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Linear beam dynamics and radiation damping

In this lecture, we shall discuss:

• The optical (lattice) functions: Twiss parameters and dispersion.

• The momentum compaction factor.

• Emittance, energy spread, bunch length.

• Synchrotron radiation: energy loss and damping times.
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• Quantum excitation: equilibrium emittance, energy spread and 

bunch length.



Twiss parameters describe the local oscillation amplitudes of particles 

As a particle moves along an accelerator beam line, it performs transverse (betatron) 

oscillations.

The horizontal motion can be described in terms of the horizontal coordinate x and the 

normalised horizontal momentum 
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Alternatively, we can use action-angle variables: Jx, ϕx defined by:

The Twiss parameters αx, βx and γx are defined so that Jx is a constant of the motion 

(called the betatron action), and ϕx (the betatron phase) increases with s according to:
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Transfer matrix for one periodic cell

The Twiss parameters are determined from the transfer matrix for one 

periodic cell.
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The transfer matrix M is parameterised as:

In transport through one periodic cell, the action-angle variables transform as:
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The Twiss parameters describe the shape of a phase space ellipse

If we observe the coordinate x and momentum px of a particle at the exit of 

each periodic cell and plot these variables on a phase space diagram, we 

construct an ellipse, the shape of which is determined by the Twiss 

parameters.
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s0

s2

Area of the ellipse = 2πJx

Symplecticity

If we ignore radiation (and some other) effects, then particle transport along 

a beamline is symplectic.

Mathematically, this means that any transfer matrix M satisfies:

where the antisymmetric matrix S is given by:
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The symplectic condition on the transfer matrix imposes a constraint on the 

Twiss parameters, which can be written:

Physically, symplecticity means that the area of the phase space ellipse 

described by the motion of a particle is fixed.  In other words, the amplitude 
Jx of the betatron oscillations is constant.
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The Twiss parameters give the local oscillation amplitude

The action Jx is constant for a particle moving along the beamline, and the 

betatron phase ϕx increases monotonically.

By writing the Cartesian variables x and px in terms of the action-angle 

variables, we can represent the motion of the particle as similar to that of a 

simple harmonic oscillator, but with local variations in amplitude and 

frequency:
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Dispersion describes the change in trajectory with energy

The energy E of a particle is usually specified in terms of the deviation δ
from the reference energy (or the reference momentum P0):

Particles with higher energy (δ > 0) are deflected by a smaller angle in dipole 

magnets, compared to particles with the nominal energy.
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In a storage ring, particles with non-zero energy deviation have a different 

closed orbit from particles with the reference energy.  The dispersion 

function ηx is defined as change in closed orbit with respect to the energy 

deviation:

δηxCOX =



Example: beta functions and dispersion in a FODO cell
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Momentum compaction factor

The presence of dispersion means that there is a change in the path length 

for a particle following a closed orbit, depending on the energy deviation.
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The change in path length C for one complete revolution is described by the 

momentum compaction factor αp:
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Momentum compaction factor

We can calculate the momentum compaction factor in a lattice from the 

dispersion in the dipoles.

With a curved trajectory, the path followed by a particle a horizontal 
distance x from the reference trajectory is:

If the offset is the result of an energy error:
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The total path length is:

Then the momentum compaction can be written:
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Momentum compaction factor and first synchrotron radiation integral

If we define:

then we can write the momentum compaction factor:

I1 is called the first synchrotron radiation integral: it is an integral over the 
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I1 is called the first synchrotron radiation integral: it is an integral over the 

circumference of a function that involves the lattice parameters (the 
dispersion) and the magnet parameters (the bending radius).

We shall define other synchrotron radiation integrals when we come to 
calculate the radiation damping times and the equilibrium beam sizes.



The time taken for a particle to complete one revolution depends on:

• the path length (a function of the energy);

• the speed of the particle.

The speed of the particle does depend on the energy, but at ultra-relativistic 
velocities, the dependence is weak.

