
Nonlinear Single-Particle Dynamics

in High Energy Accelerators

Part 1: Introduction

Examples of nonlinear dynamics in accelerator systems

Nonlinear Single-Particle Dynamics in High Energy Accelerators

This course consists of eight lectures:

1. Introduction – some examples of nonlinear dynamics

2. Basic mathematical tools and concepts

3. Representations of dynamical maps

4. Integrators I

5. Integrators II

6. Phase space portraits and “phenomenology”

7. Normal form analysis

8. Some numerical techniques
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Objectives of the Course

By the end of the course, you should be able to:

• perform simple dynamical calculations using action-angle variables;

• evaluate a Lie transformation as a Taylor series (up to some order);

• use generating functions to express nonlinear maps in implicit form;

• apply integrator methods to express nonlinear maps in explicit form;

• describe nonlinear phenomena in terms of features in phase space
portraits;

• perform normal-form analysis of linear and nonlinear maps;

• describe the use of numerical techniques such as frequency maps
analysis, to analyse the characteristics on complex nonlinear systems.
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Introduction – some examples of nonlinear dynamics

In this lecture, we discuss some examples of nonlinear

single-particle dynamics in common accelerator systems.

We shall consider:

1. longitudinal dynamics in a bunch compressor;

2. transverse dynamics in a (periodic) storage ring;

3. transverse dynamics in a final focus system.

By the end of the lecture, you should be able to describe the

source of nonlinearities in the above systems, their effects, and

the limitations that they impose.
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Example 1: Bunch compressor

As a first example, we discuss nonlinear longitudinal dynamics

in a bunch compressor. A bunch compressor is a system that

reduces the length of a bunch, by performing a rotation in

longitudinal phase space. Such systems are used, for example,

in free electron lasers, to increase the peak current in a bunch.

We shall work through this example in some detail, almost as a

case study, following these steps:

1. Outline of structure and operation of a bunch compressor.

2. Specification of parameters based on linear dynamics.

3. Analysis of linear and nonlinear effects.

4. Modification of parameters to compensate nonlinear

effects.
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Bunch compressor: structure and operation
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Bunch compressor: structure and operation

The rf cavity is designed to “chirp” the bunch, i.e. to provide a

change in energy deviation as a function of longitudinal

position within the bunch. We define the energy deviation δ as

the energy error of a particle, with respect to a specified

reference energy, E0:

δ =
E − E0

β0E0
. (1)

The other longitudinal variable, z, is the distance that a particle

is ahead of a nominal reference particle. With the simplifying

approximation β0 ≈ 1, the dynamical map for the rf cavity in

the bunch compressor is:

z 7→ z, (2)

δ 7→ δ −
eV

E0
sin

ωz

c
, (3)

where V is the rf voltage, and ω is 2π times the rf frequency.
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Bunch compressor: structure and operation

The chicane does not change the energy of the particles

(neglecting synchrotron radiation). However, the path length L

depends on the energy of the particle.

If we assume that the bending angle in a dipole is small, θ � 1:

L =
2L1

cos θ
+ L2 (4)

The bending angle is a function of the particle’s energy:

θ =
θ0

1 + δ
. (5)
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Bunch compressor: structure and operation

The complete map for the bunch compressor can be written as

a map for the rf cavity (2), (3):

z 7→ z,

δ 7→ δ −
eV

E0
sin

ωz

c
,

followed by a map for the chicane:

z 7→ z + 2L1

(

1

cos θ0
−

1

cos θ

)

, (6)

δ 7→ δ, (7)

where θ0 is the nominal bending angle of each dipole in the

chicane, and θ is given by (5):

θ =
θ0

1 + δ
.

Clearly, the map is nonlinear. The question is: how important

are the nonlinear terms?
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Bunch compressor: linear dynamics

To understand the effect of the nonlinear part of the map, we

shall look at a specific example. First, we will “design” a bunch

compressor using only the linear part of the map, i.e. by

completely ignoring the nonlinear terms. Then, we shall see

how our design has to be modified to take account of the

nonlinearities.

