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Electromagnetism in Accelerators

Electromagnetism has two principle applications in accelerators:

• magnetic fields can be used to steer and focus beams;

• electric fields can be used to control the energy of particles.

However, understanding many diverse phenomena in

accelerators, and the design and operation of many different

types of components, depends on a secure knowledge of

electromagnetism.
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Electromagnetism in Accelerators

In these lectures, we will revise the fundamental principles of

electromagnetism, giving specific examples in the context of

accelerators. In particular, in this first lecture, we will:

• revise Maxwell’s equations and the associated vector

calculus;

• discuss the physical interpretation of Maxwell’s equations,

with some examples relevant to accelerators;

• see how the dynamics of particles in an accelerator are

governed by the Lorentz force;

• discuss the electromagnetic potentials, and their use in

solving electrodynamical problems;

• briefly consider energy in electromagnetic fields;

• show how the equations of electromagnetism may be

written to show explicitly their consistency with special

relativity.

The next lecture will be concerned with electromagnetic waves.
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Further Reading

• Recommended text:

I.S.Grant and W.R. Phillips, “Electromagnetism”

Wiley, 2nd Edition, 1990

• Free to download:

B. Thide, “Electromagnetic Field Theory”

http://www.plasma.uu.se/CED/Book/index.html

• Comprehensive reference for the very ambitious:

J.D.Jackson, “Classical Electrodynamics”

Wiley, 3rd Edition, 1998
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Electromagnetism in Accelerators

Understanding the properties of electromagnetic fields is

essential for understanding the design, operation and

performance of a wide variety of accelerator components.
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Maxwell’s Equations

Maxwell’s equations determine the electric and magnetic fields

in the presence of sources (charge and current densities), and

in materials of given properties.

James Clerk Maxwell,

1831–1879

∇ · ~D = ρ, (1)

∇ · ~B = 0, (2)

∇× ~E = −∂
~B

∂t
, (3)

∇× ~H = ~J +
∂ ~D

∂t
. (4)

ρ is the electric charge density, and ~J the electric current

density.

The electric field ~E and magnetic field (flux density) ~B

determine the force on a charged particle (moving with velocity

~v), according to the Lorentz force equation:

~F = q
(

~E + ~v × ~B
)

. (5)
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Permittivity and Permeability

The electric displacement ~D and magnetic intensity ~H are

related the the electric and magnetic fields by:

~D = εrε0 ~E, (6)

~B = µrµ0
~H. (7)

The quantities ε0 and µ0 are fundamental physical constants;

respectively, the permittivity and permeability of free space:

ε0 ≈ 8.854× 10−12 Fm−1, (8)

µ0 = 4π × 10−7 Hm−1. (9)

Note that:

c =
1

√
µ0ε0

≈ 2.998× 108 ms−1, Z0 =

√

µ0

ε0
≈ 376.73Ω. (10)
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Permittivity and Permeability

The relative permittivity εr and relative permeability µr are

dimensionless quantities that characterise the response of a

material to electric and magnetic fields.

Often, the relative permittivity and permeability of a given

material are approximated by constants; in reality, they are

themselves functions of the fields that are present, and

functions also of the frequency of oscillations of the external

fields.
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Vector Operators

Maxwell’s equations are written in differential form using the

operators div (divergence):

∇ · ~F ≡ ∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
, (11)

and curl:

∇× ~F ≡
(

∂Fz

∂y
− ∂Fy

∂z
,
∂Fx

∂z
− ∂Fz

∂x
,
∂Fy

∂x
− ∂Fx

∂y

)

≡

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣

∣

∣

∣

∣

∣

∣

∣

.

(12)

We will also encounter the grad (gradient) operator:

∇φ ≡
(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

, (13)

and the Laplacian:

∇2φ ≡ ∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
. (14)
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Integral Theorems

We wrote down Maxwell’s equations as a set of differential
equations; however, the physical interpretation becomes clearer
if the equations are converted to integral form. This may be
achieved using two useful integral theorems.

First, we consider Gauss’ theorem:
∫

V
∇ · ~F dV ≡

∮

∂V
~F · d~S, (15)

where ∂V is a closed surface enclosing volume V .
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Gauss’ Theorem

Let us apply Gauss’ theorem to Maxwell’s equation:

∇ · ~D = ρ, (16)

to give:
∮

∂V
~D · d~S =

∫

V
ρ dV. (17)

This is the integral form of Maxwell’s equation (1). From this

form, we can find a physical interpretation of Maxwell’s

equation (1). The integral form of the equation tells us that

the electric displacement integrated over any closed surface

equals the electric charge contained within that surface.
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Gauss’ Theorem and Coulomb’s Law

In particular, if we consider a sphere of radius r bounding a
spherically symmetric charge q at its centre, then performing
the integrals gives:

4πr2
∣

∣

∣

~D
∣

∣

∣ = q, (18)

which, using ~D = εrε0 ~E becomes Coulomb’s law:

~E =
q

4πεrε0r2
r̂. (19)
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Gauss’ Theorem

Similarly, we can find an integral form of Maxwell’s equation

(2):
∮

∂V
~B · d~S = 0.

