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What we Learned in the Previous Lecture

In the previous lecture, we derived a Hamiltonian for the motion

of a particle through an accelerator. This Hamiltonian included

a general electromagnetic field, allowed a curved reference

trajectory, and used dynamical variables that remain small for

particles following a trajectory close to the reference trajectory.

We applied this Hamiltonian to the case of a dipole (bending

magnet). To obtain a linear dynamical map, we made an

approximation by making a series expansion of the Hamiltonian

to second order in the dynamical variables.

There were several interesting effects that we saw arising from

the Hamiltonian: these included dispersion (variation of the

bending angle with the energy of the particle) and weak

focusing.
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Course Outline

Part I (Lectures 1 – 5): Dynamics of a relativistic charged

particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate system

3. The Hamiltonian for a relativistic particle in a general

electromagnetic field using accelerator coordinates

4. Dynamical maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam

rigidity.
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Goals of This Lecture

In this lecture, we shall continue our derivation of dynamical

maps for “linear” beamline elements. To the drift space and

dipole, we shall add the quadrupole, the RF cavity, and the

solenoid.

Note that all elements are in fact nonlinear. By “linear”

elements, we refer to those whose principle effects on the beam

may be obtained by expanding the Hamiltonian to second order

in the dynamical variables. We shall make extensive use of this

approximation - usually called the paraxial approximation.
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Magnetic Field Inside a Quadrupole

Recall the magnetic field inside a normal quadrupole magnet:

Normal quadrupole

Bx = b2
y
r0
, By = b2

x
r0
.
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Magnetic Field Inside a Quadrupole

The field inside a normal quadrupole magnet in Cartesian

coordinates may be written:

Bx = b2
y

r0
(1)

By = b2
x

r0
(2)

Bs = 0 (3)

Note that on the axis of the quadrupole, the field strength is

zero. Therefore, we can choose the reference trajectory to lie

along the axis, in which case there is no curvature: we can

work in a straight coordinate system.

The above field may be derived from the potential:

Ax = 0 (4)

Ay = 0 (5)

As = −1

2

b2
r0

(

x2 − y2
)

(6)
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Hamiltonian Inside a Quadrupole

The Hamiltonian describing the motion inside a quadrupole,

using the usual accelerator variables, is:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p2y − 1

β20γ
2
0

− as (7)

where the longitudinal component as of the normalised vector

potential is:

as = q
As

P0
= −1

2

q

P0

b2
r0

(

x2 − y2
)

(8)

where q is the charge on the particle, and P0 is the reference

momentum. For convenience, we define the normalised

quadrupole gradient:

k1 =
q

P0

b2
r0

(9)
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Hamiltonian Inside a Quadrupole

In terms of the normalised quadrupole gradient (9) the

Hamiltonian can be written:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p2y − 1

β20γ
2
0

+
1

2
k1
(

x2 − y2
)

(10)

Expanding the Hamiltonian (10) to second order in the

dynamical variables (making the paraxial approximation) we

construct the Hamiltonian:

H2 =
1

2
p2x +

1

2
p2y +

1

2
k1x

2 − 1

2
k1y

2 +
1

2β20γ
2
0

δ2 (11)

Note that this looks very much like the harmonic oscillator

equation; for k1 > 0 we have a “focusing” potential in x, and a

“defocusing” potential in y. In z there is no focusing of any

kind.
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Transfer Matrix for a Quadrupole

Solving the equations of motion for the Hamiltonian (11) we

find the transfer matrix for a quadrupole of length L (k1 > 0):

R =

























cosωL sinωL
ω 0 0 0 0

−ω sinωL cosωL 0 0 0 0

0 0 coshωL sinhωL
ω 0 0

0 0 ω sinhωL coshωL 0 0

0 0 0 0 1 L
β20γ

2
0

0 0 0 0 0 1

























(12)

where

ω =
√

k1 (13)

Note that the field, if focusing in x is defocusing in y, and

vice-versa. This is a direct consequence of the constraints on

the magnetic field from Maxwell’s equations: it is not possible

to build a quadrupole that focuses or defocuses in both

transverse planes simultaneously.
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Magnetic Field in a Skew Quadrupole

A skew quadrupole is obtained from a normal quadrupole by

rotating the magnet 90◦ about the magnetic axis. The skew

multipole field components are given by the cn coefficients in

the multipole expansion:

By + iBx =
∞
∑

n=1

(bn+ ian)