To first order in the dynamical variables z and δ, the map for

the bunch compressor can be written:

z 7→ z, (8)

δ 7→ δ −
eV

E0

ωz

c
, (9)

followed by:

z 7→ z + 2L1
θ0 sin θ0
cos2 θ0

δ. (10)

δ 7→ δ. (11)
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Bunch compressor: linear dynamics

In a linear approximation, the maps for the rf cavity and the

chicane may be represented as matrices:

Mrf =

(

1 0
−a 1

)

, Mch =

(

1 b
0 1

)

, (12)

where:

a =
eV

E0

ω

c
, and b = 2L1

θ0 sin θ0
cos2 θ0

. (13)

The matrix representing the total map for the bunch

compressor, Mbc, is then:

Mbc = Mch ·Mrf =

(

1− ab b
−a 1

)

. (14)

The action of the map is written:
(

z
δ

)

7→ Mbc ·

(

z
δ

)

. (15)
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Bunch compressor: linear dynamics

We note in passing that the linear part of the map is

symplectic. A linear map is symplectic if the matrix M

representing the map is symplectic, i.e. satisfies:

MT · S ·M = S, (16)

where, in one degree of freedom (i.e. two dynamical variables),

S is the matrix:

S =

(

0 1
−1 0

)

. (17)

In more degrees of freedom, S is constructed by repeating the

2× 2 matrix above on the block diagonal, as often as necessary.

In one degree of freedom, it is a necessary and sufficient

condition for a matrix to be symplectic, that it has unit

determinant: but this condition does not generalise to more

degrees of freedom.

We shall consider what it means to say that a nonlinear map is

symplectic later in this course.
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Bunch compressor: linear dynamics

Now we proceed to derive expressions for the required values of

the parameters a and b, in terms of the desired initial and final

bunch length and energy spread.

We construct the beam distribution sigma matrix by taking the

outer product of the phase space vector for each particle, then

averaging over all particles in the bunch:

Σ = 〈~z ~zT〉 =

(

〈z2〉 〈zδ〉

〈zδ〉 〈δ2〉

)

. (18)

The transformation of Σ under a linear map represented by a

matrix M is given by:

Σ 7→ M ·Σ ·MT. (19)
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Bunch compressor: linear dynamics

Usually, a bunch compressor is designed so that the correlation

〈zδ〉 = 0 at the start and end of the compressor. In that case,

using (14) for the linear map M , and (19) for the

transformation of the sigma matrix, we find that the

parameters a and b must satisfy:

(1− ab)
a

b
=
〈δ2〉i
〈z2〉i

(20)

where the subscript i indicates that the average is taken over

the initial values of the dynamical variables.

Given the constraint (20), the compression factor r is given by:

r2 ≡
〈z2〉f

〈z2〉i
= 1− ab, (21)

where the subscript f indicates that the average is taken over

the final values of the dynamical variables.
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Bunch compressor: linear dynamics

As a specific example, consider a bunch compressor for the

International Linear Collider:

Initial rms bunch length
√

〈z2〉i 6 mm

Initial rms energy spread
√

〈δ2〉i 0.15%

Final rms bunch length
√

〈z2〉f 0.3 mm

Solving equations (20) and (21) with the above values for rms

bunch lengths and energy spread, we find:

a = 4.9937m−1, and b = 0.19975m. (22)
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Bunch compressor: linear dynamics

We can illustrate the effect of the linearised bunch compressor

map on phase space using a “window frame” distribution:

As expected, the bunch compressor rotates the distribution in

phase space by (nearly) 90◦. At the same time, the rms bunch

length is reduced by a factor of 20. Note that the rms energy

spread is increased by the same factor: because the map is

symplectic, phase space areas are conserved under the

transformation. Also note that, because the map is linear,

straight lines in phase space remain straight.
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Bunch compressor: nonlinear dynamics

Now let us see what happens when we apply the full nonlinear

map for the bunch compressor to the full nonlinear distribution.

The full map cannot simply be represented by the two

parameters a and b: we need to make some assumptions for the

rf voltage and frequency, and the dipole bending angle and

chicane length. We have to choose these parameters so that

the “linear” parameters have the appropriate values, but

fortunately, this is not difficult.

