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Nonlinear Single-Particle Dynamics in High Energy Accelerators

This course consists of eight lectures:

1. Introduction – some examples of nonlinear dynamics

2. Basic mathematical tools and concepts

3. Representations of dynamical maps

4. Integrators I

5. Integrators II

6. Phase space portraits and “phenomenology”

7. Normal form analysis

8. Some numerical techniques
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In the previous lectures...

We have seen how nonlinear dynamics can play an important

role in some diverse and common accelerator systems.

Nonlinear effects have to be taken into account when designing

such systems.

A number of powerful tools for analysis of nonlinear systems

are developed from Hamiltonian mechanics. Using these tools,

the solutions to the equations of motion for a particle moving

through a component in an accelerator beamline may be

represented in various ways, including: (truncated) power

series; Lie transform; (implicit) generating function.
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In the previous lectures...

In the case that the Hamiltonian can be written as a sum of

integrable terms, the algebra associated with Lie transforms

allows construction of an explicit symplectic integrator that is

accurate to some specified order.

In particular, we can use the BCH formula to construct a

symmetric or Yoshida factorisation of the Lie transform. For

example, if:

H = Hd +Hk (1)

then:

e−
1
2L:Hd: e−L:Hk: e−

1
2L:Hd: = e−L:H+O(L2):. (2)

If Hd and Hk are each integrable, then the above expression

gives us a second-order explicit symplectic integrator.
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In this lecture...

Symmetric factorisation is straightforward to implement for a

rectangular multipole. In that case, we can write the

accelerator hamiltonian in the form:

H = −

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p
2
y −

1

β2
0γ

2
0

− as +
δ

β0
. (3)

where

as =
qAs

P0
, (4)

and As is the longitudinal component of the vector potential.

For a rectangular multipole, the field can be derived from a

vector potential with only a longitudinal component; but not

all magnetic fields in accelerators can be derived in this way.

What happens in the more general case?
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In this lecture...

Our main goal in this lecture will be to derive an explicit

symplectic integrator that can be applied to a general static

magnetic field for which the vector potential is known

analytically.

We shall follow the technique proposed by Y. Wu, E. Forest and

D. Robin:

“Explicit symplectic integrator for s-dependent static

magnetic field,” Phys. Rev. E 68, 046502 (2003).

The symplectic integrator will be expressed as a product of Lie

transforms.

We shall then briefly discuss the related problem of expressing a

magnetic field that may be known numerically (e.g. from a

magnetic modelling code, such as Opera) in an analytical form.
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Hamiltonian for a general (s-dependent) static magnetic field

If the Hamiltonian is independent of the distance s along the

reference trajectory, we can express the map for some function

f of the dynamical variables as:

f(s) = e−s:H:f(0). (5)

Recall the Hamiltonian for a general magnetic field with a

straight (i.e. zero curvature) reference trajectory:

H = −

√

√

√

√

(

1

β0
+ δ

)2

− (px − ax)
2
− (py − ay)

2
−

1

β2
0γ

2
0

−as+
δ

β0
(6)

where the normalised vector potential ~a = (ax, ay, as) is a

function of the coordinates:

~a = ~a(x, y, s). (7)

If the Hamiltonian depends on s, the mapping (5) is no longer

valid. However, we can recover the use of Lie transformations

for evolving functions by extending phase space...
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Extended phase space

We can extend phase space by introducing an additional

dynamical variables (s, ps), where s was previously the

independent variable, and ps is a momentum conjugate to s.

We now need a new independent variable: let us call this σ.

The independent variable σ represents an integration step. To

evolve a system from s = 0 to s = L, we integrate the

equations of motion with respect to σ, until the dynamical

variable s is equal to L.

To take account of the evolution of s, we add an additional

term, ps to the Hamiltonian (6):

H = −

√

√

√

√

(

1

β0
+ δ

)2

− (px − ax)
2
− (py − ay)

2
−

1

β2
0γ

2
0

−as+
δ

β0
+ps.

(8)
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Extended phase space

Since the Hamiltonian is independent of σ, we can now write:

f(σ) = e−σ:H:f(0). (9)

The evolution of s is given by:

ds

dσ
=
∂H

∂ps
= 1. (10)

In effect, s = σ (assuming s = 0 at σ = 0).