In this case, we see that the total magnetic flux crossing any

closed surface is zero. In other words, lines of magnetic flux

only occur in closed loops. Put yet another way, there are no

magnetic monopoles.
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Stokes’ Theorem

Next, we consider Stokes’ theorem:
∫

S
∇× ~F · d~S ≡

∮

∂S
~F · d~̀, (20)

where ∂S is a closed loop bounding a surface S. This tells us

that the integral of the curl of a vector field over a surface is

equal to the integral of that vector field around a loop

bounding that surface.
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Stokes’ Theorem

If we apply Stokes’ theorem to Maxwell’s equation (3):

∇× ~E = −∂
~B

∂t
,

we obtain Faraday’s law of electromagnetic induction:
∮

∂S
~E · d~̀= − ∂

∂t

∫

S
~B · d~S. (21)

This is the integral form of Maxwell’s equation (3). It is often

written as:

E = −∂Φ
∂t
, (22)

where E is the electromotive force around a loop, and Φ the

total magnetic flux passing through that loop.
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Stokes’ Theorem

Finally, we can apply Stokes’ theorem to Maxwell’s equation

(4):

∇× ~H = ~J +
∂ ~D

∂t
,

to find the integral form:
∮

∂S
~H · d~̀= I +

∂

∂t

∫

S
~D · d~S, (23)

where I is the total electric current flowing through the closed

loop ∂S.
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Stokes’ Theorem and Ampère’s Law

Note that there are two terms on the right hand side of (23).

The first term, I, is simply a flow of electric current; in this

context, it is sometimes called the conduction current. In the

case of a uniform current flow along a long straight wire, the

conduction current term leads to Ampère’s law:

~H =
I

2πr
θ̂. (24)
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Displacement Current

The second term on the right hand side of the integral form of

Maxwell’s equation (23) is sometimes called the displacement

current, ID:

ID =
∂

∂t

∫

S
~D · d~S. (25)

The need for this term can be understood by considering the

current flow into a parallel-plate capacitor. We must find the

same magnetic field around the wire using Stokes’ theorem,

whether we integrate over a surface cutting through the wire,

or over a “deformed” surface passing between the plates...
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Displacement Current

Using Maxwell’s equation (1):

∇ · ~D = ρ, (26)

and applying Gauss’ theorem over a volume enclosing the
surface of one plate of the capacitor, we find:

∫

V
∇ · ~D dV =

∫

S
~D · d~S = q, (27)

where q is the charge on one plate. The conduction current is:

I =
dq

dt
=

∂

∂t

∫

S
~D · d~S = ID. (28)

In this case, we see that the displacement current between the
plates is equal to the conduction current carrying charge onto
the plates. Hence, we arrive at the same magnetic field, no
matter which surface we choose.
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Displacement Current and Conservation of Charge

The displacement current term in Maxwell’s equation (4) has

an important physical consequence. If we take the divergence

of this equation, we obtain:

∇ · ∇ × ~H = ∇ · ~J +
∂

∂t
∇ · ~D. (29)

Now, if we use the vector identity:

∇ · ∇ × ~F ≡ 0, (30)

and Maxwell’s equation (1), we find:

∇ · ~J +
∂ρ

∂t
= 0. (31)

This is the continuity equation, which expresses local

conservation of electric charge.
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Displacement Current and Conservation of Charge

The physical interpretation of the continuity equation becomes

clearer if we use Gauss’ theorem, to put it into integral form:
∫

∂V
~J · d~S = − ∂

∂t

∫

V
ρ dV. (32)

We see that the rate of decrease of electric charge in a region

V is equal to the total current flowing out of the region

through its boundary, ∂V . Since current is the rate of flow of

electric charge, the continuity equation expresses the local

conservation of electric charge.
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Example 1: The Betatron

Donald Kirst with the world’s first induction accelerator, at the University of Illinois, 1940.

A betatron uses a time-dependent magnetic field passing

through a toroidal vacuum chamber to accelerate a beam. By

Maxwell’s equation (3):

∇× ~E = −∂
~B

∂t
,

the varying magnetic field induces an electromotive force

around the vacuum chamber, which accelerates the particle.
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Example 2: Quadrupole Magnet

A quadrupole magnet is used to focus a beam of particles.

