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Introduction

We will learn how a vast range of physical phenomena follow
from Maxwell's equations...
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Some Resources

Recommended texts:
e I.S. Grant and W.R. Phillips, “Electromagnetism”
Wiley, 2nd Edition, 1990
e D. Fleisch, “A Student’'s Guide to Maxwell's Equations”
Cambridge, 2008
e D. Fleisch, “A Student’s Guide to Vectors and Tensors”
Cambridge, 2012

Free to download:
e B. Thide, “Electromagnetic Field Theory”
http://www.plasma.uu.se/CED/Book/index.html|

Comprehensive texts for the more ambitious:
e J.D. Jackson, “Classical Electrodynamics”
Wiley, 3rd Edition, 1998
e A. Garg, “Classical Electromagnetism in a Nutshell”
Princeton University Press, 2012
e A.Zangwill, “Modern Electrodynamics”
Cambridge, 2013
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Notation

Scalar quantities are italicised, like this:

€, Exa 120]

Vector quantities are written with an arrow:

E, B

The components of a vector are written with a subscript, e.g.:

A = (Ax, Ay, Az)

The magnitude of a vector A is written in italics:

Al =4

A derivative with respect to time is indicated by a dot:

5398
ot
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Vector Calculus

In electromagnetism, we use vector calculus all the time. Make
sure you are familiar with the notation, and the algebra!

The four basic operators of vector calculus are (in Cartesian
coordinates):

grad (scalar) = vector V= (%%g—ﬁ)
div (vector) = scalar V-A=2 4 0hy 3L
curl (vector) = vector VxAd= (% — 24 oL od oA, %)
laplacian (scalar) = scalar V=204 %ﬁ +91
laplacian (vector) = vector V24 = (V2A,,V24,,V2A,)
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Useful Mathematical Theorems

The mathematical identities (for any vector field F) are useful:

VxVxE = VW(V-F)-V?F (1)
V.-VXxF = 0 (2)

The grad (V), div (V) and curl (Vx) operators acting on sin
functions have the following effect:

Vsin(k-7) = kcos(k-7) (3)
V-Asin(k-7) = k-Acos(k - 7) (4)
V x Asin(k-7) = kx Acos(k-7) (5)

where 7= (x,y, z) is a position vector, and k and A are
constant vectors.

In the above equations, we can interchange sin and cos, with a
minus sign on the right hand side.
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Useful Mathematical Theorems: Gauss and Stokes

Gauss' theorem for any vector field A:

/V-ﬁd\/=%ﬁ-d3 (6)
JV JS

where S is the closed surface bounding the volume V, and the
surface area element dS is directed out of the volume V.

Stokes’ theorem for any vector field A:

/VXA’-c@:ffT-d? (7)
s C

where C is the closed line bounding the area S.
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Units and Physical Constants

Units:
We use the SI (International System) of units, in which there
are seven base units:

mass kilograms | kg
length meters m
time seconds S
electric current amperes A
thermodynamic temperature | kelvin K
amount of substance mole mol
luminous intensity candela cd

Some useful physical constants:

Speed of light in a vacuum ¢ 2.998 x 108 ms—1
Impedance of free space Zo 376.7 Q2
Permittivity of free space g 8.854x 10712 Fm-1
Permeability of free space 7% 4w x 1077 Hm~1
Charge on a positron e 1.602 x 10719 C
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James Clerk Maxwell, 1831-1879

In 1865, Maxwell published a set of equations that describe
completely the behaviour of electromagnetic fields. These
equations are used in a huge range of applications, from the
properties of materials, to properties of radiation (radio waves
to gamma rays).

The theory of electromagnetism has been extensively tested
and is hugely successful. It provides a model for a wide variety
of field theories.
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Field Theories

In general, a field theory describes interactions between
different objects.

