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Part 2: Basic tools and concepts

Nonlinear Single-Particle Dynamics in High Energy Accelerators

This course consists of eight lectures:

1. Introduction – some examples of nonlinear dynamics

2. Basic mathematical tools and concepts

3. Representations of dynamical maps

4. Integrators I

5. Integrators II

6. Phase space portraits and “phenomenology”

7. Normal form analysis

8. Some numerical techniques
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In the previous lecture...

We have seen how nonlinear dynamics can play an important

role in some diverse and common accelerator systems.

Nonlinear effects have to be taken into account when designing

such systems.

By making a simple analysis, we were able to compensate the

most severe nonlinear effects in a bunch compressor. We were

also able to develop a limited understanding of some of the

effects of sextupoles in a periodic beamline (a storage ring).
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In the previous lecture...

Our analysis was based on representing the dynamics as a map

in the form of a Taylor series, for example:

x 7→ R11x + R12px + T111x2 + T112xpx + T122p2
x + · · · (1)

px 7→ R21x + R22px + T211x2 + T212xpx + T222p2
x + · · · (2)

However, in several degrees of freedom, and where higher-order

effects are important, Taylor series quickly become

cumbersome. Also, it can be difficult to develop a real

understanding of the dynamics from a set of coefficients. To

make progress, we need to use more sophisticated tools.
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Basic tools and concepts

Hamiltonian mechanics forms the basis of some very powerful

methods for analysis of nonlinear systems. In this lecture, we

review the basic principles of Hamiltonian mechanics in the

context of accelerator beam dynamics.

In particular, we shall:

1. review Hamilton’s equations;

2. discuss the significance of symplecticity;

3. derive (and solve) the nonlinear equations of motion for a

drift space in an accelerator;

4. review canonical transformations, and introduce

action-angle variables.

By the end of the lecture, you should be able to derive the

equations of motion for a dynamical system with a given

Hamiltonian; and perform canonical transformations to express

relationships between different sets of canonical variables.
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Hamilton’s equations

In Hamiltonian mechanics, the state of a particle is specified by

giving particular values for a set of dynamical variables: the

dynamical variables occur in pairs, with each pair consisting of

a coordinate and a conjugate momentum, e.g. (q, p).

The dynamics of the particle are described by expressing the

dynamical variables as functions of an independent variable (for

example, time), e.g. q = q(t), p = p(t).

The dynamics are determined by the Hamiltonian, which is a

function of the dynamical variables (and, possibly, the

independent variable). Hamilton’s equations give the general

relationship between the evolution of the dynamical variables

and the Hamiltonian, and provide the means for constructing

the equations of motion in a particular case.
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Hamilton’s equations

If the dynamical variables are (qi, pi), the independent variable

is t, and the Hamiltonian is H(qi, pi; t), then Hamilton’s

equations are:

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −

∂H

∂qi
. (3)

Note that the Hamiltonian must be expressed in terms of the

coordinates and the conjugate momenta, and not in terms of

the velocities.

Dynamical variables that obey Hamilton’s equations are called

canonical variables.

A simple example will probably explain how this works...
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Example: the simple harmonic oscillator

In simple cases, the Hamiltonian takes the form:

H = T + V, (4)

where T is the kinetic energy of the particle, and V is the

potential energy. Consider a particle with mass m and

coordinate x, moving in an harmonic oscillator potential,

V = 1
2kx2. In this case (not in general), the momentum is

p = mẋ. Then, the Hamiltonian takes the form:

H =
p2

2m
+

1

2
kx2. (5)

Hamilton’s equations give the equations of motion for this case:

dx

dt
=

∂H

∂p
=

p

m
(6)

dp

dt
= −

∂H

∂x
= −kx. (7)
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Example: the simple harmonic oscillator

Equation (6) tells us that the momentum in this case

corresponds to the usual mechanical momentum, i.e. the

product of the mass and the velocity:

p = mẋ. (8)

Equation (7) expresses Newton’s second law of motion, for a

force −kx. Combining the two equations gives a second-order

differential equation for the coordinate:

d2x

dt2
= −

k

m
x, (9)

which we recognise as the usual equation of motion for a

simple harmonic oscillator.
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The accelerator Hamiltonian

In a previous lecture course (on linear dynamics), we derived a

general expression for the Hamiltonian for particle motion in an

accelerator beamline. Before writing down this Hamiltonian, we

should first define our variables. There are various definitions

commonly used, and it is very important to be clear about the

physical significance of the variables you are using.

