LIVERPOOL

PHYS370 — Advanced Electromagnetism

Part 2:
Electromagnetic Waves in Dielectric Media

Electromagnetic Wave Equation in “Simple” Materials

Consider a region of space filled by a “simple” material, that is:

e linear: p and e are constants;

e isotropic: there is full rotational symmetry (no preferred or
special direction in space);

e homogeneous: there is translational symmetry in all
directions (no special locations in space);

e source-free: the charge density p is zero;

e non-conducting: the conductivity o is zero, and hence the
current density J = oE is also zero:
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Electromagnetic Wave Equation in “Simple” Materials

In our “simple” material, Maxwell's equations take the form:

V-E =0

V-B =0
VxB = ,uaE
VxE = —-B

If we take the curl of equation (4) we find, using a vector
identity:

VXxVXEBE=V(V-E)=V2E=-VxB
Using equation (1), this becomes:
V2E =V x B
Taking the time derivative of equation (3) gives:
V x E = MEE
Then combining equations (6) and (7) we find:
V2E — usﬁ =0

(1)
(2)
(3)
(4)

(5)

(6)

(7)

(8)
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Electromagnetic Wave Equation in “Simple” Materials

In a “simple” material, the electric field satisfies equation (8):

V2E — ueE =0 9)
Similarly, we find that the magnetic field satisfies:
V2B — ueB=0 (10)

These are the equations for waves travelling with speed v,
given by:

v = ! (11)

/L€
Experimentally, we find that v is the speed of light in the
material. In a vacuum, the speed of the wave is ¢, given by:

1
(12)
vV HOEQ
Light is an electromagnetic wave. One of the triumphs of
physics in the 19th century was to show the existence of such
waves, and derive their properties (including their speed) from
Maxwell's equations.

CcC =
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Electromagnetic Wave Equation in “Simple” Materials

The operator:

2 02
Ve —pe— 13
ress (13)
is called the Hertzian operator. The wave equations (8) and
(10) are:
92 E(7,t)
V2 —pe——s |4 SN =0 14
( “68t2> { B(7,t) (14)

These equations are necessary, but not sufficient, constraints
on the possible functions E(7,t) and B(7,t). We must always
check that solutions to the wave equations (8) and (10) also
satisfy Maxwell’'s equations.
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Monochromatic Plane Wave Solutions to the Wave Equation

We find that the wave equation (8) is solved by:
E(,t) = Eqcos (wt — k- 7+ o) (15)

where Eg and k are constant vectors, and w and ¢q are
constant scalars. Equation (15) is the equation of a plane wave
of frequency w. The fact that only a single frequency (i.e. a
single value of w) is present in the wave, means that the wave
is monochromatic.

The field (15) is a valid solution of the wave equation (8) if k
and w satisfy:
3—2 — 2=t (16)
k2 pe
Equation (16) is known as a dispersion relation: it relates the
frequency of the wave w to the wave vector k.

Maxwell’'s equations impose further constraints...
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Monochromatic Plane Wave Solutions to the Wave Equation

By writing the vectors Eo and k in terms of components:

Eg = (FEos, Eoy, Foz) (17)
k= (kaz,ky,kz) (18)
we find that for the field given by equation (15):
V-E:E-Eosin(wt—E-F+¢o> (19)
Maxwell's equation (with zero charge density):
V-E=0 (20)

is only satisfied for all positions # and times ¢, if k and Eo
satisfy:

—

o~

-Eg=0 (21)
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Monochromatic Plane Wave Solutions to the Wave Equation

Consider our solution (15) to the wave equation:

B(,t) = Eq cos (wt — k- 7+ o) (22)

At fixed position 7, the field strength E varies sinusoidally, with
angular frequency w.

At fixed time t, the field strength varies sinusoidally in the
direction of E, with wavelength 27 /k. Along planes
perpendicular to k, the field is at the same phase. (Consider
7 — 7+ 7 where k-7 = 0).
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Monochromatic Plane Wave Solutions to the Wave Equation

Therefore, the electric field E(F, t) takes the form of a plane
wave advancing in the direction of k. Since k- Eg = 0, the field
is perpendicular to the direction of motion: it is a transverse
wave.

E
4
Eo—
/ .
A
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Strengths of Electric and Magnetic Fields in EM Waves

The wave equation (10) for the magnetic field B has a similar
solution:

B(7,t) = By cos (wt — k-4 ¢o) (23)

where there are the same constraints on EO, k, and w.

