LIVERPOOL

PHYS370 — Advanced Electromagnetism

Part 3:
Electromagnetic Waves in Conducting Media

Electromagnetic Wave Equation

Recall that in a “simple” dielectric material, we derived the
wave equations:

V2E — ueE = 0 (1)

V2B —pusB = 0 2)
To derive these equations, we used Maxwell's equations with
the assumptions that the charge density p and current density J

were zero, and that the permeability 4 and permittivity € were
constants.

We found that the above equations had plane-wave solutions,
with phase velocity:
1
VIE
Maxwell's equations imposed additional constraints on the
directions and relative amplitudes of the electric and magnetic
fields.
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v =

(3)

Electromagnetic Wave Equation in Conductors

How are the wave equations (and their solutions) modified for
the case of electrically conducting media?

We shall restrict our analysis to the case of ohmic conductors,
which are defined by:

J=0oE (4)

where o is a constant, the conductivity of the material.

All we need to do is substitute from equation (4) into Maxwell’s
equations, then proceed as for the case of a dielectric...
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Plane Monochromatic Wave in a Conducting Material

In our “simple” conductor, Maxwell's equations take the form:

V-E =0 (5)
V-B =0 (6)
VxE = —B (7)
VxB = ,u&:ﬁ-l—uf (8)

where J is the current density. Assuming an ohmic conductor,
we can write:

J=cE (9)
so equation (8) becomes:
Vx§2u65+paﬁ (10)

Taking the curl of equation (7) and making appropriate
substitutions as before, we arrive at the wave equation:

V2E — poB — ucE =0 (11)
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Plane Monochromatic Wave in a Conducting Material

The wave equation for the electric field in a conducting
material is (11):

V2E — poE — peE =0 (12)
Let us try a solution of the same form as before:

B(F,t) = Eyel @t=F7) (13)

Remember that to find the physical field, we have to take the
real part. Substituting (13) into the wave equation (11) gives
the dispersion relation:

—k? — jwpo + wpe =0 (14)

Compared to the dispersion relation for a dielectric, the new
feature is the presence of an imaginary term in o. This means
the relationship between the wave vector k and the frequency w
is a little more complicated than before.
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Plane Monochromatic Wave in a Conducting Material

From the dispersion relation (14), we can expect the wave
vector k to have real and imaginary parts. Let us write:

k=a—jj3 (15)
for parallel real vectors @ and §.

Substituting (15) into the dispersion relation (14) and taking
real and imaginary parts, we find:

1 1 o2 1/2

B="" (17)

and:

Equations (16) and (17) give the real and imaginary parts of
the wave vector k in terms of the frequency w, and the material
properties u, € and o.

Advanced Electromagnetism 5 Part 3: EM Waves in Conductors

Plane Monochromatic Wave in a Conducting Material

Using equation (15) the solution (13) to the wave equation in a
conducting material can be written:

E(7,t) = Boed Wt=a) =07 (18)

The first exponential factor, /(“t=@7) gives the usual
plane-wave variation of the field with position ¥ and time ¢;
note that the conductivity of the material affects the
wavelength for a given frequency.

The second exponential factor, e P gives an exponential decay
in the amplitude of the wave...
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Plane Monochromatic Wave in a Conducting Material

Eo
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Plane Monochromatic Wave in a Conducting Material

In a “simple” non-conducting material there is no exponential
decay of the amplitude: electromagnetic waves can travel for
ever, without any loss of energy.

If the wave enters an electrical conductor, however, we can
expect very different behaviour. The electrical field in the wave
will cause currents to flow in the conductor. When a current
flows in a conductor (assuming it is not a superconductor)
there will be some energy changed into heat. This energy must
come from the wave. Therefore, we expect the wave gradually
to decay.

Advanced Electromagnetism 8 Part 3: EM Waves in Conductors

Plane Monochromatic Wave in a Conducting Material

The varying electric field must have a magnetic field associated
with it. Presumably, the magnetic field has the same wave
vector and frequency as the electric field: this is the only way
we can satisfy Maxwell's equations for all positions and times.
Therefore, we try a solution of the form:

B(F,t) = Byel@t=F7) (19)

Now we use Maxwell's equation (7):

VxE=-B (20)
which gives:

E X EO = wéo (21)
or:

.k -

BO = —X EO (22)

w
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Plane Monochromatic Wave in a Conducting Material

The magnetic field in a wave in a conducting material is related
to the electric field by (22):

. Eo.
BOZ*XEO (23)
w

As in a non-conducting material, the electric and magnetic
fields are perpendicular to the direction of motion (the wave is
a transverse wave) and are perpendicular to each other.