First, we have to define a reference trajectory. This can, in

principle, be any path through space; but usually it is chosen to

reflect the “ideal” trajectory that we would like particles to

follow. Often this is simply a sequence of straight lines, joined

(through dipole fields) by arcs of circles with specified radii.

The independent variable we use is the distance s along the

reference trajectory. The reason for using path length, and not

time, as the independent variable is that the fields along the

accelerator are usually localised in space. That means it is

easier to write down the Hamiltonian as a function of position

than of time.
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The accelerator Hamiltonian

In addition to the reference trajectory, we define a reference

momentum P0. Again, this can, in principle, be chosen

arbitrarily; but usually a beamline is designed to transport

particles with a particular (average) momentum, in which case

it is sensible to set the reference momentum equal to the

“design” momentum.

A particle with the reference momentum P0 will be travelling at

a particular velocity β0c, for which the relativistic (Lorentz

gamma) factor is γ0:

P0 = β0γ0mc, γ0 =
1

√

1− β2
0

. (10)

m is the rest mass of the particle, and c is the speed of light in

vacuum.
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The accelerator Hamiltonian

The transverse coordinates x and y constitute two of the

dynamical variables. x and y are simply the position of a particle

with respect to the reference trajectory in a plane perpendicular

to the reference trajectory at a given point s. The orientation

of the axes must be defined at some point along the reference

trajectory; the form of the Hamiltonian depends on how one

chooses to “transport” the axes along the reference trajectory.

In a simple case, the reference trajectory may be defined to lie

in a plane. Then, the x-axis can be chosen always to lie in that

plane, and the y-axis can be chosen to lie perpendicular to the

plane.
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The accelerator Hamiltonian

The momenta conjugate to the coordinates x and y are given

by:

px =
γmẋ + qAx

P0
, py =

γmẏ + qAy

P0
, (11)

ẋ and ẏ are the transverse velocities (i.e. the time derivatives

of the transverse coordinates). q is the electric charge of the

particle, and Ax and Ay are the transverse components of the

vector potential.

γ is the relativistic factor for the particle (not necessarily equal

to γ0).
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The accelerator Hamiltonian

The longitudinal dynamical variables are (z, δ).

The longitudinal coordinate z is given by:

z = c(t0 − t), (12)

where t0 is the time at which a “reference particle” travelling

along the reference trajectory at speed β0c is at a location s

along this trajectory, and t is the time at which the chosen

particle is in the plane perpendicular to the reference trajectory

at s.

Note that if t < t0, the chosen particle arrives at s sooner than

the reference particle, i.e. the chosen particle is ahead of the

reference particle.
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The accelerator Hamiltonian

The longitudinal conjugate momentum δ is defined by:

δ =
E

P0c
−

1

β0
=

E − E0

β0E0
, (13)

where E is the kinetic energy of the particle, and E0 is the

kinetic energy of a particle with the reference momentum P0.

For brevity, we sometimes refer to δ as the “energy deviation”.
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The accelerator Hamiltonian

Now we understand what variables we are using, we can write

down the Hamiltonian. This was derived in the course on linear

dynamics:

H = −(1 + hx)

√

√

√

√

(

1

β0
+ δ −

qφ

P0c

)2

− (px − ax)
2 − (py − ay)

2 −
1

β2
0γ2

0

−(1 + hx)as +
δ

β0
. (14)

Here, ax = qAx/P0, and similarly for ay and as (the component

along the reference trajectory). φ is the scalar potential.

h is the curvature of the reference trajectory, assumed to lie in

the x− s plane:

h =
1

ρ
, (15)

where ρ is the local radius of curvature.
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The accelerator Hamiltonian in a drift space

As an example, let us consider the Hamiltonian in a drift space,

where h = 0, and there are no electric or magnetic fields (so we

can take the scalar and vector potentials to be zero):

H = −

√

√

√

√

(

1

β0
+ δ

)2

− p2
x − p2

y −
1

β2
0γ2

0

+
δ

β0
. (16)