Despite the fact that we derived independent wave equations
for £ and B, Maxwell's equations tell us that the electric and
magnetic fields are not independent. In particular, we must
satisfy:

VxE = -B (24)

o

VxB = ucE (25)

Substituting in the solutions (15) and (23), we find that k, w
and ¢g must be the same for both E and B, and furthermore
we must have:

E X Eo = wéo (26)
kx By = —pewkEy 27)
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Electric and Magnetic Fields in EM Waves

Maxwell's equations demand that the electric and magnetic
fields satisfy (26) and (27):

EX EO = w§0

k X éo = _N5WEO
These constraints can be satisfied if the vectors k, Eo and éo
are mutually perpendicular.
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Strengths of Electric and Magnetic Fields in EM Waves

The magnitudes of the electric and magnetic fields satisfy:

E 1
=0 = = (28)
By e
where v is the phase velocity.
In free space:
E 1
=0 = =c (29)
By \/rogo
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Strengths of Electric and Magnetic Fields in EM Waves

We shall see later that the behaviour of a wave at a boundary
between two media depends on the ratio of the electric field E
to the magnetic intensity H.

The ratio of the amplitude of the electric field to the amplitude
of the magnetic intensity is called the impedance Z of the
medium.

Using Bg = poHp, we find that in free space:

Eo _ ko

T —
0 Hg €0

(30)

The impedance of free space, Zp, is a physical constant with
value:

Zo~ 376.7Q (31)
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Refractive Index

We define the refractive index n of a material, to be the ratio
of the speed of electromagnetic waves in a vacuum, to the
speed of electromagnetic waves in the material:

c /HE
n " Tioco vV Hrer (32)

For most transparent materials, ur = 1, in which case:

n =~ \/er (33)
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Energy in Electromagnetic Fields: Poynting’'s Theorem

Electromagnetic waves carry energy.

The energy density in an electric field is given by:

1 -

The energy density in a magnetic field is given by:

Up = —pH? (35)
The energy flux (energy crossing unit area per unit time) is
given by the Poynting vector:

S=ExH (36)

These results follow from Poynting’'s theorem...
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Energy in Electromagnetic Fields: Poynting’'s Theorem

To derive Poynting’s theorem, we start with Maxwell's
equations. First, we use:

_ 0B
VxE=_-"" 37
X P 37

Take the scalar product on both sides with the magnetic
intensity H:

H VXxE=—-H — (38)
Next, we use:
VxH=J+" (39)

Take the scalar product on both sides with the electric field E:

. . . . . 8D
E-VNxH=E-J+E — (40)

ot
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Energy in Electromagnetic Fields: Poynting’'s Theorem

Now we take equation (38) minus equation (40):

. . 8D - OB
H

H VXxE—-E.VxH=—-E.-J—E-——_H.2= a1
ot ot (41)
which can be written as:

0 (1 o 1 42> L o Lo

— [ —=€eF —uH“)=-V-(ExH)—FE-J 42

8t<2€ T oK ( ) (42)

Equation (42) is Poynting's theorem. Using Gauss' theorem, it
may be written in integral form:

0 o o S o
— U Ug)dV = — S.-dA — E-JdV 43
8t/v( e+ Un) /A /v (43)

where the closed surface A bounds the volume V,

1 5 1 .
Up = —eE2 Uy = —pH? (44)
2 2
and:
S=ExH (45)
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Energy in Electromagnetic Fields: Poynting’'s Theorem

Poynting’s theorem in integral form is equation (43):

%/V(UE+UH)dv=—/Aﬁ-dA'—/VE-de (46)

We note that the last term on the right hand side represents
the rate at which the electric field does work on electric
charges within the bounded volume V. It is then natural to
interpret the first term on the right hand side as the flow of
energy in the electromagnetic field across the boundary of the
volume V, and the left hand side as the rate of change of the
total energy in the electromagnetic field.

With this interpretation, Poynting’'s theorem (in differential
form) expresses the local conservation of energy.
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Energy Density

The energy densities in electric and magnetic fields are:

1 5 1 -

Ug = EsEQ, Uy = E;LHQ (47)

Since the time average of the square of a sine wave is:

1
(sin’z) = 5 (48)
it follows that in an electromagnetic wave (15), (23):
1 -5 1 ., 1B3%

(Ug) 2°E6 (Un) JHHO =57, (49)

So the ratio of the time-averaged energy densities in the
electric and magnetic fields in the electromagnetic wave is:

E2
{Up) = pe=2 = pev’ =1 (50)
(Un) B2

Thus, the energy in an electromagnetic wave is shared equally
between the electric and magnetic fields.
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Energy Flux and Impedance

The Poynting vector S is defined by:

