Cockcroft Lectures: Linear Dynamics Problem Set 3

A. Wolski

November, 2012

1. The normalised strength of a normal multipole component of a magnetic field is often specified by the " k-value", defined by:

$$
\begin{equation*}
k_{n}=\left.\frac{q}{P_{0}} \frac{1}{n!} \frac{\partial^{n} B_{y}}{\partial x^{n}}\right|_{x=y=0} \tag{1}
\end{equation*}
$$

where q is the charge on the reference particle, P_{0} is the reference momentum, and the derivative is evaluated at $x=y=0$. Similarly, the normalised strength of a skew multipole component of a magnetic field is specified by a value $k_{n s}$, where:

$$
\begin{equation*}
k_{n s}=\left.\frac{q}{P_{0}} \frac{1}{n!} \frac{\partial^{n} B_{x}}{\partial x^{n}}\right|_{x=y=0} \tag{2}
\end{equation*}
$$

Find the relationships between the values of k_{n} and $k_{n s}$ for a multipole field, and the values of the coefficients a_{n} and b_{n} in the multipole expansion:

$$
\begin{equation*}
B_{y}+i B_{x}=\sum_{n=1}^{\infty}\left(b_{n}+i a_{n}\right)\left(\frac{x+i y}{r_{0}}\right)^{n-1} \tag{3}
\end{equation*}
$$

(Note: the value of n in one representation may be different from the value of n in the other representation!)
2. A particle of charge q moves in a uniform vertical magnetic field of strength B_{0}.
(a) Write down the Hamiltonian for the motion of the charged particle expanded to second order in the usual accelerator (normalised) variables and using path length s as the independent variable. Assume that the curvature h of the reference trajectory is equal to the normalised dipole field strength k_{0} :

$$
\begin{equation*}
k_{0}=\frac{q}{P_{0}} B_{0} \tag{4}
\end{equation*}
$$

where P_{0} is the reference momentum.
(b) Write down the equations of motion (Hamilton's equations) for the charged particle moving in this field.
(c) Find the solutions to the equations of motion in the case that the vertical momentum is zero. Hence find the period of horizontal oscillations around the reference trajectory for a particle initially close to the reference trajectory. Express the period of the motion in terms of the circumference of the reference trajectory, and explain your answer physically.