Beam (reference) energy E0 5 GeV
RF frequency frf 1.3 GHz
RF voltage Vrf 916 MV
Dipole bending angle θ0 3◦

Dipole spacing L1 36.3 m

It appears that we need a lot of rf voltage; it is still feasible (if

expensive). Let us see what happens to the dynamics when we

use these parameters...
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Bunch compressor: nonlinear dynamics

As before, we illustrate the effect of the bunch compressor map

on phase space using a “window frame” distribution:

This looks bad. The map has had approximately the effect we

desire: the bunch length has been reduced (and the distribution

rotated by approximately 90◦). However, there is significant

distortion of the distribution. Because of the nonlinear terms in

the map, straight lines do not stay straight. The rms bunch

length will be significantly longer than we are aiming for.
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Bunch compressor: nonlinear dynamics

Whether or not the nonlinear effects can be tolerated will

depend on the application. In the case of ILC, the phase space

distortion introduced by a bunch compressor with the above

parameters would lead to a significant loss of luminosity. We

have to do something about it... but what?

If we inspect the phase space plots, then it seems that the

damage is done by a second-order term in the map for the

chicane, i.e. by a dependence of a change in z on the square of

the energy deviation δ: such a term is a possible cause of the

“parabolic” disortion that we see in the final phase space plot.

Assuming that our conjecture is correct, we could try to fix the

distortion by modifying the map for the rf...
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Bunch compressor: nonlinear dynamics

Consider a particle entering the bunch compressor with initial

phase space co-ordinates z0 and δ0. We can write the

co-ordinates z1 and δ1 of the particle after the rf cavity to

second order in z0 and δ0:

z1 = z0, (23)

δ1 = δ0 + R65z0 + T655z2
0. (24)

Note that we have generalised the notation for the coefficients

in the map: the first subscript indicates the variable on the left

hand side of the equation, and subsequent subscripts indicate

the variables in the relevant term. By convention, coefficients

of linear terms are denoted R, coefficients of second-order

terms are denoted T , third-order terms U and so on.

The coordinates of the particle after the chicane are then

(again to second order):

z2 = z1 + R56δ1 + T566δ21, (25)

δ2 = δ1. (26)
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Bunch compressor: nonlinear dynamics

If we combine the maps for the rf and the chicane, we get:

z2 = (1 + R56R65)z0 + R56δ0

+(R56T655 + R2
65T566)z

2
0

+2R65T566z0δ0

+T566δ20, (27)

δ2 = δ0 + R65z0 + T655z2
0. (28)

The term that gives the strong nonlinear distortion is the term

in z2
0 in (27). If we can design a system such that the

appropriate coefficients satisfy:

R56T655 + R2
65T566 = 0, (29)

then we should be able to reduce the distortion.
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Bunch compressor: nonlinear dynamics

The values of R56 = b and R65 = −a are determined by the

requirements for the compression factor. The value of T566 is

determined by the chicane; in fact, we find for θ0 � 1 (see

Exercise 1):

T566 ≈ −3L1θ2
0 ≈ −

3

2
R56. (30)

That leaves us with T655. This is the second-order dependence

of the energy deviation on longitudinal position for a particle

passing through the rf cavity. But if we inspect the full rf map

(3), we find it contains only odd-order terms, unless...
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Bunch compressor: nonlinear dynamics

...we operate the rf cavity off-phase. In other words, if we

modify the rf map to:

z 7→ z, (31)

δ 7→ δ −
eV

E0
sin

(

ωz

c
+ φ0

)

. (32)

The first-order coefficient in the map for δ is then:

R65 = −
eV

E0

ω

c
cosφ0. (33)

The second-order coefficient is:

T655 =
1

2

eV

E0

(

ω

c

)2
sinφ0. (34)

Note that there is also a zeroth-order term, so the bunch ends

up with a non-zero mean energy deviation 〈δ〉 after the rf

cavity; but we can take this into account simply by an

appropriate scaling of the field in the chicane.
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Bunch compressor: nonlinear dynamics