Note that the Hamiltonian has no dependence on the

coordinates x, y or δ. This means, from Hamilton’s equations,

that the momenta are conserved:

dpx

ds
= −

∂H

∂x
= 0, (17)

dpy

ds
= −

∂H

∂y
= 0, (18)

dδ

ds
= −

∂H

∂z
= 0. (19)
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The accelerator Hamiltonian in a drift space

The equations of motion for the coordinates are also

reasonably straightforward:

dx

ds
=

∂H

∂px
=

px

ps
, (20)

dy

ds
=

∂H

∂py
=

py

ps
, (21)

dz

ds
=

∂H

∂δ
=

1

β0
−

1
β0

+ δ

ps
, (22)

where we have defined ps (not a dynamical variable!) as:

ps =

√

√

√

√

(

1

β0
+ δ

)2

− p2
x − p2

y −
1

β2
0γ2

0

. (23)

Note that since px, py and δ are constants of the motion, ps is

constant.
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The accelerator Hamiltonian in a drift space

From the above results, it is possible to write the map for a

drift space in closed form. For the transverse variables, we

have:

x 7→ x +
px

ps
∆s, px 7→ px, (24)

y 7→ y +
py

ps
∆s, py 7→ py. (25)

And for the longitudinal variables, we have:

z 7→ z +





1

β0
−

1
β0

+ δ

ps



 ∆s, δ 7→ δ. (26)

The value of ps (a constant of the motion) is given by (23):

ps =

√

√

√

√

(

1

β0
+ δ

)2

− p2
x − p2

y −
1

β2
0γ2

0

.
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The accelerator Hamiltonian in a drift space

We see that the map has a nonlinear dependence on the

momenta px, py and δ. However, the nonlinear effects only

become significant when the values of the momenta become

very large. To illustrate this, consider the case py = δ = 0.

Then:

ps =
√

1− p2
x. (27)

Note that in this case:

px =
γ0mẋ

P0
, (28)

so the maximum value of px is:

lim
ẋ→β0c

px = 1. (29)

As we might expect px has a maximum value of 1, and this

occurs when the particle is travelling perpendicular to the

reference trajectory.
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The accelerator Hamiltonian in a drift space

Let us now plot

∆x

∆s
=

px
√

1− p2
x

. (30)

We see that there is a significant deviation from linearity when

px is larger than 0.1.
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The accelerator Hamiltonian in a drift space

In the case that px = py = 0, the particle is travelling parallel to

the reference trajectory. Then, the Hamiltonian becomes:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

−
1

β2
0γ2

0

. (31)

It follows that the equation of motion for the longitudinal

coordinate is:

dz

ds
=

∂H

∂δ
=

1

β0
−

1
β0

+ δ
√

(

1
β0

+ δ
)2
− 1

β2
0γ2

0

. (32)

Since, from equation (13), we have:

δ =
E − E0

β0E0
=

γ − γ0

β0γ0
, ∴

1

β0
+ δ =

γ

β0γ0
, (33)

we find that:
dz

ds
=

1

β0
−

1

β
, (34)

which is consistent with our interpretation of z, equation (12).
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The accelerator Hamiltonian in a drift space

Using a Hamiltonian approach, even the map for a drift space is

rather complicated. It is possible to do the dynamics using

different variables, that simplify the map. For example, instead

of using px and py, we could define:

x′ =
dx

ds
, and y′ =

dy

ds
. (35)

Then, the (transverse) map for a drift space would simply be:

x 7→ x + x′∆s, x′ 7→ x′, (36)

y 7→ y + y′∆s, y′ 7→ y′, (37)

with no dependence at all on the energy deviation.

This looks much simpler – why do we bother with the

Hamiltonian? There are three reasons...
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Hamiltonian mechanics and symplecticity

First, Hamiltonian mechanics provides a highly systematic

framework for constructing the equations of motion for a

relativistic particle in even quite complicated electromagnetic

fields.

This is an important feature, but of course not unique to

Hamiltonian mechanics.
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Hamiltonian mechanics and symplecticity

The main reason for using canonical variables, is that for a

particle moving through an electromagnetic field, neglecting

radiation and interactions with other particles, the map

expressed in these variables must be symplectic. That is, the

volumes of small elements in phase space must be conserved.

Conserved quantities provide a powerful tool for verifying the

accuracy of analytical and computational calculations. If phase

space volumes are not conserved in your calculations, you know

something must be wrong. (Though, of course, it does not

mean you have got the calculations right just because phase

space volumes are conserved.)