The revolution period is expressed in terms of the energy deviation:

Momentum compaction, phase slip, and transition
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where ηp is the phase slip factor.  It can be shown that:
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ηp < 0 αp < 0 or γ0
2 < 1/αp Below transition: revolution frequency increases with energy

ηp = 0 γ0
2 = 1/αp At transition: revolution frequency independent of energy

ηp > 0 γ0
2 > 1/αp Above transition: revolution frequency decreases with energy

Synchrotron oscillations

If the momentum compaction factor is not zero, and there are RF cavities in 
the storage ring, then particles will perform synchrotron oscillations.
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A particle initially at point B in the RF phase and zero energy deviation, will 

gain energy each time it passes the RF cavity.  The momentum compaction 
means that the particle will take longer to go round the ring, and will start to 
move towards A.

Similarly, a particle at point C gains insufficient energy from the RF to 

replace synchrotron radiation losses.  Such a particle will start to take less 
time to go around the ring, and will also move towards A.



Synchrotron oscillations

The trajectory of a particle in longitudinal phase space is an ellipse.

For +z towards the head of a bunch, particles above transition move round 

the ellipse anticlockwise.

The synchrotron tune is the number of revolutions of the phase space 
ellipse made in one revolution of the storage ring.  For most lattices, the 
synchrotron tune is small, typically of order 0.01.

δ
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z

δ
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head of bunchtail of bunch

Beam emittance

The beam emittance is a measure of the phase space area covered by 
particles in the beam.

We define the Σ matrix using the second-order moments of the beam 
distribution:

Under a phase space transformation:
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the Σ matrix transforms as:

So the matrix product Σ⋅S transforms as:

where the last step follows from the symplecticity of M.









⋅









xx p

x
M

p

x
a

TMM ⋅Σ⋅Σ a

-1T MSMSMMS ⋅⋅Σ⋅=⋅⋅Σ⋅⋅Σ a



Beam emittance

We have found that Σ⋅S transforms as:

But the eigenvalues of Σ⋅S are preserved by any similarity transformation of 

this type.

The eigenvalues of Σ⋅S are ±iεx where:

1-MSMS ⋅⋅Σ⋅⋅Σ a
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εx is called the emittance of the beam: the emittance is conserved under 
symplectic transport along a beam line.
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Beam emittance

Recall that the particle coordinate and momentum are related to the action-
angle variables by:

From these expressions, we find that:
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It then follows that:
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Beam emittance

Thus, the beam emittance is just the average value of the action variables 
over all particles in the beam:

The fact that the action of each particle is conserved under (symplectic) 
transport along the beam line is consistent with the fact that the emittance is 
conserved.

The beam distribution at any point can be written in terms of the emittance 
and the Twiss parameters:
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Note that a beam has three emittances: a horizontal, a vertical and a 
longitudinal emittance.  The analysis presented here assumes that there is 
no coupling, i.e. that the three degrees of freedom are completely 
independent.  However, in the general (coupled) case, we can still obtain the 
emittances as the eigenvalues of Σ⋅S.
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Damping of emittances

Particle sources (particularly positron sources) produce beams with 
relatively large emittances.  One of the jobs of the damping rings is to 
reduce the emittances, to make a beam that can be used to produce 
luminosity.

Injected emittance Extracted emittance

Horizontal e+ 1 µm 0.8 nm
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But… if the emittance is conserved in transporting a beam along a beam 
line, how do the damping rings reduce the beam emittances?

Vertical e+ 1 µm 0.002 nm

Longitudinal e+ > 30 µm 10  µm



Radiation damping

Whenever charged particles undergo acceleration, they emit radiation (in the 
case of relativistic particles, this is called synchrotron radiation).

In a storage ring, the radiation emission is dominated by the bending fields 
of the dipole magnets.

Synchrotron radiation is a non-symplectic effect; in some respects, it is 
analogous to a frictional force that will steadily damp the motion of an 
oscillator.
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oscillator.

In the case of particles in a storage ring, the combination of radiation 
emission in the dipoles and the restoration of this energy in the RF cavities 
leads to gradual reduction in the emittances, towards some equilibrium 
values.

Radiation damping

The majority of photons are emitted within a cone of angle 1/γ around the 

instantaneous direction of motion of the particle.

For ultra-relativistic particles, γ is very large, so nearly all the radiation is 
emitted directly along the instantaneous direction of motion of the particle.

Particles lose longitudinal and transverse momentum in bending magnets.

particle

emitted

radiation
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Neglecting dispersion and chromaticity, the trajectory of the particle after 
emitting a photon is the same as it would be if no photon were emitted: 
however the vertical momentum py is reduced.

particle

trajectory

closed orbit

bending

magnet



Radiation damping

In an RF cavity, the particle sees an accelerating electric field parallel to the 
closed orbit: the RF cavities in a storage ring restore the energy lost by 
synchrotron radiation.