However, treating s as a dynamical variable, with evolution

given by a term ps in the Hamiltonian will affect where we

evaluate the vector potential at each step through the field.

This can have a significant effect on the results.
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Separating the Hamiltonian into integrable terms

We now need to split the Hamiltonian (8):

H = −

√

√

√

√

(

1

β0
+ δ

)2

− (px − ax)
2
− (py − ay)

2
−

1

β2
0γ

2
0

−as+
δ

β0
+ps.

into integrable terms.

If the only non-zero component of the vector potential is as, the

Hamiltonian can be split into two separately integrable terms.

However, if we also need a component ax or ay to describe the

field, then the coordinates and the momenta now both appear

within the square root: this means that we cannot then express

the Hamiltonian simply as a sum of integrable terms.
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Separating the Hamiltonian into integrable terms

To proceed, we make the paraxial approximation, in which we

express the square root as a Taylor series. To second order in

the transverse dynamical variables (and to second order also in

γ0), this gives:

H = H1 +H2 +H3 +O(3) (11)

where:

H1 = −

(

1

β0
+ δ

)

+
1

2β2
0γ

2
0

(

1

β0
+ δ

)−1

+
δ

β0
+

(px − ax)
2

2
(

1
β0

+ δ
) + ps

(12)

H2 =
(py − ay)

2

2
(

1
β0

+ δ
) (13)

H3 = −as. (14)
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Separating the Hamiltonian into integrable terms

This appears to be a strange way to split the Hamiltonian: H3

depends only on the coordinates, so is integrable; but H1 and

H2 still depend on the coordinates and the momenta.

However, we now note that in general, we can make a gauge

transformation to make one component of the vector potential

vanish. That is, if we define:

ψ =
∫ x

0
Ax(x

′, y, s) dx′, (15)

then the field derived from the vector potential:

~A′ = ~A−∇ψ (16)

is the same as the field derived from ~A, that is:

~B = ∇× ~A = ∇× ~A′. (17)

But the x component of ~A′ vanishes.
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Separating the Hamiltonian into integrable terms

Therefore, we can, without loss of generality, work in a gauge

where ax = 0. In that case, H1 becomes:

H1 = −

(

1

β0
+ δ

)

+
1

2β2
0γ

2
0

(

1

β0
+ δ

)−1

+
δ

β0
+

p2x

2
(

1
β0

+ δ
)+ps. (18)

In an appropriate gauge, H1 depends only on the momenta,

and is therefore integrable.

That only leaves us with H2 that we do not (yet) know how to

integrate. What can we do for that term?
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Separating the Hamiltonian into integrable terms

At this stage, we write the map generated by H2 as a Lie

transform:

M2(∆σ) = e−∆σ:H2: = exp






−∆σ:

(py − ay)
2

2
(

1
β0

+ δ
) :






. (19)

Now we use Rule 5 for the algebra of Lie transforms:

e:f:e:g:e−:f: = exp :e:f:g :, (20)

and Rule 3:

e:f:g(h) = g
(

e:f:h
)

. (21)

Using these rules, we observe that if:

e:Iy: : py 7→ py − ay, (22)

then we can write:

M2(∆σ) = e:Iy: exp






−∆σ:

p2y

2
(

1
β0

+ δ
) :






e−:Iy:. (23)
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Separating the Hamiltonian into integrable terms

Finally, it turns out to be rather straightforward to write down

a generator Iy for the map that satisfies (22). The required

generator is:

Iy =
∫ y

0
ay(x, y

′, s) dy′. (24)

Since Iy is independent of the momenta, it leaves the

coordinates unchanged:

e:Iy:







x

y

z






=







x

y

z






. (25)
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Separating the Hamiltonian into integrable terms

The effect of the map generated by Iy on the momenta can be

found by treating Iy as a Hamiltonian, and solving Hamilton’s

equations for unit step in the independent variable. (In fact,

what we are doing is making a canonical transformation). We

find:

e:Iy: px = px −

∫ y

0

∂

∂x
ay(x, y

′, s) dy′, (26)

e:Iy: py = py − ay, (27)

e:Iy: δ = δ. (28)

The effect of the inverse map (i.e. the map generated by −Iy)

is simply found by replacing the minus signs in the above

equations by plus signs.
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Second-order explicit symplectic integrator