Furthermore, some effects (such as radiation damping in

storage rings) can conveniently be quantified in terms of

deviations from symplecticity. If the maps you are using before

including these effects are not symplectic, you have to work

somewhat harder to calculate how large these effects are.

Nonlinear Dynamics 24 Part 2: Tools and concepts

Hamiltonian mechanics and symplecticity

The final reason for using Hamiltonian mechanics extensively

for accelerator dynamics, is that Hamilton’s equations lead to

some powerful analytical and numerical techniques for solving

the equations of motion while retaining important features,

such as symplecticity.

Much of the rest of this course will be devoted to exploring

these techniques. But, since the idea of symplecticity is an

important motivation for the approach we will take, let us start

by considering it in a little more detail.
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Hamiltonian mechanics and symplecticity

Let ~x be a vector of phase space variables. We will show that if

the values of the phase space variables at position s + ∆s on

the reference trajectory are given by ~X = ~X (~x(s);∆s), then:

JT · S · J = S, (38)

where J is the Jacobian of the transformation from s to

s + ∆s, i.e.:

Jij =
∂Xi

∂xj
, (39)

and S is a block-diagonal matrix constructed from 2× 2

antisymmetric matrices S2:

S2 =

(

0 1
−1 0

)

. (40)

Any matrix that satisfies equation (38) is said to be a

symplectic matrix.
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Hamiltonian mechanics and symplecticity

To prove equation (38), first note that with ~x given by:

~x = (x, px, y, py, z, δ) , (41)

Hamilton’s equations may be written:

d~x

ds
= S ·

∂H

∂~x
. (42)

We will assume that we work inside a given accelerator

element, where the Hamiltonian H is independent of s. At

some position in the element, the variables can be expressed as

functions of the variables at some earlier position, i.e.:

~X = ~X (~x(s);∆s) . (43)

The changes in the variables with respect to motion along the

reference trajectory are related by the Jacobian J:

d ~X

ds
=

∂ ~X

∂~x
·
d~x

ds
= J ·

d~x

ds
= J · S ·

∂H

∂~x
. (44)
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Hamiltonian mechanics and symplecticity

Now, since:

∂H

∂~x
= JT ·

∂H

∂ ~X
, (45)

we find that:

d ~X

ds
= J · S · JT ·

∂H

∂ ~X
. (46)

But the evolution of the variables ~X must be determined by

Hamilton’s equations, with the same Hamiltonian that governs

the evolution of the variables ~x:

d ~X

ds
= S ·

∂H

∂ ~X
. (47)

Comparing equations (46) and (47), it is clear that:

J · S · JT = S. (48)
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Hamiltonian mechanics and symplecticity

Using the properties:

S−1 = ST = −S, and
(

J−1
)T

=
(

JT
)−1

, (49)

equation (48) may be rewritten as (38):

JT · S · J = S.

This means that for a system governed by Hamilton’s

equations, the Jacobian of the map from s to s + ∆s must be a

symplectic matrix. For short, we say that the map must be

symplectic.

Note that for a linear map, the Jacobian is simply a matrix of

numbers. For a nonlinear map, the Jacobian will be a function

of the phase space variables ~x; but equation (38) must still

hold.
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Hamiltonian mechanics and symplecticity

Since the determinant of S is unity:

|S| = 1, (50)

it follows from (38) that if J is the Jacobian of a symplectic

map:

|J |2 = 1, i.e. |J | = ±1. (51)

Therefore, for a map to by symplectic, it is a necessary (but

not sufficient) condition for the Jacobian to have determinant

±1. It follows immediately from this that symplectic maps

preserve volumes in phase space:
∫

. . .
∫

d ~X =
∫

. . .
∫

|J | d~x = ±
∫

. . .
∫

d~x. (52)
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Hamiltonian mechanics and symplecticity

In the context of Hamilton mechanics, equation (52) is called

Liouville’s theorem. In accelerator beam dynamics, it tells us

that as a bunch of particles is transported along a beamline,

then neglecting radiation and interactions between the

particles, the volume of phase space occupied by the particles

remains constant. (Of course, one needs to be a bit careful

here, and we ought to define carefully the boundaries of the

volume occupied by a bunch of particles...)