ﬁl q, " 9, F

Fi2

The electrostatic interaction between two point-like objects in
a vacuum can be written:

N 1 1

Fi = —qq="3 (8)
4meg 7213

_ 1 12

Fr = —qiqo- (9)
4meg " |F12)3

where ﬁl and ﬁg are the forces on the objects which carry
charges g1 and gp respectively; »1 and 715 are vectors giving
the relative positions of the objects; and g is a fundamental
physical constant that expresses the strength of the interaction
per unit charge.
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Field Theories

q E(7,)
[ ] —

V)

The interaction can be written in terms of an electric field that
is created by a charged object. For example, we can define the
electric field at location 715 from an isolated point charge ¢; to
be:

= 1 712
E(r2) = 1= 3 (10)
4meg |12

In terms of this electric field, the force F» on a second point
charge, go, in the field E(72) is given by:

Py = o E(712) (11)
Equation (10) relates the field to its source. Equation (11)

tells us the effect of the field on an object in the field. These
are the essential ingredients of a field theory.
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Electromagnetism as a Field Theory

The full set of equations that relate electric fields (E and ﬁ)
and magnetic fields (E and ET) to their sources (charge density
p and current density f) can be written, in differential form, as
follows:

V.-D=p V-B=0
(12)
. 0B . . 8D
VXE=—— VXH=J+4+—
ot t ot
To find explicit expressions for the fields at a given place and
time, we have to solve these differential equations with the

boundary conditions imposed by the sources of the fields.

The effects of the fields on a point-like object moving in an
electromagnetic field can be written (the Lorentz force
equation):

ﬁ:q(ﬁ—l—ﬁxé) (13)

where ¥ is the velocity of the object.
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Fields and Potentials

Sometimes, the field equations take a simpler form when they
are expressed in terms of potentials rather than directly in
terms of the fields.

A potential is a mathematical scalar or vector function (of
space and time) whose derivative gives the field.

For example, the magnetic field can be expressed in terms of
the magnetic vector potential A:

B=VxA (14)
and the electric field can be expressed in terms of the magnetic

vector and electric scalar potential ¢:

E = —Vqs—a (15)
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Fields and Potentials

Note that fields are associated with forces, whereas potentials
are associated with energy.

In electrostatics:

e the field is the force per unit charge;

e the potential is the potential energy per unit charge;

e the field is the gradient of the potential (since the force is
the gradient of the potential energy).
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Fields and Potentials

In terms of the potentials, the electromagnetic field equations
become second-order differential equations. But they take a
nice, symmetric form:

. 924 .
2 —
V<A — ue 92 = —ud (16)
) p
V2 — —_— = —— 17
¢—negn - 17

where p and e are quantities that characterise the strength of
the electric and magnetic interactions in the material in which
the fields exist.

Note that for a static, point-like charge g, Equation (17) has
the familiar solution:

1
=—1 (18)
4rer
where r is the distance from the charge.
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How many types of field are there?

We believe that there are only four fundamental types of field
(sometimes called simply forces) in nature. The familiar ones
from everyday experience are gravity (the first field to be
described mathematically) and electromagnetism.

The other fundamental forces are the weak nuclear and strong
nuclear forces. They differ from gravity and electromagnetism
in @ number of respects: for example, they act only over very
short distances, whereas gravity and electromagnetism are both
capable of very long range interactions.
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Long-Range and Short-Range Fields

The mathematical description of a short-range interaction is
very similar to that of a long-range interaction. Take Equation
(17) above, and simply add another term:
2 82¢ ) P
V‘f’_’”@_fz:_g (19)
where [ is a constant. For a static, point-like source, Equation
(19) has the solution:

4re” r

For small I, the potential falls off much more quickly than 1/r...
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Long-Range and Short-Range Fields

091

081

071

06

051

0.4

031

021

01r

The constant [ characterises the ‘range” of the force. For
gravity and electromagnetism we believe (from experiments)
that 1/l =0.
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Classical and Quantum Fields

All the equations on the previous slides are classical equations:
they take no account of quantum effects, and make no
reference to Planck’s constant h.

However, we believe that when particles interact, they do so by
exchanging discrete amounts of energy, called “quanta”. When
we develop a classical field theory to include quantum effects,
we construct a “quantum field theory" .

