Cockcroft Lectures: Linear Dynamics
 Problem Set 4

A. Wolski

November, 2012

1. Write down the 4×4 submatrix for the transverse components of the transfer matrix for a quadrupole of normalised field strength k_{1} and length L. Find the form of this 4×4 matrix in the limit $L \rightarrow 0$, where:

$$
\begin{equation*}
\lim _{L \rightarrow 0} k_{1} L=K \tag{1}
\end{equation*}
$$

and K is a finite constant. (This is the thin lens approximation: K is the integrated strength of the quadrupole).
2. A beamline consists of a thin quadrupole of integrated strength K, a drift of length $1 / \sqrt{2} K$, a thin quadrupole of integrated strength $-2 K$, a second drift of same length as the first, and a final thin quadrupole of the same integrated strength as the first quadrupole. The beamline is illustrated in Fig. 1.
(a) By multiplying 2×2 submatrices for the horizontal component of the motion in each of the elements along the beamline, find the 2×2 transfer matrix for the horizontal motion in the entire beamline.

Figure 1: Beamline consisting of a thin quadrupole, a drift, a second thin quadrupole, a second drift, and a third and final thin quadrupole.
(b) Evaluate the 2×2 transfer matrix for the horizontal motion in the beamline in the case:

$$
\begin{equation*}
K=1+\sqrt{2} \tag{2}
\end{equation*}
$$

(c) Now consider a beamline consisting of the shorter beamline shown in Fig. 1 repeated an infinite number of times. Show that horizontal motion of a particle moving along the infinite beamline must be stable and periodic. What is the period of the motion? Without any additional algebra, describe in general terms the vertical motion of a particle moving along the infinite beamline.