But there is a new feature, because the wave vector is complex.

In a non-conducting material, the electric and magnetic fields
were in phase: the expressions for the fields both had the same
phase angle ¢g. In complex notation, the complex phase angles
of the field amplitudes EO and Eo were the same.

In a conductor, the complex phase of k gives a phase difference
between the electric and magnetic fields.
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Plane Monochromatic Wave in a Conducting Material

In a conducting material, there is a difference between the
phase angles of Eg and Bp, given by the phase angle ¢ of k.
This is:

tang = s (24)
[0

i

5 O

b
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Plane Monochromatic Wave in a Poor Conductor

Let us consider the special case of a good insulator. In this
case:

o K we (25)

From equation (16), we then have:

a & w\/pE (26)
and from equation (17) we have:
o fu oo
~ o JE= o — 27
s 2\/; 2we 27)

It follows that 8 <« . We recover the same situation as in the
case of a non-conducting material. The decay of the wave is
very slow (in terms of the number of wavelengths); the
magnetic and electric components of the wave are
approximately in phase (¢ ~ 0), and are related by:

«

BO ~ fEO ~ — (28)
w Up

where the phase velocity vy, is, as before, given by v, = 1/,/pe.
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Plane Monochromatic Wave in a Good Conductor

Let us consider the special case of a very good conductor. In
this case:

o> we (29)
From equation (16), we then have:

wpo
2

o

(30)

and from equation (17) we have:

~ PO
ey ma (31)

In the case of a very good conductor, the real and imaginary
parts of the wave vector k become equal. This means that the
decay of the wave is very fast in terms of the number of
wavelengths.

Note that the vectors a and ﬁ have the same units as k, i.e.
meters—1.
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Phase Velocity in a Good Conductor

The electric field in the wave varies as (18):

B(F,t) = Egel(@t=67) —07 (32)
The phase velocity is the velocity of a point that stays in phase
with the wave. Consider a wave moving in the 4z direction:

E(Ft) = Eoej(Wt_az)e_ﬁz (33)
For a point staying at a fixed phase, we must have:

wt — az(t) = constant (34)

So the phase velocity is given by:

dz w
=—=— 35
vp dt « (35)

But note that in a good conductor, « is itself a function of w...
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Phase Velocity in a Good Conductor

For a poor conductor (o <« we), we have:

a & wy/UE (36)
so the phase velocity in a poor conductor is:
1
o / ME

If u and ¢ are constants (i.e. are independent of w) then the
phase velocity is independent of the frequency: there is no
dispersion.

However, in a good conductor (o > we), we have:

wo wo
"y — = Jue ] — 38
@ 2 HeV2e (38)
Then the phase velocity is given by:

1 /2
vp ="~ J2E (39)
a Jue\ o

The phase velocity depends on the frequency: there is
dispersion!
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Phase Velocity and Group Velocity

The presence of dispersion means that the group velocity vg
(the velocity of a wave pulse) can differ from the phase velocity
vp (the velocity of a point staying at a fixed phase of the wave).

To understand what this means, consider the superposition of
two waves with equal amplitudes, both moving in the 4=z
direction, and with similar wave numbers:

Ey = Egcos (wit — [ko + Ak] 2) 4 g cos (w—t — [ko — Ak] 2)

(40)
Using a trigonometric identity:
A+ B A—-B
Cos A + cos B = 2cos (%) cos( 5 ) (41)
the electric field can be written:
Ey = 2FEqcos (wot — kgz) cos (Awt — Ak z) (42)
where:
1
wo =, (w+ + w,) Aw=wy —w_ (43)
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Phase Velocity and Group Velocity

We have written the total electric field in our superposed waves
as (42):

E; = 2Eqcos (wot — kgz) cos (Awt — Ak z) (44)

Assuming that Ak < kg, the first trigonometric factor
represents a wave of (short) wavelength 27 /kg and phase
velocity:
_ %o
’Up = kO
while the second trigonometric factor represents a modulation
of (long) wavelength 27 /Ak, which travels with velocity:

_Aw

’Ug == Kk

vg is called the group velocity. Since Aw represents the change

in frequency that corresponds to a change Ak in wave number,
we can write:

(45)

(46)

_dw

= 47
Vg dk (47)
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Group Velocity and Energy Flow

The red wave moves with the phase velocity vp, the modulation
(represented by the blue line) moves with group velocity vg.