Side note: the total volume in phase space is one of a number of invariants

of Hamiltonian systems, known as Poincare invariants. The others are not

so easily expressed as the volume of an element in phase space, and since

we do not need them in this course, we do not discuss them further.
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Hamiltonian mechanics and symplecticity

Liouville’s theorem is easiest to visualise in one degree of

freedom, with a linear map...

...but the theorem generalises to more degrees of freedom, and

nonlinear maps.
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Hamiltonian mechanics and symplecticity

As an example of a symplectic map, consider again the case of

a drift space. To simplify things further, let us consider only

the transverse motion. The map can be written:

X = x +
pxs

√

1− p2
x

(53)

PX = px. (54)

The Jacobian is:

J =









∂X
∂x

∂X
∂px

∂PX
∂x

∂PX
∂px









=









1 s

(1−p2
x)

3/2

0 1









. (55)

Note that the Jacobian is a function of the dynamical variables.

Nonetheless, we can still work out the matrix product with S;

and we find, as expected, that:

JT · S · J = S.

The case in three degrees of freedom starts to look more

complicated, but we still find that the map is symplectic.
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Canonical transformations

In our discussion of symplecticity, we treated a map as a

transformation from one point along the reference trajectory to

another. However, it should be clear from the discussion, that

if any new set of variables ~X is derived from an existing set of

canonical variables ~x by a symplectic transformation, i.e.

~X = ~X(~x), where
∂ ~X

∂~x
= J, and JT · S · J = S, (56)

then the new set of variables obeys Hamilton’s equations:

d ~X

ds
= S ·

∂H

∂ ~X
. (57)

That is, the new variables ~X are canonical variables, just like

the variables ~x.

A transformation from one set of canonical variables to another

is called a canonical transformation.
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Canonical transformations: action-angle variables

Sometimes, it is convenient to work with dynamical variables

other than the “cartesian” variables (x, px, y, py, z, δ). This is

particularly true for nonlinear dynamics, where we often use

“action-angle” variables.

The action-angle variables (Jx, φx) for the horizontal motion are

defined by:

2Jx = γxx2 + 2αxxpx + βxp2
x, (58)

tanφx = −αx − βx
px

x
. (59)

Here, αx, βx and γx are the usual Twiss parameters, defined for

linear motion.

It can be shown (an exercise for the student!) that the

Jacobian of the transformation is symplectic: therefore, (φx, Jx)

are canonical variables. (Note that the angle φx is the

coordinate, and the action Jx is the conjugate momentum).
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Canonical transformations: action-angle variables

Action-angle variables are very useful for linear dynamics. In

that case, we know that the betatron action is constant, and

that the rate of increase of betatron phase is given by 1/βx:

dφx

ds
=

1

βx
, (60)

dJx

ds
= 0. (61)

Since action-angle variables are canonical variables, it should be

possible to obtain these equations of motion from a suitable

Hamiltonian. In fact, an appropriate Hamiltonian is given by:

H =
Jx

βx
. (62)

It turns out that action-angle variables are also useful in

nonlinear dynamics, and we shall make extensive use of them in

this course.
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Canonical transformations: generating functions

There is a useful recipe (or rather, set of recipes) for

constructing canonical transformations. The technique is based

on generating functions.

Many standard texts on classical mechanics give a full

discussion of generating functions, including a derivation of the

main formulae. See, for example, Goldstein.

Here, we simply present the results, and give an example. Since

the results are general (i.e. not specific to accelerator beam

dynamics) we revert to a general notation in which the

coordinates are denoted qi, the conjugate momenta are pi, and

the independent variable is t.
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Canonical transformations: generating functions

Let us define a function F1 of the “old” coordinates qi and the

“new” coordinates Qi. In general, F1 may also be a function of

the independent variable, t:

F1 = F1(qi, Qi, t). (63)

Then, F1 generates a canonical transformation, in which the

relationships between the old and new variables is given by:

pi =
∂F1

qi
, Pi = −

∂F1

Qi
. (64)

Here, pi are the momenta conjugate to qi, and Pi are the

momenta conjugate to Qi. The Hamiltonian for the new

variables is given by:

K = H +
∂F1

∂t
. (65)
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Canonical transformations: generating functions

Canonical transformations can be useful in simplifying the

equations of motion. For example, suppose that we have a

system in one degree of freedom, whose dynamics are governed

by the Hamiltonian:

H = p2 − 6pq2 + q2 + 9q4. (66)

The equations of motion are nonlinear, and difficult to solve.

