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Nonlinear Single-Particle Dynamics in High Energy Accelerators

This course consists of eight lectures:

1. Introduction – some examples of nonlinear dynamics

2. Basic mathematical tools and concepts

3. Representations of dynamical maps

4. Integrators I

5. Integrators II

6. Canonical Perturbation Theory

7. Normal form analysis

8. A case study
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In the previous lectures...

We have developed tools for:

• calculating particle motion in complex magnetic fields,

including 2D fields (multipoles) and 3D fields (for example,

insertion devices);

• analysing particle motion in beamlines, to evaluate the

impact of nonlinear effects on a beam moving through the

accelerator.

There are a range of analytical and numerical tools available

for the above tasks. Which ones you use will depend on the

system you are dealing with.
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In this lecture...

To illustrate the application of some of the methods developed

in the previous lectures, we shall now consider a case study:

the wiggler in the ILC damping rings.

As well as reviewing and applying material from previous

lectures, we shall discuss two techniques we have not so far

covered in any detail:

• use of a differential algebra (DA) code to construct a map

in Taylor form, suitable for tracking;

• use of frequency map analysis to visualise effects such as

tune shift with amplitude and resonances in storage rings.
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In this lecture...

We shall proceed as follows:

1. Introduction: the ILC damping rings and damping wiggler.

2. Fitting the wiggler field.

3. Constructing the dynamical map for the wiggler.

4. Analysis of the impact of the wiggler on the dynamics.

Ideally, there should be an additional section: optimisation of

wiggler and storage ring optics design to minimise impact of

nonlinear effects. But we have not fully achieved that step, yet!
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Introduction: the ILC damping rings

The International Linear Collider (ILC) is a proposed facility for

studies in high energy physics. The goal is to produce a

luminosity of 2× 1034 cm−2s−1, with centre of mass collision

energy 500GeV (initially).

To achieve the high luminosity, damping rings are used to

provide highly stable, very low emittance beams.
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Introduction: the ILC damping rings

In may respects, the damping rings are similar to synchrotron

storage rings used (for example) in third generation light

sources. The main difference is that after injection, the beam

is stored just long enough to reach equilibrium (200ms) before

being extracted and accelerated to the interaction point.

Circumference 6476m
Beam energy 5 GeV
Average current 400 mA
Natural emittance 0.6 nm
Transverse damping time 21 ms
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Introduction: the ILC damping rings

Recall that the damping time τ in a synchrotron storage ring is

given by:

τ = 2
E

U
T. (1)

where E is the beam energy, U the energy loss per turn, and T

is the revolution period.

The energy of the beam is a compromise between costs and

emittance (both increase with energy) and collective effects

(which become more severe at lower energy). The size of the

ring is driven by the need to inject and store a train of more

than 5000 bunches. And the damping time is determined by the

injected and extracted beam emittances, and the store time:

ε(t) = ε(0)e−
t
2τ + εequ

(

1− e−
t
2τ

)

. (2)
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Introduction: the ILC damping rings

To achieve the required damping times for the specified

circumference and beam energy, a large energy loss per turn of

10MeV is needed. Roughly 90% of the energy loss per turn

will be provided by a damping wiggler, of total length 215 m,

and peak field 1.6 T.

There are many technical challenges associated with the

wiggler. The power requirements make a normal-conducting

electromagnetic wiggler unattractive. A permanent magnet

wiggler is a possibility, but the magnetic material would be

expensive, and there may be concerns with radiation hardness

or activation.

Presently, the baseline is for a superferric wiggler, which can

provide good field quality with wide aperture.
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Dynamic octupole in an “ideal” wiggler

Even a wiggler with infinitely wide poles can have strong

nonlinear effects. To understand these, let us perform a simple

analysis of the dynamics in the field of an idealised wiggler.