Now we are in a position to write down an explicit symplectic

integrator for a particle moving through a general static

magnetic field. The second-order (in ∆σ) integrator may be

written:

M(∆σ) = e−∆σ:H1+H2+H3:

≈ e−
∆σ
2 :H1+H3:e−∆σ:H2:e−

∆σ
2 :H1+H3:

≈ e−
∆σ
4 :H1:e−

∆σ
2 :H3:e−

∆σ
4 :H1:e−∆σ:H2:e−

∆σ
4 :H1:e−

∆σ
2 :H3:e−

∆σ
4 :H1:

(29)

where:

e−∆σ:H2: = e:Iy:e−∆σ:H̃2:e−:Iy:, (30)

and from (24):

Iy =
∫ y

0
ay(x, y

′, s) dy′, H̃2 =
p2y

2
(

1
β0

+ δ
). (31)

Nonlinear Dynamics 16 Part 5: Integrators II

Second-order explicit symplectic integrator

Each factor in the map given (jointly) by (29) and (30) can be

written explicitly in closed form: we have constructed an

explicit second-order integrator for a general static magnetic

field.

Since each factor is itself a symplectic map, the overall map

must be symplectic.

The “drift” maps e−
∆σ
4 :H1: and e−∆σ:H̃2: are actually

independent of the vector potential (i.e. they are independent

of the field). However, to write explicitly the “kick” maps e:Iy:

and e−
∆σ
2 :H3:, we need to know the vector potential.
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Explicit symplectic integrator: example

To see how the explicit second-order integrator works in

practice, let us look at a specific example: the field in a

wiggler. A simple representation of a wiggler field is given by:

Bx = −B0
kx

ky
sin kxx sinh kyy cos kss, (32)

By = B0 cos kxx cosh kyy cos kss, (33)

Bs = −B0
ks

ky
cos kxx sinh kyy sin kss. (34)

The field amplitude is B0, and the period of the wiggler is λw,

given by:

λw =
2π

ks
. (35)

The value of kx determines the transverse “roll-off” of the

field. Maxwell’s equations ∇ · ~B = ∇× ~B = 0 are satisfied if:

ky =
√

k2x + k2s . (36)
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Explicit symplectic integrator: example

The vector potential in a suitable gauge (i.e. with Ax = 0) is:

Ax = 0, (37)

Ay = −B0
ks

kxky
sin kxx sinh kyy sin kss, (38)

As = −B0
1

kx
sin kxx cosh kyy cos kss. (39)

It is now possible to write down in explicit closed form each

factor in the second-order symplectic integrator, (29) and (30):

this is left as an exercise for the student!
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Explicit symplectic integrator: example

If we select some specific values for the various parameters, we

can make some numerical comparisons between our

second-order integrator, and other integration methods.

Peak magnetic field B0 1.7 T
Wiggler period λw 0.1 m

Field roll-off kx 400m−1

Reference energy E0 511MeV
Relativistic factor γ0 1000

Note that the reference trajectory is a straight line along the

axis of the wiggler: this defines the coordinate system used to

describe the magnetic field. The fact that this is not a physical

trajectory for a charged particle moving through the wiggler

does not matter.

Nonlinear Dynamics 20 Part 5: Integrators II

Explicit symplectic integrator: example

The following plots compare the trajectory of a particle

computed in two different ways:

Blue: integration of the equations of motion based on the exact

Hamiltonian (8), i.e. without any paraxial approximation,

using an adaptive high-order Runge-Kutta algorithm in

Mathematica.

Red: computation of the trajectory using the second-order

explicit symplectic integrator (29), (30).

Note that we launch a particle at s = σ = 0, with

x = px = py = z = δ = 0, and y = 1mm.

Since the field varies continuously with σ, we expect that the

accuracy of our second-order integrator will improve as we

reduce the step size ∆σ.
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Explicit symplectic integrator: example

Blue line: integration using adaptive Runge-Kutta in Mathematica.

Red line: second-order explicit symplectic integrator.
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Explicit symplectic integrator: example
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Explicit symplectic integrator: example
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Explicit symplectic integrator: example
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Explicit symplectic integrator: example
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Symplecticity

We see that there is good agreement between the Runge-Kutta

and the symplectic integration, if the step size for the

symplectic integration is small enough.