In general, quantum field theories are much more complicated
than classical field theories. But some of the consequences of
quantisation can be understood using simplified models.
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Classical and Quantum Fields

In quantum field theory, an interaction between two particles is
understood in terms of an exchange of a third particle: the type
of particle exchanged is determined by the type of interaction.

green-
green  antiolue
gluon

between quarks between nucleons

Strong Interaction

Using the physical constants & and ¢, we can define a mass m
associated with the length scale [ of the interaction:
h1
m=—— (21)
cl
In quantum field theory, the mass m is identified with the mass

of the exchange particle. Note that as I — oo, m — 0.
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Classical and Quantum Fields

This simple model explains why gravity and electromagnetism
are long-range forces (since the graviton and photon have zero
mass) while the weak interaction has only a very short-range
(since the W and Z bosons have mass of around 90 GeV/c2).

But it doesn't explain why the strong interaction is also
short-range, despite the fact that the gluon has zero mass.

When a field theory is quantised, many new features can
appear that are not expected from relatively simple classical
field theories. The quantum field theory of the strong
interaction is especially complicated.

The electromagnetic field was the first to be understood as a
quantum theory. We are still searching for a quantum theory of
gravity.
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The Electromagnetic Field

The classical electromagnetic field is a good case study for
other field theories, including quantum field theories.

Our main goal in this course will be to understand a variety of
electromagnetic phenomena in terms of solutions to the field
equations (Maxwell's equations). The phenomena we shall
study will include:

e Electromagnetic waves in various media
e Electromagnetic waves at boundaries between different media
e Propagation of electromagnetic waves in waveguides

e Sources of electromagnetic radiation

We shall begin by reviewing the various quantities associated
with electromagnetic fields, and the relationships between
them...
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The Electric Field

The electric field E at a particular point in space is the force
per unit static electric charge located at that point:

(22)

In free space, the electric field is very simple. Things get more
complicated when we need to describe electric fields within
materials...
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Electric Polarisation

When a dielectric (non-conducting material) is placed in an
electric field, the molecules within the material each acquire an
electric dipole moment. The dipole moment measures the
displacement of the electric charges within the molecule, in
response to the external electric field.

The electric dipole moment p'is defined as the magnitude of
the charge multiplied by the separation:

7= qZ (23)

Note that the dipole moment is a vector quantity.
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Electric Polarisation

The electric polarisation P of a dielectric is defined as the
dipole moment p per unit volume. Thus, if there are N
molecules per unit volume, each with electric dipole moment p,
the polarisation of the dielectric will be:

—

P = Np= Ng¢gZ (24)

R
PR T
® O oG OiE wide o
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Electric Polarisation and Susceptibility

In general, the response of a material to an external electric
field is very complicated. Even in relatively simple materials, we
need a good understanding of the quantum mechanics of the
atoms and molecules within the material if we want to
calculate the polarisation from first principles.

However, for many materials we can make the approximation
that the polarisation is proportional to the external electric
field. The constant of proportionality is the product of the
permittivity of free space, eg, and the electric susceptibility, xe:

P= X660E (25)

Note that the susceptibility xe is a dimensionless quantity.

Equation (25) is a good approximation for materials that are
homogeneous, isotropic and linear. There are various ways in
which the susceptibility of a given material can be measured.
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Electric Displacement

The electric displacement D is a measure of the electric field
within a material, taking into account the polarisation P:

D=¢yE+ P (26)

Note that the polarisation generated by an external electric
field will tend to reduce the strength of the field.

The electric susceptibility describes how the polarisation
depends on the external electric field. Equation (25) tells us
that for homogeneous, isotropic, linear dielectrics:

—

P = XeEOE
Combining equations (26) and (25), we find:

D = eoE + xecoE 27)
= (14 xe)eok (28)
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Relative Permittivity

The electric displacement is the measure of the electric field in
a material, taking into account the response of the material to
the field. The magnitude of the response of a material to an
external electric field can be measured by the electric
susceptibility xe, or by the relative permittivity e,.

The relative permittivity e, is defined by:

D = eregE (29)

Combining equations (28) and (29), we find:

Er = 1 + Xe (30)

Note that, like the susceptibility, the relative permittivity is
dimensionless.
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Permittivity

A material that has no response to an external electric field
(like a vacuum) will have susceptibility zero, and relative
permittivity equal to 1.

A material that has a strong response to an external electric
field (by acquiring a large polarisation) will have a susceptibiliy
much larger than zero, and a relative permittivity much larger
than 1.