Recall that, in Cartesian coordinates, the field of a wiggler may

be represented by:

Bx = −
∑

m,n
Bmn

mkx

ky
sinmkx sinh kyy cosnkss, (3)

By =
∑

m,n
Bmn cosmkx cosh kyy cosnkss, (4)

Bs = −
∑

m,n
Bmn

nks

ky
cosmkx sinh kyy sinnkss, (5)

where:

k2
y = m2k2

x + n2k2
z . (6)

For an idealised wiggler, we can retain only the fundamental

mode, m = 0, n = 1.
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Dynamic octupole in an “ideal” wiggler

The idealised wiggler field is then:

Bx = 0, (7)

By = B01 cosh ksy cos kss, (8)

Bs = −B01 sinh ksy sinnkss. (9)

Since we are making a relatively crude estimate of the

dynamics, we shall work with non-canonical variables, and write

the equations of motion as:

x′′ = −
By

Bρ
+ y′

Bs

Bρ
, (10)

y′′ =
Bx

Bρ
− x′

Bs

Bρ
. (11)
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Dynamic octupole in an “ideal” wiggler

If we assume that |y′| � 1, then the equation for x (10)

becomes:

x′′ ≈ −
By

Bρ
= −

B01

Bρ
cosh ksy cos kss. (12)

The solution is:

x ≈ x0 + x′0s + a cosh ksy cos kss, (13)

where a, the amplitude of the “wiggle”, is given by:

a =
B01

k2
s Bρ

. (14)

Note that for y = 0 the motion in x is linear.
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Dynamic octupole in an “ideal” wiggler

Now we write the equation for y (11):

y′′ ≈ −x′
Bs

Bρ
= −aks

B01

2Bρ
sinh2ksy sin2 kss. (15)

We can estimate the total vertical deflection through one

period of the wiggler by:

∆y′ =
∫ λw

0
y′′ ds ≈ −

π

2k2
s

(

B01

Bρ

)2

sinh2ksy, (16)

where λw = 2π/ks is the wiggler period. Note that we assume

x0 = x′0 = 0.

Expanding the sinh function:

∆y′ ≈ −
π

ks

(

B01

Bρ

)2 [

y +
2

3
k2
s y3 + · · ·

]

. (17)
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Dynamic octupole in an “ideal” wiggler

We see that the vertical deflection is given by an infinite series

in odd powers of y. The linear term indicates that there is

vertical focusing.

The third order term is what we would expect from an

octupole. This is sometimes referred to as a “dynamic”

octupole, since its origin is not an octupole field (which would

vary as the third power of the distance from the centre of the

magnet), but the result of the sinusoidal horizontal trajectory

through a field that varies as the fourth power of y.

The strength of the dynamic octupole is given by:

[k3`]dynamic = −4πks

(

B01

Bρ

)2

. (18)

Note that dynamic multipoles behave rather differently from

regular multipoles: their effects in the horizontal and vertical

planes are generally different, and they have an unusual scaling

with particle energy.
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Dynamic octupole in an “ideal” wiggler

Higher order modes in a wiggler field can lead to significant

modification of the dynamics, compared to a simple analysis

based on an idealised field.

This motivates a more detailed analysis, using detailed field

map produced from a magnetic modelling code.

To proceed further, we need a specific wiggler design...
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The ILC damping wigglers

The present baseline design specifies wigglers based on the

CESRc superferric wigglers (below, left). These have seven

poles with peak field 2.1 T, period 0.4 m. The modified design

for ILC (below, right) will have twelve poles, peak field 1.6 T,

and period 0.4 m.

J. Urban, G. Dugan, M. Palmer, J. Crittenden.
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The ILC damping wigglers

Before the present baseline was selected, there were extensive

studies of the impact of nonlinear dynamics in the wiggler, and

the potential impact on the performance of the damping rings.

One of the main concerns was that the wiggler fields would

cause the trajectories of particles to become unstable at large

betatron or synchrotron amplitude. In other words, the wigglers

might limit the dynamic aperture of the rings.

Since the injected positron beam in particular has a very large

emittance, and the average injected beam power during

operation would be 225 kW, injection losses resulting from

dynamic aperture limitations could have a serious impact.
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The ILC damping wigglers

The “configuration studies” were based on a permanent

magnet wiggler, which was the best available model at the

time.

TESLA TDR (2001)

The superferric wiggler (since adopted as the baseline) appears

to have a better field quality than the permanent magnet

wiggler, though a thorough, detailed study has yet to be carried

out.
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The ILC damping wigglers

The first step is to obtain a numerical field map from a

modelling code such as OPERA. In principle, one can integrate

numerically the equations of motion for particles moving

through this field. However, when the total length of wiggler is

over 200 m, and we are interested in hundreds of thousands of

particle-turns, this is not a practical approach.