The increase in momentum of a particle in an RF cavity is parallel to the 
closed orbit.  This leads to a reduction in the amplitude of the betatron 
oscillations of the particle: however, the vertical momentum py is not 

changed.

RF cavity
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closed
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Damping of vertical emittance

The vertical motion is usually easier to deal with than the horizontal motion, 
because most storage rings have (in the absence of alignment or steering 
errors) zero vertical dispersion.

Consider a particle travelling round a storage ring.  When the particle travels 
through bending magnets, it emits radiation within a cone of opening angle 1/γ
around the instantaneous direction of motion of the particle.  For γ >> 1, the 

direction of the radiation is approximately along the direction of motion of the 
particle, so the direction of motion is unchanged by the “recoil”.

The total momentum of the particle changes with the emission of radiation:
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The total momentum of the particle changes with the emission of radiation:

where dp is the momentum of the radiation, and the total momentum of the 
particle p is close to the reference momentum P0.  Since the direction of the 

particle is unchanged, the vertical emittance after emitting the radiation is:
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Damping of vertical emittance

After emission of radiation, the vertical momentum of the particle is:

Now we substitute this into the expression for the vertical betatron action:

to find the change in the action resulting from the emission of radiation:
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We average over all particles in the beam, to find:

where we have used:
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Damping of vertical emittance

Finally, we integrate the loss in momentum around the ring. The emittance is 
conserved under symplectic transport; so if the non-symplectic effects (in 
this case, the radiation effects) are slow, we can write:

where T0 is the revolution period, and U0 is the energy loss in one turn.  We 
define the damping time τy:
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so the evolution of the emittance is:

Typically, the damping time in a synchrotron storage ring is measured in 
tens of milliseconds (whereas the revolution period is measured in 
microseconds).
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Synchrotron radiation energy loss

To complete our calculation of the vertical damping time, we need to find the 
energy lost by a particle through synchrotron radiation on each turn through 
the storage ring. The power radiated by a particle of charge e and energy E
in a magnetic field B is given by:

Cγ is a constant, given by:
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A charged particle in a magnetic field follows a circular trajectory with
radius ρ, given by:

Hence the synchrotron radiation power can be written:
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Synchrotron radiation energy loss

For a particle with the nominal energy, and travelling at (close to) the speed 
of light around the closed orbit, we can find the energy loss simply by 
integrating the radiation power around the ring:

Using the previous expression for Pγ, we find:
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Conventionally, we define the second synchrotron radiation integral, I2:

In terms of I2, the energy loss per turn U0 is written:
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Damping of horizontal emittance

The effect of radiation on the horizontal emittance is complicated by the 
presence of dispersion.  When a particle emits some radiation (resulting in a 
change in energy deviation ∆δ) at a location where there is dispersion, the 
closed orbit changes by:

This means that the coordinate and momentum (with respect to the 
dispersive closed orbit) of a particle after emitting radiation with momentum 
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dispersive closed orbit) of a particle after emitting radiation with momentum 
dp are:
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Damping of horizontal emittance

There are two further complications that we need to consider when 
calculating the effects of synchrotron radiation on the horizontal motion.

The first is that, because of the curvature of the trajectory, the path length of 
a particle in a dipole magnet is a function of the horizontal coordinate.  Thus 
the integral of the power loss:

becomes, in terms of the path length:
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becomes, in terms of the path length:
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Damping of horizontal emittance

The second complication for horizontal motion is that dipole magnets are 
sometimes constructed with a gradient, so the vertical field changes as a 
function of the horizontal coordinate:

Taking all these effects into account, we can essentially proceed the same 
way as we did for the vertical betatron motion; that is:

• Write down the changes in coordinate x and momentum px resulting 
from an emission of radiation with momentum dp (taking into account 

the additional effects of dispersion).
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the additional effects of dispersion).

• Substitute expressions for the new coordinate and momentum into the 
expression for the horizontal betatron action, to find the change in 
action resulting from the radiation emission.

• Average over all particles in the beam, to find the change in the 
emittance resulting from radiation emission from each particle.

• Integrate around the ring (taking account of changes in path length 
and field strength with x in the bends) to find the change in emittance 

over one turn.