We sometimes use the permittivity e, instead of the relative
permittivity e,. The permittivity is defined by:

€ = greg (31)

Advanced Electromagnetism 29 Part 1: Maxwell’s Equations

Summary: The Electric Field

electric field E | newtons/coulomb (NC—1)
electric displacement | D | coulombs/meter—2 (Cm~2)
permittivity e | farads/meter (Fm~—1)

The electric displacement D and the electric field E are related
by the permittivity e:

D=c¢E (32)
The permittivity is a property of materials. The vacuum also
has a permittivity, with value ¢q:

£p = 8.854 x 10712 Fm~1 (33)

The ratio of the permittivity of a material to the permittivity of
the vacuum is known as the relative permittivity. The relative
permittivity measures the electric polarisation induced in a
material by an external electric field.
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The Magnetic Field

When a charged particle moves through a magnetic field, it
experiences a force proportional to the size of the field, the
speed of the particle, and the sine of the angle between the
field and the velocity. The direction of the force is
perpendicular to both the field and the velocity:

- B
b

The magnetic force on the particle can be written:
F= qU X B (34)
Just as we had to account for the response of materials to

external electric fields, we have to account for the response of
materials to external magnetic fields.
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The Magnetic Field in Materials

The magnetic field around an individual atom or molecule can
modelled as a current I flowing in a loop enclosing an area A:

A

Note that A4 is a vector, with magnitude equal to the area
enclosed by the loop, and direction perpendicular to the current
loop.

The magnetic dipole moment m of the current loop is defined
by:

m=1TIA (35)
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Magnetisation

The magnetisation of a material is defined as the magnetic
dipole moment per unit volume. Thus, if there are N magnetic
dipoles per unit volume with average dipole moment m, the
magnetisation M is given by:

M = Nm (36)

In a magnetic material, the magnetic moments of atoms and
molecules within the material can change in response to an
applied external magnetic field. The response of the material
to an external magnetic field B is measured by the magnetic
intensity H:

—

B = po (H + M) (37)
where pg is a fundamental physical constant, the permeability
of free space.
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Magnetic Susceptibility

In certain kinds of materials (diamagnets and paramagnets),
the magnetisation is approximately proportional to the
magnetic intensity:

M = xmH (38)

Note that this relationship does not hold for ferromagnets,
which are more complicated. In particular, ferromagnets display
hysteresis, in which the magnetisation depends not only on the
magnetic intensity present at a given time, but on the magnetic
intensity that was present in the material at earlier times. This
means that there cannot be a simple one-to-one relationship
between magnetic intensity and magnetisation in ferromagnetic
materials.
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Magnetic Permeability

In cases where equation (38) holds, we can write the
relationship (37) between the magnetic field and the magnetic
intensity as:

B = po(H+xmH) (39)
(1 + xm) noH (40)
We define the relative permeability p, as:
pr =14+ xm (41)
so that for diamagnetic and paramagnetic materials:
B = prpoH (42)

We can also define the magnetic permeability p as:

K= Hrpo (43)
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Summary: The Magnetic Field

magnetic intensity | H | amperes/meter (Am~—1)
magnetic field B | tesla (T)
permeability u | henrys/meter (Hm™—1)

The magnetic intensity H and the magnetic field Bin a
diamagnetic or paramagnetic material are related by the
permeability u:

B=puH (44)
The permeability is a property of the material. The vacuum
also has a permeability, with value pug:
po=4n x 1077 Hm™1! (45)

The ratio of the permeability of a material to the permeability
of free space is the relative permeability of the material. The

relative permeability measures the response of the material to
an external magnetic field.
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Permittivity and Permeability

In static cases, sources of the electromagnetic field determine
the electric displacement D and the magnetic intensity H:

V-D=p VxH=J (46)
The permeability and permittivity describe the magnetisation
and polarisation of a material in response to external fields. In
most materials, the electric field E is reduced by the induced

electric dipole moment; and the magnetic field B is enhanced
by the induced magnetic moment in the material:

ou

B = prpoH (47)
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Permittivity and Permeability of the Vacuum

As we shall see later, the speed of light in a vacuum is given by:
1
NT=S

It turns out that we can choose one of the constants ug and eg
for our own convenience; the other is then fixed by the speed
of light in a vacuum, from equation (48). Different systems of
units make different choices for either ug or eg. In SI units, the
permeability of free space ug is defined to be:

(48)

c =

po = 4m x 1077 Hm™! (49)
We then find, using ¢ = 2.998 x 108 ms—1, that:

ep = 8.854 x 10712 Fm~1 (50)
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Charge, Charge Density, Current Density and Conductivity

Electric charge is represented by the symbol ¢, and is measured
in coulombs (C). The electric charge density (charge per unit
volume) is represented by the symbol p, and is measured in
Cc/m3.