S=ExH (51)
The Poynting vector gives the instantaneous energy flow
crossing unit area normal to the direction of flow, per unit

time. Since Eo and ﬁo are perpendicular to each other and to
k (the direction in which the wave is travelling):

S§S="rF=2H (52)

K

where k is a unit vector in the direction of E, and Z is the
impedance of the medium:
=/ (53)
13

Note that the energy flux, like the energy density, depends on
the square of the field strength.
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Energy Flux

The electric field varies sinusoidally with position and with
time; and the energy flux is proportional to the square of the
field. Therefore, since:

1
(sin’z) = 5 (54)
the average energy flux (over time or position) is:
. E2_
Sy = 9% 55
(&) =22 (55)

Note that this can be written in terms of the average energy
density in the wave:

($) =)z (56)

where 7 is the velocity (vector) of the wave.
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Complex Notation for Plane Waves

The solution to the wave equation for the electric field is (15):
E(7,t) = Egcos <wt — k-7 ¢>o> (57)

Recall that:
e/ = cosf + jsiné (58)

where 7 = +/—1. This means that the solution (15) to the wave
equation can be written as:

. oo ()

E(7,t) = Re Eoej%e]( (59)
where “Re” means “the real part of”.
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Complex Notation for Plane Waves

It turns out that the complex vector field:

= = j(wt—kF
E(7,t) = Ege’ (wt—F7) (60)
(where EO is a complex constant vector) also solves the wave

equation. This means that in any /inear equations, we can use

the complex field instead of the real field.

Of course, observable quantities (including the field itself) must
be real, so we must remember to take the real part to find the
actual physical quantity.

Note that the expressions for the energy density and energy
flux (Poynting vector) are second order in the fields: we should
use the real parts of the fields when applying these expressions.
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Superposition

Maxwell’'s equations are linear. In consequence, if two fields El
and E2 are solutions to Maxwell's equations, then the sum

El —i—EQ is also a solution to Maxwell's equations. Adding two
fields together in this way to get a third field is called
superposition.

Applied to the solution (59) to the wave equation,
superposition means that a more general solution can be
written as:

IGHEDY EOEej(“Et_k'F) (61)
k

where EE is a set of complex coefficients (one for each value of
k in the summation), and the frequencies wg satisfy:

2

ws 1
k=2 =2 (62)
k2 pe

By adding together waves with a range of frequencies, phases
and directions, we can form very general solutions.
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Dispersion

We have seen that plane waves propagate through a simple
dielectric with phase velocity v, given by:

c 1
V= — =

n o JUE

(63)

With our assumption that the permittivity and permeability of
the dielectric are constants, the phase velocity is independent
of the frequency of the wave.

However, in real dielectrics, we observe that the phase velocity
does depend on the frequency of the wave. This effect is known
as dispersion. To explain dispersion, we need to develop a more
sophisticated model of the dielectric, taking into account the
properties of the molecules that constitute the material.
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Dispersion

Dispersion is readily observed in familiar experiments. For
example, the “splitting” of white light by a prism shows that
the refractive index increases with increasing frequency
(decreases with increasing wavelength). So blue light travels
more slowly than red light through glass, and is refracted more
strongly by a prism.
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Real Dielectrics

In dielectrics, waves at low frequency propagate with constant
velocity ¢/+/er, independent of frequency: our existing theory
works well.

As the frequency increases, experimentally we observe that the
refractive index rises to a maximum, then drops to a minimum,
then rises again.

anomalous
normal dispersion

dispersion
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Real Dielectrics

The drop in refractive index generally happens over a narrow
frequency range, and is called anomalous dispersion.
Experimentally, we find that anomalous dispersion is associated
with absorption of the wave energy by the material.

Transmission
intensity

ff e—

Amplitude, a.u.

"y «—— Refractive index

-0.5

-1.04

-400 200 0 200 400
Frequency, MHz

Transmission of infra-red radiation through Teflon vapour.

G. Mouret et al, Applied Physics Letters 88, 181105 (2006)
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Real Dielectrics

Most materials have several regions of anomalous dipsersion in
different parts of the spectrum. Many materials show
absorption in the infra-red region; almost all show absorption in
the ultra-violet region. Materials that abosrb in the visible
region appear coloured.

By the time we reach X-ray frequencies (f > 1016 Hz),
anomalous dispersion has stopped, and the refractive index for
almost all dielectric materials is almost exactly 1. This means
that we cannot make lenses or prisms for X-rays. Absorption
has also decreased, meaning that X-rays are a highly
penetrating form of radiation.

