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What we Learned in the Previous Lecture

In the previous lecture, we saw how the dynamics of a

conservative system could be derived from an appropriate

Hamiltonian.

The Hamiltonian is an expression containing the coordinates

and conjugate momenta (the canonical dynamical variables).

Using the Hamiltonian in Hamilton’s equations gives the

equations of motion for the system. These are first-order

simultaneous differential equations that one must solve to find

explicit expressions for the coordinates and momenta as

functions of the independent variable (usually, the time t).

We looked at a number of examples, including the Hamiltonian

for a non-relativistic particle moving through an

electromagnetic field.
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Course Outline

Part I (Lectures 1 – 5): Dynamics of a relativistic charged

particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate system

3. The Hamiltonian for a relativistic particle in a general

electromagnetic field using accelerator coordinates

4. Dynamical maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam

rigidity.
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Goals of This Lecture

In this lecture, we study the Hamiltonian for a relativistic

particle moving through an electromagnetic field in a straight

coordinate system. We shall use canonical transformations to

express the Hamiltonian in terms of dynamical variables that

are convenient for accelerator physics.
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The Relativistic Hamiltonian

Albert Einstein, 1879-1955

Einstein’s equation in Special Relativity relating the energy E

and momentum p̄ of a particle is:

E2 = p̄2c2 +m2c4 (1)

where m is the rest mass. Note that p̄ in this equation is the

mechanical momentum (indicated by the bar), not the

conjugate (canonical) momentum.
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The Relativistic Hamiltonian

We saw in Lecture 1 that the Hamiltonian often took the form:

H = T + V (2)

where T is the kinetic energy, and V is the potential energy; i.e.

the Hamiltonian is often the total energy of the system,

expressed in canonical variables.

Therefore, using Einstein’s equation (1), we write down for our

relativistic Hamiltonian:

H =

√

p2c2 +m2c4 (3)

where, in the absence of an electromagnetic field, the conjugate

momentum p is equal to the mechanical momentum p̄.

Linear Dynamics, Lecture 2 5 The Accelerator Hamiltonian



The Relativistic Hamiltonian

What equations of motion does the Hamiltonian (3) lead to?

Using Hamilton’s equations:

dxi
dt

=
∂H

∂pi
=

cpi
√

p2 +m2c2
(4)

and:
dpi
dt

= −
∂H

∂xi
= 0 (5)

Equation (5) simply expresses the conservation of momentum:

there are no forces acting on the particle, because we have not

yet introduced any electromagnetic field.

Equation (4) is equally interesting. Rearranging, we find:

p =
mẋ

√

1− ẋ2/c2
(6)

where, as usual, ẋ = dx
dt .
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The Relativistic Hamiltonian

To summarise, the Hamiltonian (3):

H =

√

p2c2 +m2c4 (7)

leads to the conservation of momentum (4):

ṗ = 0 (8)

and an expression for the relativistic momentum (6):

p = βγmc (9)

where:

β =
ẋ

c
γ =

1
√

1− β2
(10)

Finally, substituting (9) and (10) back into the expression for

the Hamiltonian (7), and identifying the energy E of the

particle with the Hamiltonian, we find:

E = γmc2 (11)

Eqs. (9) and (11) are as expected from Special Relativity.
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Relativistic Particles in an Electromagnetic Field

What about the electromagnetic field? For the nonrelativistic

case, we found that the Lorentz force equation followed from

the Hamiltonian if the potential energy was:

V = qφ (12)

and the conjugate or canonical momentum was:

p = mẋ+ qA (13)

so that the non-relativistic Hamiltonian took the form:

H =
(p− qA)2

2m
+ qφ (14)

This suggests that for the relativistic case, the Hamiltonian

should be:

H =
√

(p− qA)2 c2 +m2c4 + qφ (15)
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Relativistic Particles in an Electromagnetic Field

Our Hamiltonian for relativistic particles in an electromagnetic

field is (15):

H =
√

(p− qA)2 c2 +m2c4 + qφ (16)

What are the equations of motion that follow from this

Hamiltonian? Hamilton’s first equation gives:

dx

dt
=

∂H

∂px
=

c (px − qAx)
√

(p− qA)2 +m2c2
(17)

Rearranging gives:

p− qA = βγmc (18)

In other words, the canonical momentum is given by:

p = βγmc+ qA (19)
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Relativistic Particles in an Electromagnetic Field

The Hamiltonian (15) is:

H =
√

(p− qA)2 c2 +m2c4 + qφ (20)

Hamilton’s second equation gives:

dpx

dt
= −

∂H

∂x
(21)