For the ILC bunch compressor, we now have the following

coefficients. The linear coefficients are determined by the

required compression factor, and the requirement to have no

final correlation 〈zδ〉:

R65 = −4.9937m−1, and R56 = 0.19975m. (35)

The value of T566 is determined by the R56 of the chicane:

T566 = −
3

2
R56 = −0.29963m. (36)

And the value of T655 is determined by the desire to correct the

second-order distortion of the phase space:

R56T655 + R2
65T566 = 0 ∴ T655 = 37.406m−2. (37)
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Bunch compressor: nonlinear dynamics

Now, given:

R65 = −
eV

E0

ω

c
cosφ0 = −4.9937m−1, (38)

and:

T655 =
1

2

eV

E0

(

ω

c

)2
sinφ0 = 37.406m−2, (39)

we find, for E0 = 5GeV and ω = 1.3GHz:

V = 1,046MV, and φ0 = 28.8◦. (40)

Note that operating with this phase, we are providing over a

gigavolt of rf to decelerate the beam by more than 500 MV.

Because of adiabatic (anti)damping, we will need to reduce the

R56 of the chicane by a factor E1/E0, where E0 and E1 are the

mean bunch energy before and after the rf, respectively. Also,

the phase space area occupied by the distribution will be

increased by a factor E0/E1.
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Bunch compressor: nonlinear dynamics

As usual, we illustrate the effect of the bunch compressor on

phase space using a “window frame” distribution. Now we use

the parameters determined above, to try to compress by a

factor 20, while minimising the second-order distortion:

This looks much better: the dominant distortion now appears

to be third-order, and looks small enough that it may not

significantly affect the performance of the collider (though, of

course, this would need to be checked by more detailed

studies).

Nonlinear Dynamics 27 Part 1: Introductory Examples



Bunch compressor: some conclusions

We have already learned some important lessons from this

example:

• Ignoring nonlinear effects can get you into trouble.

Sometimes you can get away with it; other times, a system

designed without taking into account nonlinearities will not

achieve the specified performance.

• If we take the trouble to analyse and understand the

nonlinear behaviour of a system, then, if we are lucky and

clever enough, we may be able to devise a means of

compensating any adverse effects.
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Second example: a simple storage ring

As a second example, let us consider the transverse dynamics in

a simple storage ring. We shall assume that:

• The storage ring is constructed from some number of

identical cells consisting of dipoles, quadrupoles and

sextupoles.

• The phase advance per cell can be tuned from close to

zero, up to about 0.5×2π.

• There is one sextupole per cell, which is located at a point

where the horizontal beta function is 1m, and the alpha

function is zero.

Usually, storage ring will contain two sextupoles per cell, to

correct horizontal and vertical chromaticity. To keep things

simple, we will use only one sextupole per cell.

Nonlinear Dynamics 29 Part 1: Introductory Examples



Storage ring: linear dynamics

The chromaticity, and hence the sextupole strength, will

normally be a function of the phase advance. However, just to

investigate the system, let us keep a fixed sextupole strength

k2L, and see what happens as we adjust the phase advance.

We can assume that the map from one sextupole to the next is

linear, and corresponds to a rotation in phase space through an

angle given by the phase advance:
(

x
px

)

7→

(

cosµx sinµx

− sinµx cosµx

)

·

(

x
px

)

. (41)

Again to keep things simple, we shall consider only horizontal

motion, and assume that the vertical coordinate y = 0

throughout.
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Storage ring: nonlinear dynamics

The change in the horizontal momentum of a particle moving

through the sextupole is found by integrating the Lorentz force:

∆px = −
∫ L

0

By

Bρ
ds. (42)

The sextupole strength k2 is defined by:

k2 =
1

Bρ

∂2By

∂x2
, (43)

where Bρ is the beam rigidity. For a pure sextupole field

(assuming that the vertical coordinate y = 0),

By

Bρ
=

1

2
k2x2. (44)

If the sextupole is short, then we can neglect the small change

in the coordinate x as the particle moves through the

sextupole, in which case:

∆px ≈ −
1

2
k2Lx2. (45)
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Storage ring: nonlinear dynamics

The map for a particle moving through a short sextupole can

be represented by a “kick” in the horizontal momentum:

x 7→ x (46)

px 7→ px −
1

2
k2Lx2. (47)

Let us choose a fixed value k2L = −600m−3, and see the effect

of the maps for different phase advances. We examine the

effect of the map in a given case by plotting the phase space

coordinates after repeated action of the map (equation (41),

followed by (46) and (47)) for a range of initial conditions.