In the ~y-ray region (f > 1019 Hz), all dieletric materials become
transparent and non-refracting.
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Simple Atomic Model of Dielectric Materials

So far, we have ignored the atomic structure of materials. We
will now develop a simple atomic model of dielectric materials
to explain the variation of the refractive index with frequency of
the electromagnetic wave. We will find results in qualitative
agreement with experiment.

The effect of an electric field E on a dielectric is to polarise the
material: on the atomic level, there is a separation of positive
charges (nuclei) and negative charges (electrons).

-
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Polarisation

If a positive charge e and a negative charge —e in an atom are
separated by a distance Az, then the polarisation p of the atom
is;

p =elAx (64)

If there are N atoms per unit volume, then the total
polarisation per unit volume P is:

P = NeAx (65)

Since the separation Az is proportional to the strength of the
electric field, and in the same direction as the field, we can
write:

—

P = EOXeE (66)

where xe is the electric susceptibility.

If the electric field E oscillates (as in an electromagnetic wave),
then the polarisation P will also oscillate.

Advanced Electromagnetism 30 Part 2: EM Waves in Dielectrics

Polarisation

At high frequencies, the motion of the electron in an atom
cannot immediately follow the variation of the electric field
(because of the inertia of the electron). This leads to a phase
difference between P and E. We can take account of this
phase difference by allowing a complex susceptibility:

P =co(Xe1 — ixe2) E (67)

But since the polarisation contributes to the displacement field
D:

D = egE + P = egerE (68)

it follows that for high frequency waves, we can represent the
relative permittivity e, as a complex number:

Er = &p1 — JEr2 (69)

The dispersion in a dielectric can be attributed to a complex
relative permittivity.

Advanced Electromagnetism 31 Part 2: EM Waves in Dielectrics




Dispersion in Dielectric Gases

A dielectric gas is the simplest case of a dielectric material:
since the material is relatively “dilute”, we can neglect
interactions between the atoms or molecules. We will consider
only non-polar dielectrics, i.e. those without any permanent
electric dipole moment.

We will develop a simple model, following Maxwell, Sellmeier
and Lorentz. We regard the medium as an assembly of
molecular oscillators. If the electrons are displaced, they
experience a restoring force —Kx; so the equation of motion for
an electron is:

Permittivity in a Static Electric Field

Now we apply a static electric field E, so that the displacement
of the electron becomes:

el
Tr=— 73
K (73)
This means that each atom has an induced electric dipole
moment:
2
e
= 74
p=p (74)

and the polarisation of the material (with N atoms per unit
volume) is given by:

mi = —Kx (70)
. . .. Ne2E
The equation of motion for the electron has the solution: = e = XxecoF (75)
_ jwot
z = Ael*0 (71) Therefore, we can write for the susceptibility ye:
where the natural frequenc is given by:
q Y wo is g y Ne2 Ne?
K X = 20K ~ comed (70)
wo = {/|— (72) 0 €Qmwy
m
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Permittivity in a Static Electric Field Permittivity in an Oscillating Electric Field
Now consider an oscillating electric field E:
From equation (76) for the susceptibility, the relative E = Egel®t (79)

permittivity for a dielectric gas can be written:

2

e N
er=1txe=1+——"5 (77)

meQwWy

In general, because of the different kinds of atoms and
molecules that exist in most materials, there can be several
different natural frequencies w;, so the susceptibility should be
written as a sum, so the permittivity becomes:
2 )
° Zﬁ; (78)
w*

meQ i i

er=1+

where N; is the number of oscillators per unit volume with
natural frequency w;.
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This may come, for example, from a plane wave passing a fixed
point z = 0. The electric field will result in a force driving
oscillations of the electrons in the material. Note that in
general, the natural frequency wq of oscillations of the electron
will be different from the frequency w of the electric field.

The magnetic field in the electromagnetic wave will also
contribute to the force on an electron in the material. In
general, the total force on a particle of charge e is given by:

F =e(E+ 7 x B) (80)

However, for a plane wave, B = E/c¢, and for electrons in
atoms, v < ¢. Thus, the magnetic contribution to the force will
be much less than the electric contribution.
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Permittivity in an Oscillating Electric Field

Now we assume a damping force, mlz, proportional to the
velocity of the electron. The full equation of motion is then:

mi + mla + Kz = eEgel™! (81)
or:
. : 2 € jwt
&4 e 4+ wje = —Ege’ (82)
m

This is the equation of motion for a driven oscillator, which has
solution:

_ e/m

- (w% —w2) + jwl
The electron oscillates with the same frequency w as the
driving force (the electric field); but the amplitude depends on
the frequency.

