Cockcroft Lectures: Linear Dynamics Problem Set 7

A. Wolski

November, 2012

1. The energy deviation δ for a particle of rest mass m is defined by:

$$
\begin{equation*}
\delta=\frac{\gamma m c}{P_{0}}-\frac{1}{\beta_{0}} \tag{1}
\end{equation*}
$$

where γ is the relativistic factor for the particle, P_{0} is the reference momentum, and $\beta_{0} c$ is the velocity of a particle with rest mass m and momentum equal to the reference momentum. Show that:

$$
\begin{equation*}
\beta \gamma=\beta_{0} \gamma_{0} \sqrt{1+\frac{2 \delta}{\beta_{0}}+\delta^{2}} \tag{2}
\end{equation*}
$$

where βc is the velocity of a particle with energy deviation δ, and γ_{0} is the relativistic factor for a particle with rest mass m and momentum equal to the reference momentum.
2. Consider a particle moving in a horizontal plane in a uniform vertical magnetic field. The region of the field is large enough for the trajectory of the particle to describe a complete circle. Using the result from Problem 1, show that the circumference C of the trajectory as a function of the energy deviation δ is given by:

$$
\begin{equation*}
\frac{\Delta C}{C_{0}}=\sqrt{1+\frac{2 \delta}{\beta_{0}}+\delta^{2}}-1 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta C=C-C_{0} \tag{4}
\end{equation*}
$$

and C_{0} is the circumference of the trajectory when $\delta=0$.
3. Is the particle described in Problem 2 above, below or at transition? Explain, by considering the period of the motion of the particle as a function of the energy of the particle.

