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Nonlinear Single-Particle Dynamics in High Energy Accelerators

This course consists of eight lectures:

1. Introduction – some examples of nonlinear dynamics

2. Basic mathematical tools and concepts

3. Representations of dynamical maps

4. Integrators I

5. Integrators II

6. Canonical Perturbation Theory

7. Normal form analysis

8. A case study
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In the previous lectures...

We have seen how nonlinear dynamics can play an important

role in some diverse and common accelerator systems.

Nonlinear effects have to be taken into account when designing

such systems.

A number of powerful tools for analysis of nonlinear systems

can be developed from Hamiltonian mechanics. Using these

tools, the solutions to the equations of motion for a particle

moving through a component in an accelerator beamline may

be represented in various ways.

In the case that the Hamiltonian can be written as a sum of

integrable terms, the algebra associated with Lie transforms

allows construction of an explicit symplectic integrator that is

accurate to some specified order.
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In the previous lectures...

In an accelerator, the “global” dynamics that arise from a

sequence of components in a beam line are of interest.

However, the s-dependent Hamiltonian that describes such a

beam line explicitly is usually too complicated to solve explicitly.

However, in a periodic beam line, we can use perturbation

theory to construct a generating function that transforms the

Hamiltonian into a simpler form. The generating function

removes (to some order) terms that drive resonances (as long

as the tune is not too close to those resonances).

We can solve the equations of motion for the new Hamiltonian,

then relate the old variables to the new variables using the

generating function.
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In this lecture...

Instead of describing the dynamics in a beam line using an

s-dependent Hamiltonian, we can construct a map, for example,

in the form of a Lie transformation. Such a map may be

constructed by concatenating the maps for individual elements.

It may be difficult to understand, simply by inspecting the map,

interesting features of the dynamics represented by the map.

However, we can carry out a procedure similar to perturbation

theory to construct a transformation that puts the map into a

simpler form. Particular aspects of the dynamics (for example,

the strengths of different resonances) may then be extracted

from the transformation.

In the context of maps, such a procedure is called normal form

analysis. We shall first give an example in the context of linear

dynamics; and will then see how it applies for nonlinear maps.
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Normal form analysis of linear dynamics

In general, a map (in one degree of freedom) for one period of

a periodic linear system may be expressed as a matrix:

M =

(

cosµ + α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)

. (1)

If the map is symplectic, then βγ − α2 = 1.

Normal form analysis of a linear system involves finding a

transformation to variables in which the map appears as a pure

rotation.
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Normal form analysis of linear dynamics

Consider the matrix:

N =





1√
β

0
α√
β

√
β



 . (2)

If M is symplectic, then we find that:

N ·M ·N−1 = R, (3)

where R is a pure rotation matrix:

R =

(

cosµ sinµ
− sinµ cosµ

)

. (4)

Note that N is not unique in transforming M into a pure

rotation. Any matrix R′ ·N will have the same effect, where R′

is a rotation. However, (2) is the conventional choice.
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Normal form analysis of linear dynamics

Using N , we can define “normalised variables” ~xN :

~xN = N · ~x = N ·
(

x
p

)

. (5)

In passing through one periodic section of the beam line, the

normalised variables transform as:

~xN 7→ N ·M · ~x = N ·M ·N−1 ·N · ~x. (6)

Then, using (3) and (5), we find:

~xN 7→ R · ~xN . (7)

Note that N is symplectic: therefore, it represents a canonical

transformation, and the normalised variables ~xN are canonical

variables.
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Normal form analysis of linear dynamics

In the normalised variables, the linear map is very simple:

particles map out circles (rather than, in general, ellipses) in

phase space, with a phase advance of µ each period.

The Twiss parameters are contained in the normalising

transformation N ; the phase advance is contained in the

normalised map R.
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Normal form analysis of linear dynamics

For linear dynamics in more than one degree of freedom,

normal form analysis leads to a “natural” generalisation of the

Twiss parameters.

The normalising transformation can be constructed from the

eigenvectors of the one-period map: this applies in any number

of degrees of freedom. The generalised Twiss parameters are

then identified with the eigenvectors, and the phase advances

with the eigenvalues.