Since the energy in a wave depends on the local amplitude of
the wave, the energy in the wave is carried at the group
velocity vg.
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Phase Velocity and Group Velocity

If there is no dispersion, then the phase velocity is independent
of frequency:

vp = % = constant (48)

and the group velocity is equal to the phase velocity:
R dw —_—
’Ug = % = ’Up
In the absence of dispersion, a modulation resulting from the
superposition of two waves with similar frequencies will travel
at the same speed as the waves themselves.

(49)

However, if there is dispersion, then the group velocity can
differ from the phase velocity...
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Group Velocity of an EM Wave in a Good Conductor

The dispersion relation for an electromagnetic wave in a good
conductor is, from (38):

1 2¢
w = 7*&2

(50)
UE O

where « is the real part of the wave vector. The group velocity
is then:

dw

da

1 4¢

—a
UE O

~ 2 1/% (51)
VIEY o

Comparing with equation (39) for the phase velocity of an
electromagnetic wave in a good conductor, we find that:

Vg =

1%

In other words, the group velocity is approximately twice the
phase velocity.
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The Skin Depth of a Good Conductor

The real part, «, of the wave vector k in a conductor gives the
wavelength of the wave. 3 measures the distance that the wave
travels before its amplitude falls to 1/e of its original value. Let
us write the solution (18) for a wave travelling in the 2
direction in a good conductor as:

—

E(7,t) = Ey(R)ed@t=a7) (53)
where:
F(7) = Foe 57 (54)
The amplitude of the wave falls by a factor 1/e in a distance

1/8. We define the skin depth §:
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The Skin Depth of a Good Conductor

From equation (31), we see that for a good conductor
(o > we), the skin depth is given by:
2
6~ | —— (56)

wuo

For example, consider silver, which has conductivity
o~ 6.30 x 10" Q" Im~1, and permittivity
erepg~ 8.85x%x 10 12Fm—1.

For radiation of frequency 1010 Hz, the “good conductor”
condition is satisfied, and the skin depth of the radiation is
approximately 0.6 micron (0.6 x 107 m).

Note that in vacuum, the wavelength of radiation of frequency
1010 Hz is about 3 cm; but in silver, the wavelength is:

2
A =" ~ 216 ~ 4 micron (57)
(0%
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Plane Monochromatic Wave in a Good Conductor

The phase difference between the electric and magnetic fields
in a good conductor is given by:

tan¢ =

Q™

~1 (58)

So the phase difference is approximately 45°.

€T

vl
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EM Wave Impedance in a Good Conductor

Using the plane wave solutions:
B(rt) = Byed@=kD (59)
B(7t) = Boed@t=F (60)
in Maxwell’'s equation:
VxE=_B (61)

and using also the relation B= uﬁ, we find the relation
between the electric field and magnetic intensity:

% EQ = w,uﬁo (62)

The vectors k, Eg and Hg are mutually perpendicular.

Therefore, we can write for the wave impedance:
g=fo_ wn
Hy o—jpB

(63)
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EM Wave Impedance in a Good Conductor

In a good conductor (o > we), we have (31):

wuo

2

It then follows that the wave impedance (63) in a good
conductor is given by:

e (RN (65)

Note that the impedance is now a complex number. As we
shall see later, the behaviour of waves on a boundary depends
on the impedances of the media on either side of the boundary.

(64)

ax =

The complex phase of the impedance will tell us about the
phases of the waves reflected from and transmitted across the
boundary.