=
qc

√

(p− qA)2 +m2c2
×

[

(px − qAx)
∂Ax

∂x
+ (py − qAy)

∂Ay

∂x
+ (pz − qAz)

∂Az

∂x

]

−q
∂φ

∂x
(22)

This looks a bit frightening, but with the help of the expression

(18) for the canonical momentum, we find that:

dpx

dt
= q

(

ẋ
∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

)

− q
∂φ

∂x
(23)
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Relativistic Particles in an Electromagnetic Field

The equation of motion for the canonical momentum is (23):

dpx

dt
= q

(

ẋ
∂Ax

∂x
+ ẏ

∂Ay

∂x
+ ż

∂Az

∂x

)

− q
∂φ

∂x
(24)

This has exactly the same form as for the non-relativistic case

that we looked at in Lecture 1. So we can immediately write

down the solution:

d

dt
(p− qA) = q (E+ ẋ×B) (25)

where the electric field E and magnetic field B are defined as

usual:

E = −∇φ−
∂A

∂t
B = ∇×A (26)

Recalling the expression for the canonical momentum (18) in

the relativistic case, we have:

d

dt
βγmc = q (E+ ẋ×B) (27)
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The Hamiltonian for Particles in an Accelerator

We now have a Hamiltonian (15) that describes the motion of

a relativistic charged particle in a general magnetic field:

H =
√

(p− qA)2 c2 +m2c4 + qφ (28)

In an accelerator, the magnets, RF cavities and other

components are at defined locations along the reference

trajectory: we know the longitudinal position at which a

particle arrives at a magnet, but we don’t necessarily know the

time at which it arrives. This means it is more convenient to

work with the path length s along the reference trajectory as

the independent variable, than the time t.

A change in independent variable from time t to path length s

may be accomplished with recourse to the principle of least

action, that we saw in Lecture 1.
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Path Length as the Independent Variable

Recall the Principle of Least Action: the Euler-Lagrange

equations define a path in a plot of q̇ vs q for which the action

S is a minimum:

δS = δ

[

∫ t1

t0
Ldt

]

= 0 (29)

Linear Dynamics, Lecture 2 13 The Accelerator Hamiltonian



Path Length as the Independent Variable

Now write the action in terms of the Hamiltonian:

S =
∫ t1

t0
(pxẋ+ pyẏ + pzż −H) dt (30)

Let us choose our coordinates so that the z axis defines the

reference trajectory. Changing the variable of integration from

time t to path length z, the action becomes:

S =
∫ z1

z0

(

pxx
′ + pyy

′ + pz −Ht′
)

dz (31)

where the prime denotes the derivative with respect to z.
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Path Length as the Independent Variable

The action with time as the independent variable is (30):

S =
∫ t1

t0
(pxẋ+ pyẏ + pzż −H) dt (32)

and the action with path length as the independent variable is

(31):

S =
∫ z1

z0

(

pxx
′ + pyy

′
−Ht′ + pz

)

dz (33)

Comparing equations (32) and (33), we see that to describe

the motion in Hamiltonian mechanics with path length z as the

independent variable, we should take as our canonical variables:

(x, px) , (y, py) , (−t,H) (34)

and use for the Hamiltonian:

H1 = −pz (35)
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Path Length as the Independent Variable

Identifying the Hamiltonian H with the energy E, we can

rearrange equation (15) to express pz as:

pz =

√

(E − qφ)2

c2
−m2c2 − (px − qAx)

2
− (py − qAy)

2 + qAz (36)

Therefore, in the new variables, our Hamiltonian is:

H1 = −

√

(E − qφ)2

c2
−m2c2 − (px − qAx)

2
− (py − qAy)

2
− qAz

(37)

where E is the total energy of the particle, and is now a

canonical momentum variable conjugate to −t.
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The Reference Momentum

It is useful to work with variables whose values remain small as

the particle moves through the accelerator: this enables us to

make some useful approximations. To do this, we introduce the

reference momentum P0. In principle, P0 can be chosen to have

any value you wish; but you would be wise to choose a value

close to the nominal momentum of particles in your accelerator.