For example, a matched distribution (that is invariant under the

one-period map) is constructed in one degree of freedom by:

Σ =

(

〈x2〉 〈xp〉
〈xp〉 〈p2〉

)

=

(

β −α
−α γ

)

ε, (8)

where ε is the emittance (an invariant under transport along

the beam line).
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Normal form analysis of linear dynamics

In three degrees of freedom, we can generalise (8) to:

Σij = 〈xixj〉 =
∑

k=I,II,III

βk
ijεk. (9)

where Σij is the (i, j) component of the symmetric beam

distribution matrix, there are three invariant emittances εk, and

the phase space vector is:

~x =





















x
px

y
py

z
δ





















. (10)

The three 6×6 matrices βk contain the generalised Twiss

parameters, obtained from the eigenvectors of the one-period

map. For more details, see the previous lectures on linear

dynamics.
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Normal form analysis of nonlinear dynamics

Now we turn to normal form analysis of nonlinear dynamics.

Our goal is to find a transformation that puts the map into as

simple a form as possible.

We shall assume that the map is represented as a Lie

transformation, in a Dragt-Finn factorisation:

M = R e:f3: e:f4: · · · (11)

f3 is a homogeneous polynomial of order 3 in the phase space

variables ~x, f4 a homogeneous polynomial of order 4, and so on.

For simplicity, let us assume that M is of order 4 in the

generator (or that the map may be truncated to this order,

without losing important features of the dynamics). Then:

M = R e:f3: e:f4:. (12)
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Normal form analysis of nonlinear dynamics

In action-angle variables, the linear part of the map may be

written as:

R = e:−µJ:. (13)

In general, R is not a “pure” rotation: the linear phase space

will be an ellipse rather than a circle. However, we already have

a transformation (2) that will transform the linear phase space

into a circle, so we can assume that the linear normalisation

can be carried out without difficulty.
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Normal form analysis of nonlinear dynamics

Now, let us construct the map M3 given by:

M3 = e:F3:M e:−F3:. (14)

Our goal is to find the generator F3 that removes resonance

driving terms from e:f3:. This is equivalent to the first-order

perturbation theory that we studied in the previous lecture.

M3 will then be a “simpler” map than M. Assuming we can

continue the procedure, to remove resonance driving terms to

successively higher orders, we will obtain (we hope) a map

whose dynamics can be solved very easily.

We can then understand the dynamics of the original map in

terms of the dynamics of the normalised map, and the

normalising transformations.

Nonlinear Dynamics 13 Part 7: Normal Form Analysis



Normal form analysis of nonlinear dynamics

Let us write (14) in full as:

M3 = e:F3:R e:f3: e:f4: e:−F3:. (15)

Inserting identity transformations RR−1 and e:−F3: e:F3:, we

obtain:

M3 = RR−1 e:F3:R e:f3: e:−F3: e:F3: e:f4: e:−F3:. (16)

Now, we use the result:

e:h: e:g: e:−h: = e:e
:h:g:, (17)

to write:

M3 = R e:R
−1F3: e:f3: e:−F3: e:e

:F3:f4:. (18)
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Normal form analysis of nonlinear dynamics

Now we use the Baker-Campbell-Hausdorff formula:

e:A: e:B: = e:C:, (19)

where:

C = A + B +
1

2
[A, B] + · · · (20)

[◦, ◦] is the Poisson bracket:

[A, B] =
∂A

∂~q

∂B

∂~p
− ∂A

∂~p

∂B

∂~q
. (21)

This allows us to combine some of the factors in (18):

M3 = R e:R
−1F3+f3−F3+O(4): e:e

:F3:f4:. (22)

If F3 is a polynomial of order 3 in the dynamical variables, then

O(4) represents terms of order 4 and higher in the dynamical

variables.
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Normal form analysis of nonlinear dynamics

With some further manipulation (involving the Zassenhaus

formula, and the BCH formula once again) to combine the

terms O(4) into the final factor in the map, we obtain:

M3 = R e:f
(1)
3 : e:f

(1)
4 :, (23)

where:

f
(1)
3 = R−1F3 + f3 − F3, (24)

and f
(1)
4 is a polynomial containing terms of fourth order (and

higher) in the dynamical variables. The form of f
(1)
4 depends

on f3, f4 and F3.

We shall not pursue the normalisation to higher order, so we do

not concern ourselves further with f
(1)
4 , other than to note

that, with the BCH formula and the Zassenhaus formula, we

have the appropriate tools to construct f
(1)
4 in any given case.
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Normal form analysis of nonlinear dynamics

The solution to (24) is:

F3 =
(

I −R−1
)−1

(

f3 − f
(1)
3

)

, (25)

where I is the identity transformation.

Since f3 is periodic in the angle variable φ, we can write:

f3 =
∑

m
f̃3,m(J)eimφ. (26)

Then, if:

f
(1)
3 = f̃3,0(J) (27)

F3 is given by:

F3 =
∑

m6=0

f̃3,m(J)eimφ

1− e−imµ
. (28)
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Normal form analysis of nonlinear dynamics

That (28) is indeed the solution for F3 can easily be checked,

using:

R−1h(φ, J) = h(φ− µ, J), (29)

for any function h.

