductor
from a dielectric with impedance of the same order of
magnitude as the impedance of free space, then we have:

Z1 = Zy, |Z>| < Zg |Z>| < Z71 (54)

Then, equations (45) and (46) become:

Epr _ ZpcosbOy— ZycosOp 1 (55)
Eor)y ~ Zacosr+ Zjcosép
E 27, cosf

(0T> _ 260501 g (56)
Eor)n ZpcosOy + Z1 cosbp

Therefore, there is nearly 100% reflection from a metal surface,
with a phase change of 180°. The phase change means that
there is a cancellation between the tangential components of
the electric field in the incident and reflected waves.
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Intensity of Reflected and Refracted Waves

Now consider the case of an monomchromatic wave incident on
a boundary, with the electric field parallel to the plane of
incidence.

We call this “P polarisation”.

Hop Eor
kr
Eor k 7
or
OR
Or 2
0
EOI i
kr
Hor
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Intensity of Reflected and Refracted Waves

We apply the boundary conditions as before.

First, since the component of the electric field tangential to the
boundary must be continuous across the boundary, we have:

Eqycosf; — EqrcosOp = Eqp COS O (57)

Next, since the tangential component of the magnetic field
must also be continuous across the boundary:

Hor + Hor = Hor (58)

We can again express the magnetic intensity in terms of the
electric field and the impedance:
Eo .

e =7 (59)
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Intensity of Reflected and Refracted Waves

Proceeding as before, we find for the ratios of the wave
amplitudes:

Eor _ Z1Cosly — Z>cosOr (60)
Eor/p Z1cosOr+ Zpcosbr
Eor _ 275 cosfr (61)
Eor)p Zq cosOr + Z>cosbOp

Equations (60) and (61) are valid for the electric field in the
incident wave parallel (P) to the plane of incidence.

Compare equations (60) and (61) with (45) and (46):

<EOR> __ ZpcosOp — ZycosOr
N

Eor Zp cosOr + Z1 cosbp
Eor _ 27, cosf;
Eor /)y Z>Cos 01 + Z1 cosbp
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Reflection and Refraction at a Boundary Between Dielectrics

When the materials on both sides of the boundary are
equations (60) and (61) in terms of
and no.

dielectrics, we can write
the refractive indices nq

no COS O — nq COS O

E
Z0R (62)
FEor P no COS@[—i—nl COS@T
E 2n1 cosé
oT 1 I (63)
Eor)p no COS O 4+ nq Cos O
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Reflection and Refraction at the Surface of a Conductor

When the wave is incident from a dielectric onto the surface of
a good conductor (o > we), if we assume non-magnetic
materials with permittivity close to that of vacuum, we have:

Z1 = Zy, |Zp < Zy R VO RG] (64)
Then:
Eor _ Zycosfp— ZpcosOp (65)
Eor)p = ZycosOr+ Zpcosfp
E 2Z5cosf
orT _ 2 I ~ (66)
Eor/p Z1 cosOr + Z> cosOp

There is nearly 100% reflection from a metal surface: this is
the case for both N and P polarisation.
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Fresnel's Equations

The equations (45), (46), (60) and (61) are known as Fresnel’s

equations:

Zo CcosO; — Zy cosOp

Z5cos O + Z1 cosbr

275 cosly

Z5cos Oy + Z1 cosbr

Z1 CcosOp — Zp cos O

Z1cosO; 4+ Zp cosOr

275 cosfy

Z1cosO; + Zp cosbOr
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Fresnel's Equations for Normal Incidence

For a wave incident normal to a boundary, 6; = 6 =0, and
Fresnel's equations (for electric field normal to the plane of
incidence) become:
Eor _ 22— 21
Eor  Zo+ 7

Eor 24>
Eor Zo+ 23

and (67)

Note that since the energy in a wave is proportional to the
square of its amplitude divided by the impedance of the
medium, we can easily show that energy is conserved in this
case:

E3n | Z1E3p _ (Zo—Z1)>+ 42172 _
> + 5 = 5 =1 (68)
Eg;  Za Eg; (Zo + Z7)
and hence:
2 2 2
Eor | Eor _ Eor (69)

VAl Z> VAl
Of course, energy is also conserved for general angles of
incidence, but the algebra is slightly more complicated.
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Wave Incident on a Boundary Between Dielectrics

There are two important phenomena associated with
electromagnetic waves incident on a boundary between two
dielectrics. These are:

e Polarisation by reflection.

e Total internal reflection.