It is easy to see that if we make the substitutions:

pi → p̃i =
pi
P0

(38)

then Hamilton’s equations remain unchanged as long as we

simultaneously make the substitution:

H1 → H̃ =
H

P0
(39)
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The Reference Momentum

In terms of the normalised momenta (38), the Hamiltonian is:

H̃ = −

√

√

√

√

(E − qφ)2

P2
0 c

2
−

m2c2

P2
0

− (p̃x − ax)
2
− (p̃y − ay)

2
− az (40)

where the normalised vector potential is defined by:

a = q
A

P0
(41)
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A Further Transformation

The transverse normalised momenta p̃x and p̃y should now be

small, but the longitudinal normalised momentum E/P0 will in

general be close to the speed of light, c. Therefore, we make a

canonical transformation, using a generating function of the

second kind:

F2(x, Px, y, Py,−t, δ, z) = xPx + yPy +

(

z

β0
− ct

)(

1

β0
+ δ

)

(42)

where Px, Py and δ are our new momentum variables, and β0 is

the normalised velocity of a particle with the reference

momentum P0. Using the equations:

p̃i =
∂F2

∂qi
Qi =

∂F2

∂Pi
K = H̃ +

∂F2

∂z
(43)

we find that the transverse variables are unchanged:

p̃x = Px, X = x (44)

p̃y = Py, Y = y (45)
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The Energy Deviation

The old and new longitudinal variables are related by:

E

P0
= c

(

1

β0
+ δ

)

, Z =
z

β0
− ct (46)

and the new Hamiltonian (dropping a constant term) is:

K =
δ

β0
−

√

√

√

√

(

1

β0
+ δ −

qφ

P0c

)2

− (Px − ax)
2
− (Py − ay)

2
−

m2c2

P2
0

−az

(47)

The new dynamical variable δ is given by:

δ =
E

P0c
−

1

β0
(48)

For a relativistic particle with the reference momentum P0, δ

will be zero. δ is generally called the “energy deviation”.
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Tidying Up

We have made a series of transformations. Let us tidy up the

notation, and rewrite:

K → H, Pi → pi, z → s, Z → z (49)

Then the Hamiltonian for a relativistic particle in an

electromagnetic field, using the distance along a straight

reference trajectory as the independent variable is:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ −

qφ

P0c

)2

− (px − ax)
2
− (py − ay)

2
−

m2c2

P2
0

−az

(50)

Since mc
P0

= 1/γ0β0, where γ0 = 1/
√

1− β2
0 we can write:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ −

qφ

P0c

)2

− (px − ax)
2
− (py − ay)

2
−

1

β2
0γ

2
0

− az

(51)
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Summary of Definitions

Let us remind ourselves of a few definitions. The following are

physical constants: q is the charge of the particle; m is the rest

mass of the particle; c is the speed of light. The reference

momentum P0 can be chosen freely, but should have a value

close to the nominal momentum of particles in the accelerator.

β0 is the normalised velocity of a particle moving with the

reference momentum. The dynamical variables are:

(x, px) , (y, py) , (z, δ) (52)

The energy deviation is defined by (48):

δ =
E

P0c
−

1

β0
(53)

Finally, the electromagnetic potential functions are:

φ(x, y, z; s), a(x, y, z; s) =
q

P0
A(x, y, z; s) (54)
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Physical Interpretation of the Canonical Variables

The physical meaning of the transverse coordinates x and y is

clear enough: x and y are simply the coordinates of the particle

in a Cartesian coordinate system. The energy deviation is given

by (48):

δ =
E

P0c
−

1

β0
(55)

Using Hamilton’s equations with the Hamiltonian (51), we can

derive the equation of motion for the longitudinal coordinate z.

In a field-free region:

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p2y −
1

β2
0γ

2
0

(56)

It follows from Hamilton’s equations:

dz

ds
=

∂H

∂δ
=

1

β0
−

1
β0

+ δ
√

(

1
β0

+ δ
)2

− p2x − p2y −
1

β2
0γ

2
0

(57)
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Physical Interpretation of the Canonical Variables

For the special case px = py = 0, and using:

1

β0
+ δ =

E

P0c
=

γ

γ0β0
(58)

we find:
dz

ds
=

1

β0
−

1

β
(59)

Therefore:
d

ds
βz =

β

β0
− 1 (60)
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Physical Interpretation of the Canonical Variables

Now consider two particles moving along the reference

trajectory; one (the reference particle), with speed β0c, and the

other with speed βc. The rate of change of distance ∆s

between them is:

d

ds
∆s =

βct− β0ct

β0ct
=

β

β0
− 1 (61)

Comparing (60) and (61), we see that in a field-free region, for

a particle moving along the reference trajectory, the rate of

change of βz is equal to the rate of change of the distance of

the particle from the reference particle. We can think of βz as

the distance that the particle is ahead of the reference particle.
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Physical Interpretation of the Canonical Variables