Note that we cannot construct a transformation that will

remove terms in f3 (26) that are independent of the angle

variable φ. But these terms simply lead to a tune shift with

amplitude, and do not limit our ability to solve the dynamics.

The normalised map is therefore:

M3 = e:F3:M e:−F3: = R e:f̃3,0: e:f
(1)
4 :. (30)

To lowest order in the nonlinear perturbation, the normalised

map contains only a tune shift with amplitude: and resonance

driving terms have been pushed to higher order.
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Normal form analysis of nonlinear dynamics

The normalising transformation is, from (28):

F3 =
∑

m6=0

f̃3,m(J)eimφ

1− e−imµ
. (31)

We can interpret the quantities f̃3,m(J) as “resonance

strengths”.

If there is a Fourier mode m in f3 such that mµ = 2π×integer,

then the generator of the transformation diverges, and the

perturbation has a large effect.
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Nonlinear normal form example: octupole perturbation

As an example, let us consider the case of an octupole

perturbation in an otherwise linear, periodic beam line (we’ve

looked at a sextupole often enough!)

The map for one period is:

M = R e:f4:, (32)

where:

f4 = − 1

24
k3` x4. (33)

In action-angle variables, the generator of the perturbation can

be written:

f4 = −1

6
k3` β2J2 cos4 φ (34)

= − 1

48
k3` β2J2 (3 + 4cos 2φ + cos4φ) . (35)
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Nonlinear normal form example: octupole perturbation

From (35), we see that the generator for the nonlinear part of

the normalised map is:

f̃4,0 = − 1

16
k3` β2J2, (36)

so the normalised map itself is:

M4 = R e:f̃4,0: = e:−µJ− 1
16 k3` β2J2: ≈ e:F4:Me:−F4:. (37)

Note that the normalised map just gives a rotation in phase

space, but that the rotation angle depends on the amplitude of

the particle.

The generator for the normalising transformation is:

F4 = − 1

96
k3` β2J2

{

4 [cos 2φ− cos 2(φ + µ)]

1− cos 2µ
+

[cos 4φ− cos 4(φ + µ)]

1− cos 4µ

}

.

(38)
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Nonlinear normal form example: octupole perturbation

We can define “normalised variables” (φN , JN) as:
(

φN
JN

)

= e:F4:

(

φ
J

)

. (39)

The normalised variables simply evolve according to the

normalised map:
(

φN
JN

)

7→ M4

(

φN
JN

)

(40)

(where we need to replace J in the generator for M4 by JN).
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Nonlinear normal form example: octupole perturbation

To track particles through the beam line we can either apply

the full nonlinear map (32), or:

1. transform to normalised variables using (39);

2. track through as many periods as required, using the

normalised map (37);

3. transform back to the original variables using the inverse of

the transformation in equation (39).

For the final step, note that the inverse of the transformation

e:F4: is simply e:−F4:.
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Nonlinear normal form example: octupole perturbation

The normalising transformation acting on the action-angle

variables can be represented as:

e:F4:φ = φ +
∂F4

∂J
+ · · · (41)

e:F4:J = J − ∂F4

∂φ
+ · · · (42)

If:
∂F4

∂J
� 1, and

∂F4

∂φ
� J, (43)

then the normalising transformation will be close to the identity,

and the dynamics are essentially those of the normalised map.

Whether the conditions (43) are satisfied depends on: the

amplitude J, the strength of the octupole k3` and the beta

function β at the octupole, and the proximity to a resonance

that is driven by the octupole.
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Nonlinear normal form example: octupole perturbation

The resonances driven by the octupole can be seen from (35).

The driving terms are ∼ cos 2φ and ∼ cos 4φ: these terms drive

the half-integer and quarter-integer resonances, 2ν = integer

and 4ν = integer, where the linear part of the map gives a

phase advance µ = 2πν.

Let us first consider the case where we are far from resonance;

for example µ ≈ 2π/3. This is a third-integer resonance, but is

not driven by the octupole. We will take k3` = 4800m−3, and

β = 1m.