(

x+ iy

r0

)n−1

(14)

For a skew quadrupole, all coefficients are zero except for a2:

Bx = a2
x

r0
By = −a2

y

r0
(15)

The magnetic vector potential is given by:

Ax = 0 Ay = 0 As = a2xy (16)
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Hamiltonian for a Skew Quadrupole

If we define:

k1s = − q

P0

a2
r0

(17)

where P0 is the reference momentum, and r0 is the reference

radius of the magnet, then the normalised vector potential is:

as = −k1sxy (18)

and the Hamiltonian for a skew quadrupole is:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p2y − 1

β20γ
2
0

+ k1sxy (19)

Making the paraxial approximation, we find the second-order

Hamiltonian:

H2 =
1

2
p2x +

1

2
p2y + k1sxy+

1

2β20γ
2
0

δ2 (20)

Note the term in xy: this leads to coupling of the horizontal

and vertical motion. The skew quadrupole gives a horizontal

kick proportional to the vertical offset of the particle, and

vice-versa.
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Transfer Matrix for a Skew Quadrupole

Hamilton’s equations with the second-order skew quadrupole

Hamiltonian (20) may be solved as for the normal quadrupole.

The resulting map is linear, and so it may be written as a

transfer matrix, R (for k1s > 0):













1
2
(cosωL+ coshωL) 1

2ω
(sinωL+ sinhωL) 1

2
(cosωL− coshωL) 1

2ω
(sinωL− sinhωL) 0 0

−1
2
ω (sinωL− sinhωL) 1

2
(cosωL+ coshωL) −1

2
ω (sinωL+ sinhωL) 1

2
(cosωL− coshωL) 0 0

1
2
(cosωL− coshωL) 1

2ω
(sinωL− sinhωL) 1

2
(cosωL+ coshωL) 1

2ω
(sinωL+ sinhωL) 0 0

−ω
2
(sinωL+ sinhωL) 1

2
(cosωL− coshωL) −ω

2
(sinωL− sinhωL) 1

2
(cosωL+ coshωL) 0 0

0 0 0 0 1 L
β2
0
γ2
0

0 0 0 0 0 1













(21)

where

ω =
√

k1s (22)
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Electromagnetic Fields in an RF Cavity

Now we know how to focus the beam horizontally (dipole, or

quadrupole with k1 > 0 and vertically (quadrupole with k1 < 0).

But nothing we have seen so far produces any longitudinal

focusing. If we want to control the bunch size in all three

dimensions, some kind of longitudinal focusing will be

necessary. This can be provided by an RF cavity.

An RF cavity contains an electromagnetic field that has a

sinusoidal dependence on time. The dependence of the field

strength on the spatial coordinates (x, y, s) is in general quite

complicated; but in simple cases it can be broken down into a

set of modes – just like the magnetic field in a multipole

magnet can be broken down into a set of multipoles.

For the simplest RF cavity, we only need consider a single

mode – the TM010 mode.
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Electromagnetic Fields in an RF Cavity

RF cavity.
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Electromagnetic Fields in an RF Cavity

Superconducting 9-cell RF cavity.
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The TM010 Mode in an RF Cavity

In the TM010 mode in an RF cavity, the electric field has

components in cylindrical coordinates:

Eρ = 0

Eφ = 0 (23)

Es = ÊsJ0(kρ) sin (ωRFt+ φ0)

(where ρ =
√

x2 + y2) and the magnetic field is:

Bρ = 0

Bφ =
k

ω
ÊsJ1 (kρ) cos (ωRFt+ φ0) (24)

Bs = 0

where Jn are Bessel functions of the first kind, ωRF is the RF

frequency, and φ0 is an arbitrary phase. It can be shown that

for ωRF/k = c, the above fields satisfy Maxwell’s equations, so

they are valid electromagnetic fields.
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The TM010 Mode in an RF Cavity

Bessel functions are solutions of the differential equation:

ξ2
d2Jn

dξ2
+ ξ

dJn

dξ
+ (ξ2 − n2)Jn = 0 (25)

for real n. Note that J0(ξ) = 0 for ξ ≈ 2.405.
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The TM010 Mode in an RF Cavity

If the cavity consists of a conducting cylinder of radius ρ0 with

axis along the reference trajectory, then the boundary

conditions require the longitudinal component Es to vanish at

ρ = ρ0.