Advanced Electromagnetism 25 Part 3: EM Waves in Conductors

Energy Densities in an EM Wave in a Good Conductor

The time averaged energy densities in the electric and
magnetic fields are:

1 - 1 5=
(Uph = Se(B%) = jeBge 27 (66)
1 - 1 Yy
(Un)e = (%)= pHge 207 (67)
The ratio is:
E2
<UH>t NHO

In a good conductor, the square of the magnitude of the
impedance is:

2|2 ~ <2 (69)
o
Hence, in a good conductor, most of the energy is in the
magnetic field:
(Up)t
~ <1 (70)
Ug)t o
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Complex Conductivity: the Drude Model

So far, we have assumed that the conductivity is a real number,
and is independent of frequency. This is approximately true for
low frequencies.

However, at high frequencies (visible frequencies and above)
the behaviour of electromagnetic waves in many conductors is
best described by a complex conductivity that is a function of
frequency. Recall that the conductivity gives the relationship
between the current density and the electric field:

J=0cE (71)

So a complex conductivity indicates a phase difference between
the current density and an oscillating electric field.

A model to describe this behaviour, based on the dynamics of
the free electrons in the conductor, was developed in the
1900’'s by the German physicist Paul Drude. The detailed
behaviour can get quite complicated, so we will just sketch out
the main ideas.
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Complex Conductivity: the Drude Model

Electrical conductors have both bound and free electrons. The
bound electrons behave the same way as in a dielectric, and are
subject to a binding force —Kx. The free electrons have no
binding force. The equation of motion for free electrons in an
electromagnetic wave is therefore:

Complex Conductivity: the Drude Model

Now, the current density J depends on the conductivity o:

J=o0F = Nezx (74)
where N is the number of free electrons per unit volume. From
equation (73), we find:

jew/m

o JEs e Jwt
2 +jw|_E06 (75)

T =

G4 i = iEoej“‘t (72) Therefore, we can write for the conductivity:
m . 2 2
) , jwNe</m Ne“/m
which has the solution: = = 76
Ry T S (76)
r = e/imEoejwt (73) The conductivity is a complex number:
) ;
w* + jwl™
oc=o01—joo (77)
where:
Ne2r Ne?
o1 =yt /m, o = a2 w/m (78)
|—2 + w2 r2 + w2
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Complex Conductivity: the Drude Model Complex Conductivity: the Drude Model
Note that we can relate the “damping constant” I of the
electron motion to the dc conductivity og (the conductivity at .
zero frequency): —Re(o)
2 1 — Im(o)
N _o
oo = lim o = — (79) g
w—0 Mm © 0
In terms of og, the conductivity can be written: 05— hmeenems T 2 ----- 3 4 5
o/l
o0
oc=—— 80
1+ jw/T (80 ’
@-30— B
Equation (80) describes how the conductivity of a conductor g
varies with frequency, and is the main result of the Drude el i
model. The constant og can be determined by experiment; if IV, 0} : . . : |
e and m are known, then I can then be calculated from (79): ol
N 2
r=2° (81)
oom
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Complex Conductivity: the Drude Model Summary of Part 3

e At very low frequencies: You should be able to:
2
w— 0, oy — Ne ’ o5 — 0 (82) e Derive, from M.axvve!l's equatiqns, the wave equations for the electric
ml and magnetic fields in conducting media.

i.e. o is real and constant, as for dc conductivity. ) o N
e Explain the origin of the *good conductor condition” o > we for an

electromagnetic plane wave.

e At low frequencies (w <« /e, up to the infra-red range) the e Derive the relationships (amplitude, phase, direction) between the
free electron term dominates. electric and magnetic fields in a plane wave in conducting media.

e Derive expressions for the phase and group velocities of an
o ) . electromagnetic wave in a good conductor.
e In the visible region (w = o/¢), both terms contribute, and

the formulae (78) for the conductivity agree quite well with e Show that in a conductor the amplitude decays exponentially and
. explain what happens to the energy of the wave.
the experimental results.

e Derive an expression for the “skin depth” in the case of a plane wave
travelling through a conductor.

e At high frequencies (w > o/e, X-rays and v-rays) the free
. . R e Explain that when an electromagnetic wave moves through a
electron term is small, and the material behaves like a conducting medium, the conductivity of the medium can be written as
dielectric. a complex number, with a dependence on the frequency of the wave.
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