Damping of horizontal emittance

The algebra is rather more complicated than for the case of the vertical 
emittance.  The result is that the horizontal emittance evolves according to:

where the horizontal damping time is given by:
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The horizontal damping partition number jx is given by:

where the fourth synchrotron radiation integral I4 contains the effects of the 
variation in path length and field strength with x:
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Damping of synchrotron oscillations

The change in energy deviation δ and longitudinal coordinate z for a particle 

in one turn around a storage ring are given by:

where VRF is the RF voltage and ωRF the RF frequency, E0 is the reference 
energy of the beam, ϕs is the nominal RF phase, and U is the energy lost by 

the particle through synchrotron radiation.
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the particle through synchrotron radiation.

If the revolution period is T0, then we can write the longitudinal equations of 

motion for the particle:
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Damping of synchrotron oscillations

Let us assume that z is small compared to the RF wavelength, i.e. ωRFz/c << 1.

Also, the energy loss per turn is a function of the energy of the particle 
(particles with higher energy radiate higher synchrotron radiation power), so 
we can write (to first order in the energy deviation):

Further, we assume that the RF phase ϕs is set so that for z = δ = 0, the RF 

cavity restores exactly the amount of energy lost by synchrotron radiation.  
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cavity restores exactly the amount of energy lost by synchrotron radiation.  
The equations of motion then become:
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Damping of synchrotron oscillations

Combining these equations gives:

This is the equation for a damped harmonic oscillator, with frequency ωs and 
damping constant αE given by:
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damping constant αE given by:

00

00

2

2

1

cos

EE

E

p
RF

s
RF

s

dE

dU

T

TE

eV

=

=

−=

α

α
ω

ϕω

Damping of synchrotron oscillations

If αΕ << ωs, the energy deviation and longitudinal coordinate damp as:
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To find the damping constant αE, we need to know how the energy loss per 
turn U depends on the energy deviation δ…



Damping of synchrotron oscillations

We can find the total energy lost by integrating over one revolution period:

To convert this to an integral over the circumference, we should recall that 
the path length depends on the energy deviation; so a particle with a higher 
energy takes longer to travel round the lattice.
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Damping of synchrotron oscillations

With the energy loss per turn given by:

and the synchrotron radiation power given by:

we find, after some algebra:
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we find, after some algebra:

where:

I2 and I4 are the same synchrotron radiation integrals that we saw before:
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Damping of synchrotron oscillations

Finally, we can write the longitudinal damping time:

U0 is the energy loss per turn for a particle with the reference energy E0, 

following the reference trajectory.  It is given by:
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jz is the longitudinal damping partition number, given by:
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Damping of synchrotron oscillations

The longitudinal emittance is given by a similar expression to the horizontal 
and vertical emittances:

In most storage rings, the correlation 〈zδ〉 is negligible, so the emittance 

becomes:
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Hence, the damping of the longitudinal emittance can be written:
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Summary: synchrotron radiation damping

The energy loss per turn is given by:

The radiation damping times are given by:

The damping partition numbers are:
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The damping partition numbers are:

The second and fourth synchrotron radiation integrals are:
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Quantum excitation

If radiation were a purely classical process, the emittances would damp to 
nearly zero.  However radiation is emitted in discrete units (photons), which 
induces some “noise” on the beam.  The effect of the noise is to increase 
the emittance.  The beam eventually reaches an equilibrium determined by 
a balance between the radiation damping and the quantum excitation.

emitted

photon
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Quantum excitation of betatron motion

Consider a particle that emits a photon of energy u at a location with 
dispersion.  The horizontal coordinate x and horizontal momentum px after 

the photon emission are:

Substituting into the expression for the action, and averaging over all 
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Substituting into the expression for the action, and averaging over all 
particles in the beam, we find the change in the emittance is:

where the “curly H” function is:
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Quantum excitation of betatron motion

Including both quantum excitation and radiation damping, the horizontal 
emittance evolves as:

where N is the number of photons emitted per unit path length.  We quote 

the result (from synchrotron radiation theory):
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where the “quantum constant” Cq is:
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Quantum excitation of betatron motion

Using the expression for N〈u2〉, and expressions used previously for the 

radiation power Pγ, we find:

where the fifth synchrotron radiation integral I5 is:
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The equilibrium horizontal emittance, ε0, is reached when the quantum 
excitation balances the radiation damping, dεx/dt = 0:
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Quantum excitation of betatron motion

The equilibrium horizontal emittance is given by:

ε0 is determined by the beam energy, the lattice functions (Twiss parameters 
and dispersion) in the dipoles, and the bending radius in the dipoles.