The “advantage” of the symplectic integration is that, even if

the step size is large so that the result is not accurate, it is at

least symplectic.

A non-symplectic integration algorithm, such as Runge-Kutta,

must approach symplecticity as a limit; but with an algorithm

of this type, the symplecticity depends on the accuracy with

which the results match the true dynamics.
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Constructing an analytical field representation

In the above example, we wrote down an analytical

representation of the field. This was necessary in order to apply

our explicit symplectic integrator.

But it happens more commonly that we have a numerical field

map, for example the values of the field components Bx, By

and Bz on a grid of points over some region within the field.

This is not convenient for applying our symplectic integrator.

However, there are techniques that will allow construction of an

analytical representation of the field from numerical data. Such

a process is commonly called “field fitting”. Generally, field

fitting requires some care to achieve reasonably accurate and

reliable results. Here, we outline one technique that has some

practical advantages.
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Constructing an analytical field representation

We begin by recalling the field we wrote down for a wiggler,

(32), (33), (34):

Bx = −B0
kx

ky
sin kxx sinh kyy cos kss,

By = B0 cos kxx cosh kyy cos kss,

Bs = −B0
ks

ky
cos kxx sinh kyy sin kss.

Maxwell’s equations (zero divergence and curl) are satisfied if:

ky =
√

k2x + k2s , (40)

so ky is determined by the values of kx and ks. However, kx, ks

and B0 are “free” parameters.
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Constructing an analytical field representation

We see that it is possible to construct a more general field by

superposing fields with a range of values for the free

parameters:

Bx = −

∫

dkx

∫

dks B̃(kx, ks)
kx

ky
sin kxx sinh kyy cos kss, (41)

By =
∫

dkx

∫

dks B̃(kx, ks) cos kxx cosh kyy cos kss, (42)

Bs = −

∫

dkx

∫

dks B̃(kx, ks)
ks

ky
cos kxx sinh kyy sin kss. (43)

For y = 0, we see that (42) has the form of a 2-D Fourier

transform of B̃(kx, ks). Therefore, we can obtain B̃(kx, ks) from

an inverse Fourier transform of By(x, y = 0, s). If By is known

on a set of grid points, then we perform a discrete inverse

Fourier transform, to determine a finite set of coefficients

B̃(kx, ks).
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Constructing an analytical field representation

The corresponding potential can be obtained from a

generalisation of (37), (38) and (39):

Ax = 0, (44)

Ay = −

∫

dkx

∫

dks B̃(kx, ks)
ks

kxky
sin kxx sinh kyy sin kss,(45)

As = −

∫

dkx

∫

dks B̃(kx, ks)
1

kx
sin kxx cosh kyy cos kss. (46)

Of course, in general, we will need to include terms with

different phases in x and s; but this is a straightforward

generalisation. We therefore have, in principle, the tools we

need to implement our explicit symplectic integrator for an

(initially) numerical field map.

There are, however, two significant complications to

implementing this technique directly.
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Constructing an analytical field representation

First, we note that the field has a hyperbolic dependence on y

(42):

By =
∫

dkx

∫

dks B̃(kx, ks) cos kxx cosh kyy cos kss.

This means that any small error in B̃(kx, ks) arising will be

amplified exponentially as we move away from y = 0.

This is unpleasant, but we can in fact get around it fairly easily,

simply by performing the inverse Fourier transform of By(x, y, s)

on a plane y = y0 (after scaling the field values by cosh kyy0).

Any error in B̃(kx, ks) will then be damped exponentially as we

move towards y = 0. If we choose y0 at the boundary of the

region within which we are interested in the dynamics, then we

should be able to calculate the dynamics accurately.
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Constructing an analytical field representation

A more serious difficulty arises from the dependence of our

basis functions on x. For a finite range of kx, the only fields we

can accurately describe by our mode decomposition are those

that are periodic in x. This does not describe very well the

fields that tend to occur in accelerators. The consequence is

that it is generally rather difficult to get an accurate

description of the field, at least without using a very large

number of modes.

We would do better to choose a set of basis functions that

reflects more closely the geometry with which we are dealing.