Both of these effects can be understood from the relationships
between the angles and intensities of the incident, reflected and
transmitted waves that we have derived. We shall discuss each
in turn.
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Wave Incident on a Boundary Between Dielectrics

Expressing Fresnel's equations in terms of the refractive indices
n1 and no for the two dielectrics:

<EOR> n1 Cos @y — no COSOp
N

Epr n1 COSO; 4+ no Ccos O
Eqp _ 2n1 Ccosfr

Eor)n n1 COSO; 4+ no Ccos b
EoR _ N2 Ccosf; —ny cosbr
Eor/p no COS O + n1 COSO
Eqor _ 2n1 COS Oy

Eor)p n5 COS O 4+ nq cos b

The angles of incidence and transmission are related by the law
of refraction (32):

sin Oy no
sin Op ni
Advanced Electromagnetism 49 Part 4: Waves on Boundaries

Wave Incident on a Boundary Between Dielectrics
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Wave Incident on a Boundary Between Dielectrics

e Since there are no imaginary terms in the ratios of the field
amplitudes, Eqr and Egr are either in phase with Eqy
(positive ratio) or = out of phase (negative ratio).

e For all n; and no, Egr is always in phase with Eg;.

e If n1 < ny (incident wave in low-density material, and
transmitted wave in high-density material):

(EOR> <0 (70)
N

For
so for N polarisation, the reflected and incident waves are
always w out of phase.
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Polarisation by Reflection

Depending on the values of §; and ny/nj, the ratio

E
(OR> (71)
EOI P
can be positive or negative. It is zero when:

no COS O = nq COS O (72)

Using the law of refraction (32):

sin @
to_ S0P (73)
no sinfr
we find that the condition (72) can be written:
sinfycosfy —sinfpcosfpr =0 (74)
Advanced Electromagnetism 52 Part 4: Waves on Boundaries

Polarisation by Reflection

Using the trigonometric identity:

sin2A = 2sin Acos A (75)

equation (74) becomes:

sin20; —sin260p =0 (76)
Using a further trigonometric identity:
sin A —sin B = 2cos (#) sin (A%B> (77)
equation (76) becomes:
cos(0y + 61)sin(0y —67) =0 (78)

Therefore, the condition for zero reflection (for the electric
field parallel to the plane of incidence) becomes:
™

Or+0r = 5 (79)
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Polarisation by Reflection

OB
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Polarisation by Reflection

Substituting from equation (79) into the law of refraction (32),
we find:
singp _ sin(5—0;) cosf;  ng
sing;  sin6;  sinf; no

(80)

The angle of incidence at which condition (80) is satisfied is
called the Brewster angle, 0p:

tangg = 2 (81)
ni

When the angle of incidence is equal to the Brewster angle, a
wave with the electric field parallel to the plane of incidence
has zero reflected amplitude.

A wave with electric field normal to the plane of incidence is
still reflected. As a result, the wave becomes polarised.
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Polarisation by Reflection

Polarisation by reflection enables us to use polarising filters to
reduce the amount of glare from sunlight reflecting off the
surface of a lake, or off a wet road...
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Total Internal Reflection

Consider again the law of refraction (32):

sinfr = ™ gin 01 (82)
no

If n1 > no, then for sufficiently large 6;, we apparently have:

sinfr > 1 (83)

We interpret this as meaning that under these conditions, there
is no refracted wave: all the energy in the incident wave is
reflected from the boundary.

The angle of incidence for which sinfp = 1 is called the critical
angle, 6.:
no

sinf, = —= (84)
ni
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Total Internal Reflection
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Reflection Coefficient for a Good Conductor

Finally (for this part of the lecture course), we shall consider in
a little more detail reflection from the surface of a good
conductor.

Recall that we found previously that, for polarisation both
normal and parallel to the plane of incidence, the amplitudes of
the reflected and transmitted waves were given approximately
by:

Eor _ Zp CosOy — Z1 cos O ~
Eor/n Zp cosOr + Z1 cosbp
Eor _ 275 cosOy N
Eor)n Zp cosOr + Z1 cosOp

We shall try to take our analysis a stage further, so as to arrive
at a more accurate estimate for the amount of reflected light.
For simplicity, we shall only consider normal incidence.
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Reflection Coefficient for a Good Conductor

Consider a wave incident on the surface of a conductor at
normal incidence (6; = 0). From Fresnel's equations, the
amplitude of the reflected wave is given by:

E Zo— 7
( OR) _ %2 1 (85)
Eor)ny 22+ 741

The impedance for the wave in the conductor is given, in

general, by:
N (M2 JweED
Zo= Q4755 (86)
[S3) 20‘2

Assuming non-magnetic materials, and that the conductor
satisfies the good conductor condition o, > we, we shall have:

|Z2| < Z4 (87)

Thus, we can write equation (85) for the reflected wave
amplitude in terms of a small parameter z:

E 1-—=z Zo
SOR) = , r=—=, |zl (88)
Eor)n 14z Z1
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Reflection Coefficient for

a Good Conductor

Since x is small, we can make a Taylor series expansion:

(1+2)t=1-24+0(2?) (89)

Using this in our expression for Eqgr/Eqgr from equation (88),

we find:

Eor

<EOR) = (1-)1+2)"
N

= —(1-2)(1—z+0(@2)
= —(1-2z40(z?) (90)

We find:

By a similar calculation, we find:
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E, A . €1 [2we
<E0T> a 2?2 — (1 +J) H28&1 2 (92)
oI /N 1 \ uieaV o2
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Reflection Coefficient for a Good Conductor

Let us define the real parameter n, given by:
€1 [2we
n= '“21/72<<1 (93)
H1E2Y 02

In terms of n, the reflected and transmitted wave amplitudes

These expressions are convenient for drawing the phases and
amplitudes of the reflected and transmitted waves, relative to
the incident wave...

Q

—1+ @@ +4n (94)

(1+7)n (95)

Q
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Reflection Coefficient for

a Good Conductor

Eor = (n—1+jn) Eos (96)
Eor ~ (n+jn) Eor (97)
Im
‘ E‘OH ‘E‘O’I' .
G K Eor
n—1 n ]‘ ~Re
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Reflection Coefficient for a Good Conductor

In the case of a plane wave incident on a good conductor, we
find that:

e The phase of Egr leads the phase of Eg; by 45°.

The phase of Egr leads the phase of Eg; by:

7 —tan~! (177> (98)

-

e As oo =+ o0, Egr —+ 0 and Egp — —Egs as expected.

As oo — 0, we do not get the expected dielectric formulae:
this situation violates many of the assumptions we made.
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Reflection Coefficient for a Good Conductor

We define the reflection coefficient R to be the fraction of
energy reflected from a surface. R is the ratio of the time
averaged Poynting vector, S=FE x ﬁ, for the incident and
reflected waves.

For a plane wave with normal incidence on a good conductor:

_ (SR) _ (Ep x Hpg) _ |For 2 (99)
(S1y  (Epx Hy) Eor

Since, from equation (94) the amplitude of the reflected wave
is given by:
E
D= 14 (14 5)n (100)
Eor
we find that:
2

Bor” _ (14 @+ m)(c1+@—fm~1-2p  (101)

Eor

where we have used the fact that |n| < 1 to drop a term in 72

Advanced Electromagnetism 65 Part 4: Waves on Boundaries

Reflection Coefficient for a Good Conductor

2
R~1-—2p=1-2 K251 [2¥<2 (102)
H1E2 g2

Consider the example of 3 cm microwave radiation at normal
incidence on copper:

Therefore:

frequency of radiation w=2rx 1010571
conductivity of copper | oo = 5.6 x 107 (2m)~1
permeability U1 = o = uo
permittivity €1 = €0

Using equation (102), we find:

2
R~1-—2,2H25L 1 0.99972 (103)
H102

Therefore, 99.97% of the incident power is reflected.
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Reflection Coefficient for a Good Conductor

From equation (102),

(104)

we observe that:

e R gets closer to 1 at low frequencies.

e Only at very high frequencies does the deviation from 1
become significant for good conductors such as copper,
aluminium or silver.

We also note that since the skin depth is small, thin sheets of a
good conductor provide excellent shielding for long-wavelength
electromagnetic radiation.
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Summary of Part 4. Waves on Boundaries

You

should be able to:

Derive (from Maxwell's equations) the boundary conditions on electric
and magnetic fields at the interface between two media.

Apply the boundary conditions on electric and magnetic fields to derive
the laws of reflection and refraction.

Apply the boundary conditions to derive the relative amplitudes of the
reflected and refracted waves for different polarisations (Fresnel's
equations).

Apply Fresnel's equations to boundaries between two dielectrics, and to
the surfaces of good conductors, to explain the behaviour of waves at
such boundaries.

Plot the variation in reflected and refracted wave amplitudes as
functions of angle of incidence, for the boundary between two
dielectrics.

Explain the significance of the Brewster angle and the critical angle,
and derive expressions for these angles, in terms of the refractive
indices of the media on either side of the boundary.
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