The resulting plot is known as a “phase space portrait”.

First, let us look at the phase space portraits for a range of

phase advances from 0.2× 2π to 0.5× 2π.
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Storage ring: nonlinear dynamics

µx = 0.202× 2π
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Storage ring: nonlinear dynamics

µx = 0.252× 2π
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Storage ring: nonlinear dynamics

µx = 0.330× 2π
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Storage ring: nonlinear dynamics

µx = 0.402× 2π
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Storage ring: nonlinear dynamics

µx = 0.490× 2π
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Storage ring: nonlinear dynamics

There are some interesting features in these phase space portraits to which
it is worth drawing attention:

• For small amplitudes (small x and px), particles map out closed loops
around the origin: this is what we expect for a purely linear map.

• As the amplitude is increased, there appear “islands” in phase space:
the phase advance (for the linear map) is generally close to one divided
by the number of islands.

• Sometimes, a larger number of islands appears at larger amplitude.

• Usually, there is a closed curve that divides a region of stable motion
from a region of unstable motion. Outside that curve, the amplitude of
particles increases without limit as the map is repeatedly applied.

• The area of the stable region depends strongly on the phase advance:
for a phase advance close to 2π/3, it appears that the stable region
almost vanishes altogether.

• It appears that as the phase advance is increased towards π, the stable
area becomes large, and distortions from the linear ellipse become less
evident.
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Storage ring: nonlinear dynamics

We see already that the effect of the sextupole in the periodic

cell depends strongly on the (linear) phase advance across the

cell. In the (rather imprecise) language of beam dynamics, a

phase advance of 2πm/n, where m/n is an irreducible fraction,

is said to be an “nth order resonance”.

Much of the rest of this course will be devoted to

understanding in some detail the various phenomena that we

have observed in this example, including resonances. However,

we can understand at least some of the behaviour, by

considering two special cases:

1. phase advance equal to an integer times 2π;

2. phase advance equal to a half integer times 2π.
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Storage ring: nonlinear dynamics

Let us consider first what happens when the linear phase

advance is an integer. In that case, the linear part of the map

is just the identity:

x 7→ x, (48)

px 7→ px. (49)

So the combined effect of the linear map and the sextupole

kick is:

x 7→ x, (50)

px 7→ px −
1

2
k2Lx2. (51)

Clearly, for x 6= 0, the horizontal momentum will increase

without limit. There are no stable regions of phase space,

apart from the line x = 0.
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Storage ring: nonlinear dynamics

Now consider what happens if the phase advance is a half

integer times 2π. In that case, the linear part of the map is a

rotation through π. If a particle starts at the entrance of a

sextupole with x = x0 and px = px0, then at the exit of that

sextupole, the phase space coordinates will be:

x1 = x0, (52)

px1 = px0 −
1

2
k2Lx2

0. (53)

Then, after passing to the entrance of the next sextupole, the

coordinates will be:

x2 = −x1 = −x0, (54)

px2 = −px1 = −px0 +
1

2
k2Lx2

0. (55)
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Storage ring: nonlinear dynamics

Now we go through the second sextupole (the one at which we

have just arrived):

x3 = x2 = −x0, (56)

px3 = px2 −
1

2
k2Lx2

0 = −px0. (57)

In other words, the momentum kicks from the two sextupoles

cancel each other exactly. The resulting map is a purely linear

phase space rotation by π. In this situation, we expect the

motion to be stable (and periodic), no matter what the

amplitude.
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Storage ring: nonlinear dynamics