For example, we can work in cylindrical polar coordinates, with

the axis of the cylinder defining the reference trajectory. In that

case, there is always a real periodicity in the azimuthal angle φ.
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Basis functions in cylindrical polar coordinates

In cylindrical polar coordinates, a field satisfying Maxwell’s

equations can be represented by:

Bρ =
∫

dks
∑

m
B̃m(ks)I

′
m(ksρ) sinmφ cos kss, (47)

Bφ =
∫

dks
∑

m
B̃m(ks)

m

ksρ
Im(ksρ) cosmφ cos kss, (48)

Bs = −

∫

dks
∑

m
B̃m(ks)Im(ksρ) sinmφ sin kss. (49)

Here, the functions Im(r) are modified Bessel functions: broadly

speaking, they are to regular Bessel functions as hyperbolic

trigonometric functions are to regular trigonometric functions.
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Basis functions in cylindrical polar coordinates

Note that in this decomposition, the index m has a nice

interpretation: m = 1 gives the (normal) dipole component,

m = 2 the (normal) quadrupole component, and so on. Skew

fields are obtained simply by a change of phase of the trig

functions (in the azimuthal coordinate).

If we look at the radial component of the field (47):

Bρ =
∫

dks
∑

m
B̃m(ks)I

′
m(ksρ) sinmφ cos kss,

then we see that we can obtain the functions B̃m(ks) from a

2-D inverse Fourier transform of the field component Bρ on the

surface of a cylinder of given radius ρ0. This is sufficient to

determine all field components everywhere.

Note that the behaviour of the modified Bessel function is such

that small errors are exponentially damped within the cylinder

of radius ρ0, and grow exponentially outside this cylinder.
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Basis functions in cylindrical polar coordinates

To construct an integrator using Hamiltonian methods, we

need an expression for the vector potential (ideally, with one

component equal to zero). The field (47), (48) and (49) can

be obtained from the vector potential:

Aρ = −

∫

dks
∑

m
B̃m(ks)

ρ

m
Im(ksρ) cosmφ sin kss, (50)

Aφ = 0, (51)

As = −

∫

dks
∑

m
B̃m(ks)

ρ

m
I ′m(ksρ) cosmφ cos kss. (52)

Of course, to complete the construction of an integrator, we

need to either: convert the cylindrical representation of the

vector potential to cartesian coordinates; or, convert the

accelerator Hamiltonian from cartesian to cylindrical

coordinates. Both approaches present certain challenges, and

we do not develop them further in these lectures.
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Basis functions in cylindrical polar coordinates

To finish this lecture, we give an illustration of the quality of

the field fit that can be achieved using the cylindrical basis. As

an example, we use a numerical field map generated for a

design for a permanent magnet wiggler for the TESLA

damping ring.

The (nominal) peak field of the wiggler is 1.7 T, and the period

is 0.4m.

The fits shown on the following slides were obtained using 18

azimuthal and 100 longitudinal modes, and fitting on a cylinder

of radius 9mm.
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Field fit to TESLA damping wiggler
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Field fit to TESLA damping wiggler: residuals
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Summary

We have seen how to construct an explicit symplectic

integrator for a general static magnetic field, in the case that

the vector potential is known analytically.

The accuracy of the integrator improves as the step size

through the field is made smaller. However, for any step size,

the integrator provides symplectic integration. This is in

contrast to some other integration techniques (e.g.

Runge-Kutta) that are only symplectic to the extent that they

are accurate.

To apply the explicit symplectic integrator, we need an

analytical expression for the vector potential. There are

techniques available that can be used to construct appropriate

expressions from numerical field data.
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Further reading

I am indebted to Alex Dragt for much of the material on field

fitting in this lecture. The topic can be developed much

further, to include such topics as generalised gradients, and

basis functions for elliptical geometries.

For further reading, I would strongly recommend Alex’s book:

“Lie methods for nonlinear dynamics with applications to

accelerator physics”

http://www.physics.umd.edu/dsat/dsatliemethods.html
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Coming next...

We are now able to track particles through a wide variety of

nonlinear accelerator components.

In the final three lectures, we shall explore the global dynamics

of an accelerator, and try to understand the features of the

dynamics that results from particles passing repeatedly through

nonlinear beamlines, for example in a storage ring.
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Exercises

1. Using the vector potential (37), (38), (39), write down in

explicit closed form each factor in the second-order

symplectic integrator (29) and (30). Show that each of

these maps is symplectic.
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