However, let us make a canonical transformation to new

variables, using the generating function:

F1(q, Q) = qQ + q3. (67)

Using equations (64), we find:

p =
∂F1

∂q
= Q + 3q2, ∴ Q = p− 3q2, (68)

and:

P = −
∂F1

∂Q
= −q. (69)
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Canonical transformations: generating functions

The new variables expressed in terms of the old variables are:

Q = p− 3q2, and P = −q. (70)

The old variables expressed in terms of the new variables are:

q = −P, and p = Q + 3P2. (71)

Using (65), (66) and (71) the new Hamiltonian K, which gives

the equations of motion expressed in terms of the new

variables, is:

K = H +
∂F1

∂t
= p2 − 6pq2 + q2 + 9q4 = P2 + Q2. (72)

In terms of the new variables, the equations of motion are

simply those for an harmonic oscillator. We can easily solve the

equations of motion in the new variables, then transform back

to the old variables, using (71).

Note: if you thought that the original Hamiltonian (66) was contrived to

allow an easy solution using a relatively simple generating function, you

would be right... In general, it is not easy to solve problems in this way.
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Canonical transformations: generating functions

The generating function we introduced above, F1(qi, Qi, t), was

a function of the old coordinates and the new coordinates. But

of course, if we are going to mix up old and new variables,

there are four different ways to do it. Each of these leads to a

different “kind” of generating function, each with its own set

of relationships between the old and new variables.

We have already met F1, a “generating function of the first

kind”:

F1 = F1(qi, Qi, t), (73)

pi =
∂F1

∂qi
, Pi = −

∂F1

∂Qi
, (74)

K = H +
∂F1

∂t
. (75)
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Canonical transformations: generating functions

F2 is a “generating function of the second kind”:

F2 = F2(qi, Pi, t), (76)

pi =
∂F2

∂qi
, Qi =

∂F2

∂Pi
, (77)

K = H +
∂F2

∂t
. (78)

It is possible to express the identity transformation in terms of

a generating function of the second kind:

F2(qi, Pi) =
∑

i

qiPi. (79)
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Canonical transformations: generating functions

F3 is a “generating function of the third kind”:

F3 = F3(pi, Qi, t), (80)

qi = −
∂F3

∂pi
, Pi = −

∂F3

∂Qi
, (81)

K = H +
∂F3

∂t
. (82)

And finally, F4 is a “generating function of the fourth kind”:

F4 = F4(pi, Pi, t), (83)

qi = −
∂F4

∂pi
, Qi =

∂F4

∂Pi
, (84)

K = H +
∂F4

∂t
. (85)
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Generating functions and action-angle variables

To finish this lecture, we note that since action-angle variables

(φx, Jx) are obtained from cartesian variables (x, px) by a

canonical transformation, we would expect that we can write

down a generating function for the transformation (although

note that we have not shown that every canonical

transformation can be obtained from some generating

function).

We can construct the canonical transformation from cartesian

to action-angle variables using a generating function of the first

kind:

F1(x, φx) = −
x2

2βx
(tanφx + αx) . (86)
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Summary

• The equations of motion for a particle moving through electromagnetic
fields in an accelerator beamline (neglecting radiation and interactions
between particles) can be derived from Hamilton’s equations, with an
appropriate Hamiltonian.

• Expressed in canonical variables, the transformation representing motion
of a particle from one point along a beamline to another is symplectic
(that is, the Jacobian of the transformation is a symplectic matrix).

• A symplectic transformation from one set of variables to another is
called a canonical transformation. Sometimes, canonical
transformations provide a way to simplify the equations of motion.

• An example of a canonical transformation is provided by the
relationships between action-angle variables and the usual cartesian
variables. Action-angle variables are widely used in accelerator beam
dynamics.

• Canonical transformations can be constructed using generating
functions.
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Exercises

1. Write down the Hamiltonian for (a) a dipole magnet, and

(b) a quadrupole magnet. Are the dynamics linear or

nonlinear in each case?

2. Show that the transformation from cartesian to

action-angle variables is canonical.

3. Show that the transformation from cartesian to

action-angle variables may be obtained from the generating

function (86):

F1(x, φx) = −
x2

2βx
(tanφx + αx) .
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