In an electrical conductor, an electric field E will cause a flow
of electric charge. The flow of charge is given by the current
density J (which has units of amperes/meter2, A/m?2).

In an ohmic conductor with conductivity o, the current density
is given by:

J=0oE (51)
This is equivalent to Ohm’s law, I = V/R.

Advanced Electromagnetism 39 Part 1: Maxwell’s Equations




Maxwell's Equations

Maxwell's equations determine the electric and magnetic fields
in the presence of sources (charge and current densities), and
in materials of given properties.

V-D = p (52)
V-B =0 (53)
. OB
VxE = —— 54
X o (54)
. . 0D
VxH = J+=— 55
X +8t (55)

The physical significance of Maxwell's equations is most easily
understood by converting them from differential equations into
integral equations...
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Maxwell's Equations

Differential Integral
vV-D =p $sD-dS = [ypdV
V-B =0 $sB-d5 = 0

o oB o __ le) 3. c

We can show that the differential forms of Maxwell's equations
are equivalent to the integral forms using Gauss' theorem and
Stokes’ theorem...
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Gauss’' Theorem and Stokes’ Theorem

Gauss’ theorem for any vector field A:

/ V.AdV = %Z-dfs* (56)
JV JS

where S is the closed surface bounding the volume V, and the
surface area element dS is directed out of the volume V.

Stokes’ theorem for any vector field A:

/VXA'-dfs*zf/T-d? (57)
s c

where C is the closed line bounding the area S.
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Maxwell's Equations: Physical Interpretation (1)

Gauss' theorem and Stokes’ theorem can be used to transform
between the differential and integral forms of Maxwell's
equations.

For example, consider the first of Maxwell's equations:
V-D= p (58)
Apply Gauss' theorem:
'/VV-ﬁdV=j{§-df9 (59)
to get the integral form:
fﬁ-d“sz/vpdv (60)

This tells us that the flux of D through a closed surface equals
the enclosed charge.
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Maxwell's Equations: Physical Interpretation (1)

As an example, consider the field around a point charge, gq.
The field is spherically symmetric, and at a distance r from a
point charge, passes through a sphere of surface area 4qrr2,
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Maxwell's Equations: Physical Interpretation (1)

Since the system is spherically symmetric, the integral of the
electric displacement over the surface of a sphere centered on
the point charge is simply equal to the magnitude of the electric
diplacement vector multiplied by the surface area of the sphere:

743 D-d% = 4nr2D (61)

The integral of the charge density over the volume inside the
sphere is simply equal to the charge:

/Vpdv =q (62)

Thus, from equation (60):

13~df5’=/ av
f L

we get:
4rr?D = ¢q (63)
and finally, from D= sﬁ, we get Coulomb’s law:
q
E = 64
4er? (64)
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Maxwell's Equations: Physical Interpretation (2)

Consider the second of Maxwell's equations:

V-B=0 (65)
Apply Gauss' theorem:
(/‘/V-édV:(%E-dTS’ (66)
to get the integral form:
fé s =0 (67)

This tells us that the flux of B through a closed surface equals
zero. In other words, as much magnetic field “flows into” a
closed surface as ‘“flows out” of the surface.
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Maxwell's Equations: Physical Interpretation (2)

The flux of B through a closed surface equals zero. As a
conseqguence, there can be no sources or sinks of lines of
magnetic flux: the lines must be continuous, and have no
beginning or end.