Instead, we can fit a set of “modes” to the wiggler field. This

provides a semi-analytical description of the field that can be

used for constructing a dynamical map. The dynamical map

forms the basis for the tracking studies.
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Fitting a field map

The procedure of titting a field map to numerical field data has

already been described in Lecture 5. Essentially, the mode

coefficients may be obtained from a 2D discrete Fourier

transform of the radial field component on a cylinder inscribed

within the wiggler.

Bρ =

∫

dks

∑

m

B̃m(ks)I
′
m(ksρ) sinmφ cos kss,

Bφ =

∫

dks

∑

m

B̃m(ks)
m

ksρ
Im(ksρ) cosmφ cos kss,

Bs = −

∫

dks

∑

m

B̃m(ks)Im(ksρ) sinmφ sin kss.

The behaviour of the modified Bessel function Im(ksρ) causes

residuals of the fit to reduce exponentially towards the axis of

the cylinder.
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Fitting a field map

For the TESLA wiggler design, we obtain a good-quality fit by

fitting on a cylinder of radius 9mm, using 18 azimuthal and

100 longitudinal modes.
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Fitting a field map
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Multipole components

The coefficients of the mode decomposition in a cylindrical

basis provide the multipole components as a function of

distance along the wiggler axis.
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Constructing the dynamical map

The field modes allow us to reconstruct the field, or the vector

potential, at any point within the wiggler.

Since the field is three-dimensional, it is appropriate to use the

Wu-Forest-Robin integrator, again described in Lecture 5. The

second-order version of the integrator may be written:

M(∆σ) ≈ e−
∆σ
4 :H1:e−

∆σ
2 :H3:e−

∆σ
4 :H1:e−∆σ:H2:e−

∆σ
4 :H1:e−

∆σ
2 :H3:e−

∆σ
4 :H1:

where:

H1 = −

(

1

β0
+ δ

)

+
1

2β2
0γ2

0

(

1

β0
+ δ

)−1

+
δ

β0
+

p2
x

2
(

1
β0

+ δ
) + ps,

H3 = −as, e−∆σ:H2: = e:Iy:e−∆σ:H̃2:e−:Iy:,

and:

Iy =
∫ y

0
ay(x, y′, s) dy′, H̃2 =

p2
y

2
(

1
β0

+ δ
).

Nonlinear Dynamics 23 Part 8: A Case Study



Constructing the dynamical map

Each factor in the map represents a finite set of arithmetical

operations on the dynamical variables: in other words, the map

can be written algebraically in closed form

Given the vector potential as a function of the coordinates, we

can write a computer code to apply the map, and hence

integrate the equations of motion for a particle moving through

the field.

If we were limited to doing this numerically, there would not be

much advantage over simply integrating through the original

numerical field data.

However, by using a differential algebra code, we can construct

a Taylor series to represent the result of integrating through

one complete period of the wiggler...
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Constructing the dynamical map: DA codes

A differential algebra code allows the user to define a DA type

of variable. This can be used in the same way as any other

variable, except it represents a Taylor series to some order, in a

set of “basis” variables DA(1), DA(2), and so on.

For example, suppose that x and y are of type DA. The lines of

code:

x := DA(1);

y := cos(x);

would result in y having the “value”:

1− 1

2
DA(1)2 + 1

24
DA(1)4− . . .
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Constructing the dynamical map: DA codes

I use the DA code COSY (developed by Martin Berz,

http://www.bt.pa.msu.edu/index cosy.htm) for constructing

dynamical maps from sets of field mode coefficients.

A code “snippet”, showing the actual implementation of the

Wu-Forest-Robin integrator, is given on the next slide, with a

section of the output (consisting of the coefficients in each of

the Taylor series for each dynamical variable) on the slide after.

Note that X(1), X(2) etc. are DA types, representing the

dynamical variables.

AYFIELD and AZFIELD are procedures that “evaluate” the vector

potential (and the appropriate integrals) at the current

integration step. Of course, the “evaluation” is in terms of the

DA variables, so the vector potential is also represented as a

Taylor series.
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Constructing the dynamical map: DA codes
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Constructing the dynamical map: DA codes
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Constructing the dynamical map: DA codes

The drawback with this approach is that the Taylor series is

simply truncated at some specified order. That means we lose

symplecticity.

Of course, it would be possible to construct, from the

truncated Taylor map, a symplectic map in implicit form, as a

mixed-variable generating function (Lecture 3). However,

applying such maps tends not to be very efficient in practice.