ε0 is sometimes called the “natural emittance” of the lattice, since it is the 
horizontal emittance that will be achieved in the limit of zero bunch charge: 
as the current is increased, interactions betweens particles in a bunch can 
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as the current is increased, interactions betweens particles in a bunch can 
increase the emittance above the equilibrium determined by radiation 
effects.

In many storage rings, the vertical dispersion in the absence of alignment, 
steering and coupling errors is zero, so Hy = 0.  However, the equilibrium 

vertical emittance is larger than zero, because the vertical opening angle of 
the radiation excites some vertical betatron oscillations.

For more discussion about vertical emittance, see Lecture 5. 



Quantum excitation of synchrotron oscillations

Quantum effects excite longitudinal emittance as well as transverse 
emittance.  Consider a particle with longitudinal coordinate z and energy 
deviation δ, which emits a photon of energy u.
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Averaging over the bunch gives:
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Quantum excitation of synchrotron oscillations

Including the effects of radiation damping, the evolution of the energy 
spread is:

From the previous expression for N〈u2〉, we find:
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We find the equilibrium energy spread from dσδ
2/dt = 0:

The third synchrotron radiation integral I3 is given by:
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Natural energy spread

The equilibrium energy spread determined by radiation effects is:

This is often referred to as the “natural” energy spread, since collective 
effects can often lead to an increase in the energy spread with increasing 
bunch charge.

The natural energy spread is determined essentially by the beam energy 
and by the bending radii of the dipoles.  Note that the natural energy spread 
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and by the bending radii of the dipoles.  Note that the natural energy spread 
does not depend on the RF parameters (either voltage or frequency).

The corresponding equilibrium bunch length is:

We can increase the synchrotron frequency ωs, and hence reduce the bunch 
length, by increasing the RF voltage, or by increasing the RF frequency.
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Summary: radiation damping

Including the effects of radiation damping and quantum excitation, the 
emittances vary as:

The damping times are given by:
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The damping partition numbers are given by:

The energy loss per turn is given by:
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Summary: equilibrium beam sizes

The natural emittance is:

The natural energy spread and bunch length are given by:

The momentum compaction factor is:
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The momentum compaction factor is:

The synchrotron frequency and synchronous phase are given by:
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Summary: synchrotron radiation integrals

The synchrotron radiation integrals are:
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Damping times in the ILC damping rings

Let us consider the damping time that we need in the ILC.  The shortest 
damping time is set by the vertical emittance of the positron beam.

Injected emittance Extracted emittance

Horizontal e+ 1 µm 0.8 nm

Vertical e+ 1 µm 0.002 nm

Longitudinal e+ > 30 µm 10  µm
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We must reduce the injected emittance to the extracted emittance in the 
store time of 200 ms (set by the repetition rate of the main linac).

Using:

we find that we need a vertical damping time of 30 ms.  In practice, the 
damping time must be less than this, to allow for a non-zero equilibrium.
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Damping times in the ILC damping rings

The ILC damping rings are 6.7 km in circumference and have a beam 
energy of 5 GeV.

The energy loss per turn is:

If the only dipole fields are those that determine the ring geometry, and have 
field strength B, then we can write:
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Hence:

For a dipole field of 0.15 T, we find U0 = 500 keV.
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Damping times in the ILC damping rings

The beam energy is 5 GeV; the energy loss per turn from the dipoles is 500 
keV.  This means that the vertical damping time is:

We need a damping time of less than 30 ms; the radiation from the dipoles 
provides a damping time of 450 ms!

To reduce the damping time, we need to increase the energy loss per turn.  
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To reduce the damping time, we need to increase the energy loss per turn.  
Increasing the dipole field can help, but has adverse impact on other 
aspects of the dynamics (the momentum compaction factor is reduced, 
which lowers some of the instability thresholds).

The other option is to use a damping wiggler, which consists of a sequence 
of dipoles bending in opposite directions… we will discuss wigglers used to 
enhance radiation damping in Lecture 4.