1
1
1
I
|
1
1
\

Equation (65) is a statement that there are no magnetic
monopoles.
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Maxwell's Equations: Physical Interpretation (3)

Consider the third of Maxwell's equations:

OB

VxE=——
ot

Apply Stokes’' theorem:
/VxE-dE:f E.di
S C

to get the integral form:

?{walz—g/é-d@:—aﬁ
C otJs ot

(68)

(69)

(70)

This tells us that the circulation of E around any closed curve
is equal to the rate of change of magnetic flux through any

surface spanning the curve.
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Maxwell's Equations: Physical Interpretation (3)

Electromotive force (emf) is defined by:
emf = %chl (71)

We have seen that applying Stokes’ theorem (69) to Maxwell's
equation (68):

q OB
VXE=——
ot
gives:
SR o [ = - ad
%E-l:——/B-d - _9® (72)
Jc otJs ot
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Maxwell's Equations: Physical Interpretation (3)

So Maxwell's third equation is just a statement of Faraday’s

(and Lenz's) law:

od

emfzj{ E.-dl=-""
C ot

=

dF
%\

/N
/ .
/ I

—

—
{ [
N/

(73)
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Maxwell's Equations: Physical Interpretation (4)

Consider the fourth of Maxwell's equations:

. . 9D
VxH=J4+ — 74
+ % (74)
Apply Stokes' theorem:
/Vxﬁ~d§=y§ﬁ-7 (75)
S C
to get the integral form:
S - o ) Lo
H-dl:/J-ds —/D~d5 76
?{c S +8t S (76)

This tells us that the circulation of H around a closed curve is
equal to the flux of current density through any surface
spanning that curve (Ampere's law) plus the rate of change of
electric displacement through any surface spanning the curve
(Maxwell's extension to Ampere's law).
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Maxwell's Equations: Physical Interpretation (4)

Consider the magnetic field around a long, straight wire
carrying an electric current I. The magnetic field lines form

Maxwell's Equations: Physical Interpretation (4)

Consider a disc of radius r perpendicular to, and centered
the wire. We integrate Maxwell's equation:

on,

closed loops perpendicular to, and centered on, the wire. . . 8D
VxH=J4+— (77)
ot
B across the surface of the disc (noting that D = 0):
/Vxﬁ-d_S:/f-d_S:I (78)
Js JS
I Applying Stokes' theorem, we get:

%Cﬁ-d“z=2m~H=1 (79)
where H is the magnitude of the magnetic intensity at
perpendicular distance r from the wire:

I
H= " 80
27r (80)
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Displacement Current Displacement Current and Charge Conservation
Maxwell’s fourth equation is:
[} . [} . - N aﬁ
Maxwell's extension to Ampere's law introduces the VxH=J74+2% (82)
displacement current: ot
Using the vector identity (2) we find:
V.VxH=V.-D4+vV.J=0 (83)
0 [ . . .
displacement current = &/SD -dS (81) Maxwell’s first equation is:
V-D=p (84)
The presence of the displacement current in Maxwell’s which (differentiating with respect to time, t) gives:
equations tells us that a changing electric field gives rise to a - p
magnetic field. ot
Combining equations (83) and (85) gives:
But there is another, very important consequence of this term: - dp
it tells us that electric charge is conserved... V-J= T ot (86)
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This equation is called the continuity equation for electric

charge. It tells us that there is local conservation of electric

charge.
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Continuity Equations

The continuity equation (86) follows directly from Maxwell's
equations, and tells us that electric charge is conserved locally.
In differential form, the continuity equation is:

- op
ViJ=—— 87
" (87)
Using Gauss' theorem, we can convert to integral form, to

make the physical interpretation clearer:

?{f~d§=—%/‘/pdv (88)
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Summary of Part 1

You should be able to:
e Explain the features of a field theory.

e Explain the quantities used to describe electromagnetic fields in free
space and in materials (including: electric field; electric displacement;
magnetic field; magnetic intensity; electric permittivity; magnetic
permeability) and give the relationships between them.

e Write down the field equations for classical electromagnetism
(Maxwell's equations), and the Lorentz force equation.

e Write down Gauss' theorem and Stokes' theorem, and use these
theorems to convert Maxwell’'s equations from differential to integral
form.

e Derive, from Maxwell's equations, expressions for: the electric field
around a point charge; the magnetic field around a straight wire; the
emf in a wire loop in a time-dependent magnetic field.

e Derive, from Maxwell's equations, the continuity equation expressing
the local conservation of electric charge.
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