Hence, the frequency of the electromagnetic field in the cavity

is determined by the cavity radius:

kρ0 ≈ 2.405 (26)

Since the function J0(ξ) has multiple zeroes, there are

(infinitely) many other modes that may exist in the cavity.

These higher-order modes have undesired effects, and are a

general problem in cavity design. Significant efforts are made in

the design and construction of RF cavities in accelerators to

suppress or “damp” higher-order modes.
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The TM010 Mode in an RF Cavity

Note that if a particle is inside the cavity at t = 0 and the RF

phase is φ0 = 0, then the particle is accelerated by the

longitudinal electric field Es. Therefore, the TM010 mode is

sometimes called the accelerating mode.

Note also that only the magnetic field has a transverse

component; and that the magnetic field has no longitudinal

component. Hence the name “TM” (for “transverse

magnetic”). The mode numbers (0,1,0) refer to the

azimuthal, radial, and longitudinal directions, respectively.
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The Hamiltonian in a TM010 RF Cavity

The TM010 mode fields may be derived from the

time-dependent magnetic vector potential:

Ax = 0 (27)

Ay = 0 (28)

As =
Ês

ω
J0(kρ) cos (ωRFt+ φ0) (29)

Now, in the accelerator Hamiltonian, we use the path length s

as the independent variable, rather than the time t. The

relationship between the two involves the dynamical variable z:

ct =
s

β0
− z (30)

Therefore, we can write the Hamiltonian in the TM010 fields:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p2y − 1

β20γ
2
0

− q

P0

Ês

ω
J0(kρ) cos

(

k

β0
s− kz+ φ0

)

(31)

where (for the fields to satisfy Maxwell’s equations) ωRF/k = c.
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The Hamiltonian in a TM010 RF Cavity

The Hamiltonian (31) has an unpleasant feature that we have

so far managed to avoid: it has an explicit dependence on the

independent variable s. This is allowed, but in this case makes

the equations of motion very difficult to solve, and the paraxial

approximation does not get us out of trouble.

To simplify the problem, we therefore average the Hamiltonian

in s over the length of the cavity:

〈H〉 = 1

L

∫ L/2

−L/2
Hds (32)

where L is the length of the cavity. The fields we have written

down in (23) and (24) have no dependence on s, so we can in

principle make the cavity any length we like; however, for

technical reasons, it is usual to make the cavity length L = π/k,

i.e. half the wavelength of radiation of frequency ωRF.
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The Hamiltonian in a TM010 RF Cavity

Using L = π/k, we can perform the integral in (32) and we find:

〈H〉 = δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p2y − 1

β20γ
2
0

− α

π
J0(kρ) cos (φ0 − kz)

(33)

where

α = π
q

P0

Ês

ωRF
T =

qÊsL

P0c
T (34)

and the transit time factor, T is given by:

T =
2β0
π

sin
π

2β0
(35)

Normally, we define the cavity voltage, V̂ such that:

V̂

L
= ÊsT (36)

so:

α =
qV̂

P0c
(37)
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The Hamiltonian in a TM010 RF Cavity

Making the paraxial approximation, we find the Hamiltonian:

〈H2〉 =
1

2
p2x +

1

2
p2y +

α

4π
cos(φ0)k

2
(

x2 + y2
)

−

α

π
sin(φ0)kz+

α

2π
cos(φ0)k

2z2 +
δ2

2β20γ
2
0

(38)

Note first the transverse focusing term: it is focusing in both

the horizontal plane and the vertical plane simultaneously. This

is something we could not achieve by the use of static

magnetic fields. In this case, it arises from the azimuthal

component of the magnetic field in the TM010 mode. To make

use of it, we have to choose a phase φ0 close to zero.
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The Hamiltonian in a TM010 RF Cavity

For an RF cavity, we will use the Hamiltonian in the paraxial

approximation (38):

〈H2〉 =
1

2
p2x +

1

2
p2y +

α

4π
cos(φ0)k

2
(

x2 + y2
)

−

α

π
sin(φ0)kz+

α

2π
cos(φ0)k

2z2 +
δ2

2β20γ
2
0

Note next the appearance of a term linear in z: this will result

in a change in the energy deviation independent of z, as long as

the phase φ0 6= 0 (and φ0 6= π). This is the term that describes

the acceleration of the particle.