Assuming that the normalising transformation is close to the

identity, let us work out the effect of the normalised map on

the action-angle variables.
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Nonlinear normal form example: octupole perturbation

Retaining only lowest order nonlinear terms, the normalised

map is:

M4 = e:−µJ: e:−
1
16 k3` β2J2:. (44)

Since the generators of each factor in M4 include only the

action variable J (and are independent of the angle variable φ),

we may combine them using the BCH formula to give:

M4 = e:−µJ− 1
16 k3` β2J2:. (45)

The (normalised) map for one periodic section of the beam line

is given by:

J 7→ J (46)

φ 7→ φ + µ +
1

8
k3` β2J. (47)
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Nonlinear normal form example: octupole perturbation

If k3` is positive, the tune increases with increasing amplitude

J. We can illustrate the effect by setting the (linear) tune

µ = 0.330× 2π and tracking a set of particles with different

actions through 30 periods:

Original map Normalised map

In this case, the normalising transformation is indeed close to

the identity, at least up to the amplitudes shown, and we see

clearly the effect of the tune shift with amplitude.
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Nonlinear normal form example: octupole perturbation

Tracking through 2500 turns, again with tune 0.330:

Original map Normalised map

It appears that the third-integer resonance is weakly driven in

the original map; of course, this behaviour cannot be

reproduced in the normalised map.
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Nonlinear normal form example: octupole perturbation

If we track 30 turns, but this time with tune just above the

third integer (0.336), we again see clearly the effect of the tune

shift with amplitude:

Original map Normalised map
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Nonlinear normal form example: octupole perturbation

If we adjust the tune so that it is close to a fourth integer,

then, since this resonance is driven by the octupole, we expect

to see some significant nonlinear distortion of phase space. In

this case, we can attempt to reconstruct the phase space from

the normalising transformation as follows.

Since the original map is related to the normalised map by:

M4 ≈ e:F4:Me:−F4:, (48)

we must have:

M≈ e:−F4:M4e:F4:. (49)

If we write:

M4 = e:m4:, (50)

then, by using the rules for a similarity transformation:

M≈ exp :e:−F4:m4 :. (51)
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Nonlinear normal form example: octupole perturbation

But for any map G with generator g:

G = e:g:, (52)

the function g must be an invariant, i.e.:

G g = e:g: g = g. (53)

This is because the Poisson bracket of any function with itself

vanishes:

:g : g = [g, g] = 0. (54)

Therefore, since:

M4 = e:−µJ−µ2J2:, (55)

(where µ2 represents the tune shift with amplitude), we must

have that:

e:−F4:(−µJ − µ2J2) (56)

is an (approximate) invariant of the original map M.
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Nonlinear normal form example: octupole perturbation

We can then plot a phase space portrait without any tracking
at all. We just need to draw contours of:

e:−F4:(−µJ − µ2J2) = constant. (57)

Let us compare such a contour plot with the results of tracking
with the original map, for a tune = 0.252:

Original map e:−F4:(−µJ − µ2J2) = constant
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Nonlinear normal form example: octupole perturbation

Above the quarter-integer resonance, the tune shift with

amplitude takes us away from resonance, and we get

reasonable (not perfect) agreement between the tracking plot

and the contour plot.

Just below the quarter-integer resonance, however, the story is

rather different...
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Nonlinear normal form example: octupole perturbation

The contour plot is unable to reproduce the resonant “islands”

that we find from the original map. The reason for the

difference between the plots, is that we are too close to the

resonance for the generating transformation to describe the

dynamics accurately.

Original map e:−F4:(−µJ − µ2J2) = constant
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Summary

Normal form analysis is the analogue for (discrete) maps of

perturbation theory for (continuous) Hamiltonian systems. The

goal is to find a transformation that puts the map into as

simple a form as possible.

We have described a procedure for constructing a canonical

transformation to normalise the lowest-order nonlinear part of

the map.

We find a similar situation to perturbation theory: we cannot

remove pure tune shifts with amplitude, and the normalisation

fails if the tune is on a resonance driven by the nonlinear terms.

Applying normal form analysis allows us to: (i) identify

tune-shifts with amplitude (from the terms remaining in the

normalised map); and (ii) characterise the nonlinear distortion

of phase space (from the normalising transformation).
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Further reading

For a far more complete and rigorous treatment of normal form

analysis, including extension of the technique to normalise

terms beyond leading order in the nonlinear part of the map,

see:

E. Forest, “Beam dynamics: a new attitude and framework,”

Harwood Academic Publishers (1998).
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Coming next...

In the final lecture, we shall look at a case study of nonlinear

dynamics.

We shall see how many of the techniques described in previous

lectures may be applied in a “real” situation: analysis of the

impact of a long wiggler on the dynamics in the ILC damping

rings.

As well as reviewing some of the techniques we have already

seen, we shall also discuss frequency map analysis, and its

application to storage ring beam dynamics.
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Exercise

Apply normal form analysis to a sextupole perturbation.
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