Alternatively, we can hope that by generating a Taylor map to

sufficiently high order, that the symplectic error will be small.

But in that case, there may be little benefit in using a

symplectic integration routine to construct the map, over a

more conventional integration routine, e.g. Runge-Kutta.
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Constructing the dynamical map: DA codes

It is interesting to compare the maps produced by the

symplectic integrator in COSY, with a high-order Runge-Kutta

routine built-in to COSY. The plot on the next slide compares

the coefficients of corresponding terms in the maps for the

transverse variables, for 5th order maps.

Note that the green lines divide terms of different order; within

each order, the coefficients are arranged in ascending order

(the horizontal axis is simply an index). Because we plot the

coefficients on a logarithmic scale, we take the absolute value;

and negative coefficients appear on a downward sloping curve.

There are some discrepancies between the maps for a few

coefficients: these can be explained by the fact that the

symplectic integrator makes the paraxial approximation in the

Hamiltonian, whereas the Runge-Kutta integrator does not.
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Constructing the dynamical map: DA codes
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Constructing the dynamical map: DA codes

We can also compare the “symplectic error” in each map, by

calculating the Jacobian J; for a symplectic map, the Jacobian

will satisfy:

JT · S · J = S, (19)

where S is the usual antisymmetric matrix.

We can quantify the symplectic error in a map by calculating:

∆ = JT · S · J − S, (20)

and finding the value of the terms of different order in each

component of ∆, for unit values of the dynamical variables.

If we do this for the maps constructed using the symplectic and

Runge-Kutta integrators, we can show the results on plots as

follows... (note that each point corresponds to a term of the

specified order in one component of ∆).
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Constructing the dynamical map: DA codes

Runge-Kutta integrator: symplectic error
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Constructing the dynamical map: DA codes

Wu-Forest-Robin integrator: symplectic error
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Constructing the dynamical map: DA codes

Note that we only plot the error in ∆ up to order N − 1 for a

map of order N , for the following reason.

Suppose that we take a symplectic map in Taylor form, and

introduce an error in the coefficient of a term of order N + 1.

In the Jacobian, this will appear at order N ; then, when

constructing the product JT · S · J, the error appears at order N

and higher (assuming that the Jacobian contains terms of

zeroth order and higher).

If we truncate a symplectic map at order N , then we effectively

introduce errors into all coefficients in the map at order N + 1

and higher. So, by the above argument, we expect ∆ to

contain non-zero terms of order N and higher.
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Constructing the dynamical map: DA codes

In practice, non-zero terms appear in ∆ at order lower than N

even with a symplectic integration routine, because of limits on

numerical precision.

However, we see that the symplectic error is smaller for the

symplectic integration, than it is for the Runge-Kutta

integration.

Of course, since the exact solution to the equations of motion

must be symplectic, improving the accuracy of the

Runge-Kutta integration should reduce the symplectic error.

The real distinction between the two integration routines, is

that the Wu-Forest-Robin integrator should give us a map in

which the symplectic error up to the order of the map is the

result only of limited numerical precision, even if the map itself

is not accurate (e.g. because the integration step size is too

large).
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Characterising the dynamics

Once we have selected the maps to use for various elements in

the lattice, we are ready to preform analysis of the “global”

dynamics; i.e. we can investigate how particles behave over

many turns through the ring.

There are a number of different methods to characterise the

dynamics of a storage ring, including evaluation of the tune

shifts and resonance strengths, using canonical perturbation

theory (Lecture 6) or normal form analysis (Lecture 7).

The expressions we derived in canonical perturbation theory are

most readily applied when the dominant nonlinearities come

from multipoles, which may or may not be the case in a

wiggler-dominated storage ring.

Normal form analysis is most appropriate when using

specialised codes for constructing and manipulating maps in

the form of Lie transformations.
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Characterising the dynamics: frequency map analysis

Instead of perturbation theory or normal form analysis, we

apply frequency map analysis. In principle, the steps are quite

straightforward:

1. Track a particle for some (large) number of turns through

the lattice, with some given initial coordinates in phase

space, and record its phase space coordinates each time it

passes the starting point in the ring.

2. Perform a discrete Fourier transform on the tracking data

to determine the betatron tunes.