Finally, note the term quadratic in z: this is the longitudinal

focusing we were looking for.
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Dynamical Map for a TM010 RF Cavity

Solving the equations of motion in the transverse plane, we find

that the solutions have zeroth-order as well as first-order terms:

~x(L) = R · ~x(0) + ~m (39)

The transfer matrix R is given by:

R =





















cosψ⊥
L
ψ⊥

sinψ⊥ 0 0 0 0

−ψ⊥
L
sinψ⊥ cosψ⊥ 0 0 0 0

0 0 cosψ⊥
L
ψ⊥

sinψ⊥ 0 0

0 0 −ψ⊥
L
sinψ⊥ cosψ⊥ 0 0

0 0 0 0 cosψ‖
1

β2
0γ

2
0

L
ψ‖

sinψ‖

0 0 0 0 −β2
0γ

2
0
ψ‖

L
sinψ‖ cosψ‖





















(40)

where:

ψ⊥ =

√

πα cosφ0
2

ψ‖ =

√
πα cosφ0
γ0β0

(41)
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Dynamical Map for a TM010 RF Cavity

The zeroth-order transverse terms in the solutions to the

equations of motion are all identically zero. The zeroth-order

longitudinal terms are:

mz =
2

π
L sin2

(

ψ‖
2

)

tanφ0 (42)

mδ = α
sinψ‖
ψ‖

sinφ0 (43)

For small α (high energy particle in a cavity with a weak field),

the map for the energy error δ becomes:

∆δ ≈ qV̂

P0c
(sinφ0 − kz0 cosφ0) (44)

where z0 = z(0).
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Vector Potential and Hamiltonian for a Solenoid

Solenoids are important components in accelerators. For

example, detectors in colliding beam machines usually sit inside

strong solenoids. A solenoid has a uniform magnetic field in the

longitudinal direction:

Bx = 0, By = 0, Bs = B0. (45)

It is not possible to derive this field from a vector potential

having zero transverse components. A suitable potential is:

Ax = −1

2
B0y, Ay =

1

2
B0x, As = 0. (46)

This leads to the Hamiltonian:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

− (px+ ksy)
2 − (py − ksx)

2 − 1

β20γ
2
0

(47)

where the normalised solenoid field strength ks is given by:

ks =
1

2

q

P0
B0 (48)
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Second-Order Hamiltonian for a Solenoid

The fact that the vector potential has non-zero transverse

components (unlike the other linear elements we have looked

at) means that we have to be particularly careful with the

meaning of the canonical momenta px and py. But let us

proceed with solving the equations of motion in the Hamiltonian

(47), which we do by making the usual paraxial approximation:

H2 =
1

2
p2x+

1

2
p2y+

1

2
k2sx

2+
1

2
k2s y

2−1

2
ksxpy+

1

2
kspxy+

δ2

2β20γ
2
0

(49)

Note the terms in x2 and y2: a solenoid provides horizontal and

vertical focusing, rather than focusing in one plane and

defocusing in the other. Note also the coupling terms in xpy

and pxy: motion lying initially in just one plane becomes (at

least partially) transferred into the other plane.
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Transfer Matrix for a Solenoid

We can solve the equations of motion from the Hamiltonian

(49). The resulting map can be expressed as a transfer matrix:

R =



























cos2 ωL sin 2ωL
2ω

1
2 sin 2ωL sin2 ωL

ω 0 0

−ω
2 sin 2ωL cos2 ωL −ω sin2 ωL 1

2 sin 2ωL 0 0

−1
2 sin 2ωL −sin2 ωL

ω cos2 ωL sin 2ωL
2ω 0 0

ω sin2 ωL −1
2 sin 2ωL −ω

2 sin 2ωL cos2 ωL 0 0

0 0 0 0 1 L
β20γ

2
0

0 0 0 0 0 1



























(50)

where:

ω = ks =
1

2

q

P0
B0 (51)
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Combined Function Magnets

Multipole fields can be superposed on each other. In the

multipole field expansion:

By + iBx =
∞
∑

n=1

(bn+ ian)

(

x+ iy

r0

)n−1

(52)

superposed fields are described by having more than one

non-zero coefficient bn and/or an. A magnet with superposed

magnetic fields is generally called a “combined function”

magnet. Examples of combined function magnets widely used

in accelerators are dipoles (bending magnet) with superposed

quadrupole fields, and sextupoles with superposed skew

quadrupole fields. Generally, combined function magnets are

used to help reduce the length (and therefore the cost) of a

beamline, but they can also help to improve the dynamical

properties of a lattice.
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Combined Function Magnets