If we are designing a storage ring constructed of periodic cells

with sextupoles, it appears to be beneficial for each cell to have

a half-integer phase advance. But note that if there are two

sextupoles per cell (as needed, for example, to correct vertical

as well as horizontal chromaticity), the situation gets

considerably more complicated. Also, there is another

drawback. Consider what happens if, instead of the sextupole,

we have a small focusing (quadrupole) error:

x 7→ x, (58)

px 7→ px − k1Lx. (59)

It is a common technique in storage ring design to optimise the

phase advance between sextupoles to give a good dynamic

aperture, while using a non-periodic section of the lattice to

control the overall tunes.
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Third example: a final focus system

Finally, let us consider a final focus system in a collider. Such a

system is designed to make the transverse beam size as small

as possible, by focusing the beta functions to very small values

at the interaction point. In its simplest form, a final focus

system can consist of just a sequence of quadrupoles and

drifts, i.e. just simple linear elements.

As a specific example, let us take a final focus system designed

to reduce the beta functions from 10m in each plane, to 5mm

in the horizontal, and 0.35mm in the vertical.

We can use a standard beam dynamics code to design and

model our final focus system. MAD8 is suitable for the job...
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Final focus: linear dynamics
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Final focus: linear dynamics

Let us track a phase space ellipse in the horizontal plane

through the final focus. We shall use an initial ellipse

corresponding to an rms beam size with emittance 100nm, i.e.

with a beta function of 10m, the beam size is 1mm.
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Final focus: linear dynamics

Tracking the ellipse to the interaction point, we obtain, as

expected, an ellipse corresponding to reduced beam size

(22µm), and increased divergence.
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Final focus: linear dynamics

So far so good. But what happens if we get more ambitious,

and try to squeeze the beta functions at the interaction point,

to 1mm horizontally, and 0.25mm vertically? First of all, the

beta functions through the system peak at larger values.
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Final focus: nonlinear dynamics

More worryingly, when we track the same phase space ellipse as

before, we now obtain a distribution at the interaction point

that shows significant distortion (despite the fact that the

beamline contains only “linear” elements).

Note: we obtain this result using the LIE4 tracking algorithm in MAD8.
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Final focus: nonlinear dynamics

More disturbing still, when we try alternative tracking

algorithms in MAD8 (LIE3, or TRANSPORT), the distortion

disappears, and we obtain the regular ellipse corresponding to

linear motion.
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Final focus: nonlinear dynamics

If the real system behaves as predicted by LIE4, we would be in

trouble. However, we need to ask some questions:

• Is the nonlinear distortion we observe with LIE4 tracking

real? If so, where does it come from?

• Why does the tracking with LIE4 look different from LIE3

and TRANSPORT?

• If the nonlinear distortion is real, what can we do about it?

These are questions that we shall attempt to answer as we

work through this course...
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Summary

• Nonlinear effects are important in many diverse accelerator

systems, and can arise even in systems comprising elements

that are often considered “linear”.

• Nonlinear effects can occur in the longitudinal or transverse

motion of particles moving along an accelerator beam line.

• To understand nonlinear dynamics in accelerators we need

to be able to (1) construct dynamical maps for individual

elements and complete systems, and (2) analyse these

maps to understand the impact of nonlinearities on the

performance of the system.

• If we have an accurate and thorough understanding of

nonlinear dynamics in accelerators, then we can attempt to

mitigate any adverse effects from nonlinearities.
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Exercises

1. Show equation (30): for a chicane constructed from four dipoles,
T566 = −3

2
R56.

2. Using Matlab, Scilab, or some other scientific software, write a program
to construct the phase space portraits shown in slides 33 – 37. How are
the phase space portraits changed if the beta function is different from
unity? Make a plot of the largest stable orbit amplitude as a function of
linear phase advance.

3. Consider a storage ring constructed from repeated unit cells, with a
transverse phase advance of π across each cell. If there is a small
focusing error k1L at the same location in each cell, where the beta
function is 1 m, write down the phase space coordinates after passing
through N cells, starting (immediately after one focusing error) with
x = x0 and px = 0.

4. Look up the MAD8 Physical Methods Manual. Use the information in
this manual to explain the nonlinearities observed in the final focus
system described above, and why they are observed only when the LIE4
tracking algorithm is used.
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