3. Repeat for a range of different initial coordinates in phase

space.
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Characterising the dynamics: frequency map analysis

The idea behind frequency map analysis is that plotting the

tunes obtained from tracking data will indicate the tune shifts

(by the area covered on the tune diagram) and the resonances

that are strongly driven (by the clustering of points around

particular resonance lines)...
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Characterising the dynamics: frequency map analysis

A further refinement is to indicate the variation in tune over

many periods of the ring by different colours. For example, if

tracking over 1000 turns, one can take the difference between

the tunes over the first 500 and the final 500 turns.

Generally, smooth or regular motion is characterised by a very

slow change in tune over the trajectory of the particle.

A very rapid rate of change of tune can indicate irregular or

chaotic motion. We often find that this occurs where several

resonance lines cross (recall the Chirikov criterion).
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Characterising the dynamics: frequency map analysis

The trick with frequency map analysis is to determine the

tunes with high precision from a relatively small sample of

tracking data.

For N turns, a simple discrete Fourier transform will yield the

tunes with precision 1/N . This is usually insufficient to derive

meaningful data from tracking data collected in a realistic

length of time.

An improved precision can be achieved by searching

(numerically) for the frequency ω that maximises the function:

N
∑

n=1

xn exp

(

iω
n

N

)

. (21)

This technique is equivalent to interpolating between points

close to a peak in a discrete Fourier transform.
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Characterising the dynamics: frequency map analysis

There are various techniques that can be used to improve the

precision further. For example, a Hanning filter can be applied

to the data before performing the Fourier transform; and then

interpolation can be used to identify the “true” position of the

peak in the spectrum, even if it does not happen to lie exactly

on a sample point in tune space.

With care, it can be possible to determine the tunes with

precision of order 1/N4 from N turns of tracking data. The

original technique, developed by Laskar, is known as “numerical

analysis of the fundamental frequencies” (NAFF)...
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Characterising the dynamics: frequency map analysis

Some references:

• J. Laskar, “The chaotic behaviour of the solar system: a

numerical estimate of the size of the chaotic zones,” Icarus

88 (1990) 266–291.

• J. Laskar, C. Froeschle, A. Celletti, “The measure of chaos

by the numerical analysis of the fundamental frequencies,”

Physica D 56 (1992) 253–269.

• J. Laskar, “Frequency analysis for multi-dimensional

systems: global dynamics and diffusion,” Physica D 67

(1993), 257-281.

• H. S. Dumas, J. Laskar, “Global dynamics and long-time

stability in Hamiltonian systems via numerical frequency

analysis,” Phys. Rev. Lett. 70 (1993), 2975–2978.
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Characterising the dynamics: frequency map analysis

Frequency map analysis can be a powerful tool for developing

an insight into the dynamical behaviour of particles in an

accelerator lattice. In particular, it can be useful for identifying

resonances that may be limiting the dynamic aperture.

Unfortunately, it is not always easy to fix problems identified by

FMA. For example, retuning the lattice to move the working

point further away from a particular resonance may lead to an

increase in the tune shifts with amplitude, with the result that

there is a negligible improvement in the dynamic aperture.
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Characterising the dynamics: frequency map analysis

Nevertheless, FMA is now routinely used as a design tool for

new storage rings. It is even possible, with modern diagnostics,

to collect high-precision turn-by-turn data, to allow the

construction of experimental frequency maps, to compare with

machine models.

The Advanced Light Source

at LBNL was the first ma-

chine to construct an experi-

mental frequency map.

D. Robin, C. Steier, J. Laskar, L. Nadolski, “Global dynamics of the

Advanced Light Source revealed through experimental frequency map

analysis,” Phys. Rev. Lett. 85 (2000), 558.
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Nonlinear dynamics and damping

Throughout this course, we have ignored non-symplectic

effects, such as radiation damping.

However, if damping is reasonably slow, then much of the

analytical methods we have developed can still be applied.

In fact, under certain (rather special) conditions, damping can

reveal the presence of nonlinear resonances in the beam

distribution...
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Nonlinear dynamics and damping: the NLC damping rings
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Nonlinear dynamics and damping: the NLC damping rings
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Nonlinear dynamics and damping: the NLC damping rings
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Observation of a third-order resonance in the ALS

D. Robin, C. Steier, J. Safranek, W.Decking, “Enhanced performance of the

ALS through periodicity restoration of the lattice,” proceedings EPAC 2000.
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