For linear dynamics, the most important combined function

magnets are dipoles with superposed quadrupole fields. In

Cartesian coordinates, the field is:

By = b1 + b2
x

r0
, Bx = b2

y

r0
, Bz = 0. (53)

In bending magnets, we generally want to use a curved

reference trajectory; however, using curvilinear coordinates

complicates the description of the magnetic field in a combined

function bend.
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Combined Function Magnets

The magnetic field in a combined function bend may be

derived from the vector potential:

Ax = 0 (54)

Ay = 0 (55)

As = −B0

(

x− hx2

2(1 + hx)

)

−B1

(

1

2

(

x2 − y2
)

− h

6
x3 +

h2

24

(

4x4 − y4
)

+ · · ·
)

(56)

Note that the higher-order terms (x3, x4, y4 etc.) arise from

the curvature of the reference trajectory. The higher-order

terms are important for nonlinear dynamics, but do not

contribute to the linear effects.
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Hamiltonian for a Combined Function Bend

Using the vector potential (55) in the Hamiltonian, and making

the paraxial approximation (expanding to second order) we

have:

H2 =
1

2
p2x+

1

2
p2y+(k0−h)x+

1

2
(hk0+k1)x

2−1

2
k1y

2− h

β0
xδ− δ2

2β20γ
2
0

(57)

where the normalised field strengths are defined as usual:

k0 =
q

P0
b1, k1 =

q

P0

b2
r0

(58)

The effect of the superposed gradient k1 in the Hamiltonian is

as expected: it simply provides additional transverse focusing.
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Dynamical Map for a Combined Function Bend

Hamilton’s equations with the Hamiltonian (56) can be solved.

In the horizontal plane, the solutions are:

x(s) = x(0) cosωxs+ px(0)
sinωxs

ωx
+

(

δ(0)
h

β0
+ h− k0

)

(1− cosωxs)

ω2
x

(59)

px(s) = −x(0)ωx sinωxs+ px(0) cosωxs+

(

δ(0)
h

β0
+ h− k0

)

sinωxs

ωx
(60)

where:

ωx =
√

hk0 + k1 (61)
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Dynamical Map for a Combined Function Bend

In the vertical plane, the map for the combined function bend

is:

y(s) = y(0) coshωys+ py(0)
sinhωys

ωy
(62)

py(s) = y(0)ωy sinhωys+ py(0) coshωys (63)

where

ωy =
√

k1 (64)

The map in the vertical plane for a combined function bend is

the same as for a quadrupole: the only focusing in the vertical

plane comes from the quadrupole gradient.
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Dynamical Map for a Combined Function Bend

In the longitudinal plane, the solutions are:

z(s) = z(0)− x(0)
h

β0

sinωxs

ωx
− px(0)

h

β0

(1− cosωxs)

ω2
x

+ δ(0)
s

β20γ
2
0

−
(

δ(0)
h

β0
+ h− k0

)

h

β0

(ωxs− sinωxs)

ω3
x

(65)

δ(s) = δ(0) (66)
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A Word About Fringe Fields

So far, we have only considered the dynamics of a particle

within a given electromagnetic field: we have not thought

about how to get particles in and out of the fields. For

example, Maxwell’s equations forbid us from moving abruptly

from a drift (field-free) region into a multipole or solenoid field.

There has to be some “transition region” within which there

are non-zero fields that are not described by the usual

multipole formulae. The transition regions at either end of a

magnet are usually called the “fringe fields”.

Fringe fields have significant, and sometimes complicated,

effects. For linear dynamics, the most important fringe fields

are those at the ends of dipoles and solenoids. Fringe fields at

the ends of quadrupoles lead to (usually small) higher-order

effects.
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A Word About Fringe Fields

The precise effects of fringe fields depend on the design details

of the magnet, e.g. the gap between the poles in a dipole. To

do things properly, one should construct the dynamical map

from a detailed field description. This often requires significant

effort, and the techniques involved are beyond the scope of this

course. However, in many cases, we can make simple

approximations that provide a good description of the gross

effects. These approximations are one of the topics covered in

the next lecture.
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Summary

We have now derived linear dynamical maps for:

• separated and combined function dipoles

• solenoids

• normal and skew quadrupoles

• RF cavities

For each of these elements, we made the paraxial

approximation by expanding the Hamiltonian to second order in

the dynamical variables. This allowed us to find a linear map

for each element. The linear map may be expressed as a

transfer matrix.
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