Egel®t (83)

€T

The constants ' and wg that characterise the medium must be
determined by experiment.
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Permittivity in an Oscillating Electric Field

We can generalise equation (83) to allow the case of a material
containing oscillators with several different w; and ;. If the
number of oscillators per unit volume is N;, then the
polarisation is:

N-eQ/m . .
P=3 : 0e’" = xegoEge’! (84)
2 .
(W —w?) + jwl;
Since the relative permittivity is:
Er = 1 + Xe (85)
we find:
2
e Ni
=1 86
e + meg Z (w2 — w?) + jwl (86)

At low frequencies (w < wj;), this expression for the relative
permittivity reduces to the static field case (78). But near each
resonant frequency, w =~ w;, the magnitude of e, varies rapidly
with frequency and becomes complex, leading to absorption
and anomalous dispersion.
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Permittivity in an Oscillating Electric Field

For a complex relative permittivity g, we write:

Er = €p1 — JEr2 (87)

where, using equation (86), we have:

2 2 2

e N;(wf — w*?)

gr1=1l+xaa=1+ ; (88)
meg ; (W? —w2)2 4 w2r?
and:
2
e Niwl'i

Er2 = Xe2 = (89)

meg ZZ: (cul2 —w?)2 4 w2r§
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Permittivity in an Oscillating Electric Field

Near one resonant frequency (wg) the real and imaginary parts
of the susceptibility vary as shown.

1’\'62
meow3

0 o w

Er1— 1= Xel

The shape of the plot repeats near each resonant frequency w;.
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Refractive Index in an Oscillating Electric Field

The refractive index is given by:

n = /er = /14 Xe1 — jXe2 = n1 — jno (90)

For gases, where the molecules are relatively sparse, the
susceptibility is small, i.e. x1 < 1 and x> < 1. We can then
expand the square root in equation (90) as a Taylor series:

1 1.
n A1+ oXel — SiXe2 (91)
Then we find that:
2 2 2
e N;(wf — w*?)
ng = 1 L 92
1 + 2meg ; ("%2 —w?)2 4 w2r$ (92)
2
e lel_l
np = 93
2 2meg ZZ: (w? — w?2)2 + w2r? (93)
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Refractive Index in an Oscillating Electric Field

We can plot the real and imaginary parts of the refractive index:

Ne?
2meowol’

N62 /
o / g &
0 > W

wo
%171’/

normal anomalous
dispersion  dispersion
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Refractive Index in an Oscillating Electric Field

Note that the imaginary part no peaks at a resonance, wg, and
is small elsewhere. Write for a wave travelling through a
dielectric:

E = Eoej(wt_kz) e Eoej(wt_%nz) — Eoej("‘)t_%(nl_jHQ)Z) (94)
Hence:

E = Ege™"2c?ed (Wimmt2) (95)

A non-zero value for np leads to attenuation of the wave in the
dielectric - the energy of the wave is transferred to (i.e. is
absorbed by) the material. Thus, resonant frequencies in the
optical range result in coloured materials.
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Refractive Index in an Oscillating Electric Field

Now consider the behaviour of ny. In the limit of low frequency,

N 2
w — 0, ng— 14— (96)
2meqwp
At resonance:
w = wp, ni=1 (97)
Just above the resonant frequency:
w > w, ny <1 (98)
And in the limit of high frequency:
w — 00, ny—1 (99)
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Refractive Index in an Oscillating Electric Field

w < wo normal dispersion nilTaswT, nox0
w =~ wg anomalous dispersion ni | asw T, np >0
w > wo ny <1, no=0

Note that all substances have more than one resonant
frequency. In the quantum theory of atoms, the resonant
frequencies are associated with transitions of electrons between
energy levels.
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Summary of Part 2

You

should be able to:

Derive, from Maxwell's equations, the wave equations for the electric
and magnetic fields in dielectrics.

Derive the relationships (amplitude and direction) between the electric
and magnetic fields in a plane wave in dielectric media.

Derive expressions for the phase velocity and impedance for a plane
wave in a dielectric.

Explain that dispersion is the dependence of the propagation of a wave
on its frequency.

Explain the difference between normal and anomalous dispersion.

Use a simple atomic model of a dielectric gas to derive an expression
for the real and imaginary parts of the refractive index of the gas, and
explain how dispersion is related to the motion of electrons in the
atoms of the gas.

Explain that when an electromagnetic wave moves through a
conducting medium, the conductivity of the medium can be written as
a complex number, with a dependence on the frequency of the wave.
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