Staying in a field-free region, from the Hamiltonian (56) we use

Hamilton’s equations:

dx

ds
=

∂H

∂px

dy

ds
=

∂H

∂py
(62)

to find:

px = D
x′

√

1+ x′2 + y′2
≈ x′ (63)

and:

py = D
y′

√

1+ x′2 + y′2
≈ y′ (64)

where the prime indicates the derivative with respect to the

path length s,

D =

√

1+
2δ

β0
+ δ2 (65)

and the approximations hold for x′2 + y′2 � 1, and δ � 1.
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Dynamical Map for a Drift Space

Finally, let us consider the evolution of the dynamical variables

in a drift space (field-free region) of length L. The Hamiltonian

is (56):

H =
δ

β0
−

√

√

√

√

(

1

β0
+ δ

)2

− p2x − p2y −
1

β2
0γ

2
0

(66)

Since there is no dependence on the coordinates, the momenta

are constant:

∆px = 0, ∆py = 0, ∆δ = 0 (67)
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Dynamical Map for a Drift Space

The transverse coordinates change as follows:

∆x

L
=

px
√

(

1
β0

+ δ
)2

− p2x − p2y −
1

β2
0γ

2
0

(68)

∆y

L
=

py
√

(

1
β0

+ δ
)2

− p2x − p2y −
1

β2
0γ

2
0

(69)

From (57), we have the change in the longitudinal coordinate:

∆z

L
=

1

β0
−

1
β0

+ δ
√

(

1
β0

+ δ
)2

− p2x − p2y −
1

β2
0γ

2
0

(70)
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Dynamical Map for a Drift Space

Equations (67), (68), (69) and (70) constitute the dynamical

map for a drift space: they tell us how to calculate the values

of the dynamical variables at the exit of the drift space, given

the values at the entrance.

Note that the map is nonlinear: the changes in the variables

have a nonlinear dependence on the initial values of the

variables.

However, we can make Taylor expansions for the changes in the

coordinates, (68), (69) and (70). For small values of the

canonical momenta, first-order expansions provide reasonable

accuracy for most applications. We can then write the transfer

map as a matrix...
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Dynamical Map for a Drift Space

For a drift space, we can write:

~x (s = L) ≈ R · ~x (s = 0) (71)

where:

~x =





















x
px
y
py
z
δ





















R =























1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0

0 0 0 0 1 L
β2
0γ

2
0

0 0 0 0 0 1























(72)

The above approximation is valid only for δ � 1, px � 1,
py � 1, and γ0 � 1.

We obtained this map by making a linear approximation to the
exact solutions to the equations of motion for the Hamiltonian
(66). There is a danger that we lost symplecticity by this
approach (in fact, in this case we are safe); there is an
alternative method...
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Dynamical Map for a Drift Space: Symplectic Approach

To obtain the linear map (72) for a drift space, we solved the

equations of motion for the exact Hamiltonian, then made a

linear approximation to the solutions.

Alternatively, we can expand the Hamiltonian to second order

in the dynamical variables, then solve the new Hamiltonian

exactly, to get a linear map. In other words, we approximate

the Hamiltonian, rather than the equations of motion.

The advantage of this approach is that the solution is

guaranteed to be symplectic. If we have to make an

approximation somewhere, we would rather have an

approximate map that is symplectic, than an approximate map

that is not symplectic.
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Dynamical Map for a Drift Space: Symplectic Approach

Expanding the Hamiltonian (66) to second order in the

dynamical variables (and dropping constant terms that make no

contribution to the equations of motion), we construct the

Hamiltonian:

H2 =
1

2
p2x +

1

2
p2y +

1

2

δ2

β2
0γ

2
0

(73)

This is much simpler than Hamiltonians we have recently

looked at! Solving the equations of motion is very easy, and we

find once again that the transfer matrix for a drift of length L

is given by:

R =























1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0

0 0 0 0 1 L
β2
0γ

2
0

0 0 0 0 0 1























(74)

Linear Dynamics, Lecture 2 32 The Accelerator Hamiltonian

Summary

For describing particle motion in high-energy accelerators, we

use a relativistic Hamiltonian, and momentum variables

normalised to a reference momentum. The beamline is

generally designed for particles with momenta close to the

reference momentum.

The fields (and hence the Hamiltonian) change continually

along the beamline. This means it is more convenient to work

with the path length as the independent variable, rather than

the time.

We can construct linear maps for accelerator components by

expanding the appropriate relativistic Hamiltonian to second

order in the dynamical variables. The advantage of this

approach is that the map that we produce is guaranteed to be

symplectic; but for the expansion to be valid, the values of the

dynamical variables must be small.
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