Inside a quadrupole, the magnetic field is given by:

Bx = k1y, By = k1x, Bz = 0. (33)

It is straightforward to show that (assuming a material of

constant permeability, e.g. a vacuum, between the poles of the

magnet):

∇ · ~B = 0, and ∇× ~H = 0. (34)

The field (33) is therefore a valid solution to Maxwell’s

equations, in the absence of electric currents and

time-dependent electric fields.
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Example 2: Quadrupole Magnet

If we consider a particle with charge q travelling at speed v

parallel to the z axis through the quadrupole field, we find that

the change in horizontal momentum over a (short) distance ∆z

is given by:

∆px = −qvBy∆t = −qk1x∆z. (35)

In other words, in passing through the quadrupole, the particle

receives a horizontal “kick” that is proportional to its

horizontal position with respect to the centre of the

quadrupole, and directed towards the z axis. This is just the

property we require of a focusing lens.
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Example 2: Quadrupole Magnet

The change in vertical momentum is given by:

∆py = qvBx∆t = qk1y∆z. (36)

Here, the vertical kick is proportional to the vertical offset, but

directed away from the z axis. The quadrupole is defocusing in

the vertical direction.
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Example 3: Septum Magnet

As a final example, consider a

thin metal “blade” of width ∆x

in the y − z plane, carrying cur-

rent J∆x in the z direction per

unit length in the y direction.

.

Using Maxwell’s equation (4):

∇× ~H = ~J +
∂ ~D

∂t
,

and Stokes’ theorem, we find that:
∫

S
∇× ~H · d~S =

∮

∂S
~H · d~̀= 2H∆y = J∆x∆y. (37)
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Example 3: Septum Magnet

The magnetic field is in the y direction. If we superpose a field

from an external source with H = J∆x/2 in the y direction,

then we obtain a total field with uniform H = J∆x in the y

direction on one side of the blade, and zero on the other side.

This kind of “septum” magnet has important applications for

beam injection and extraction.

Electromagnetism 26 Lecture 1: Fields and Potentials

Electromagnetic Potentials

Some problems in electromagnetism are solved more easily by

working with the electromagnetic potentials ϕ and ~A, rather

than with the fields directly.

The potentials are functions of position and time. The

electromagnetic fields are obtained by taking derviatives of the

potentials:

~B = ∇× ~A, (38)

~E = −∇ϕ− ∂ ~A

∂t
. (39)

To find the fields in a particular system, with specified currents,

charges, and boundary conditions, we have to solve Maxwell’s

equations. Since the fields are derived from the potentials,

there must be equivalent equations that allow us to determine

the potentials in a given system.
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Electromagnetic Potentials

First, note that from the vector identities:

∇ · ∇ × ~F ≡ 0, and ∇×∇f ≡ 0, (40)

for any vector field ~F and scalar field f , if the fields ~B and ~E

are given by (38) and (39), then the homogeneous Maxwell’s

equations (2) and (3):

∇ · ~B = 0,

∇× ~E = −∂
~B

∂t
,

are automatically satisfied.
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Electromagnetic Potentials

The inhomogeneous equations give:

∇× ~B = ∇×∇× ~A = µ~J + µε
∂ ~E

∂t
, (41)

and:

∇ · ~E = −∇ · ∇ϕ− ∂

∂t
∇ · ~A =

ρ

ε
. (42)

Now we use two further identities:

∇×∇× ~F ≡ ∇(∇ · ~F )−∇2 ~F , (43)

∇ · ∇f ≡ ∇2f, (44)

to write the equations for the potentials:

∇2 ~A− µε∂
2 ~A

∂t2
−∇

(

∇ · ~A+ µε
∂ϕ

∂t

)

= −µ~J, (45)

∇2ϕ− ∂

∂t
∇ · ~A = −ρ

ε
. (46)
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Electromagnetic Potentials

The equations for the potentials look very complicated.

However, we note that if the potentials happen to satisfy the

Lorenz gauge condition:

∇ · ~A+ µε
∂ϕ

∂t
= 0, (47)

then the equations for the potentials become:

∇2 ~A− µε∂
2 ~A

∂t2
= −µ~J, (48)

∇2ϕ− µε∂
2ϕ

∂t2
= −ρ

ε
. (49)

In fact, for any given fields ~E and ~B, it is always possible to

find potentials ϕ and ~A that satisfy the condition (47), as we

shall now show...
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Gauge Transformations

First, we note that if we have potentials ϕ and ~A that generate
a given electromagnetic field, then the potentials:

ϕ′ = ϕ− ∂ψ

∂t
, and ~A′ = ~A+∇ψ, (50)

for any function ψ, generate the same electromagnetic field.
The transformation (50) is known as a gauge transformation.

Now, let us suppose we have potentials that give:

∇ · ~A+ µε
∂ϕ

∂t
= f, (51)

where f is some function of position and time. If we make a
gauge transformation generated by ψ, where ψ satisfies:

∇2ψ − µε∂
2ψ

∂t2
= −f, (52)

then the new potentials ϕ′ and ~A′ satisfy the Lorenz gauge
condition (47):

∇ · ~A′+ µε
∂ϕ′

∂t
= 0, (53)
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Electromagnetic Potentials in the Lorenz Gauge

In the Lorenz gauge, the electromagnetic potentials satisfy the

wave equations with sources, (48) and (49):

∇2 ~A− µε∂
2 ~A

∂t2
= −µ~J,

∇2ϕ− µε∂
2ϕ

∂t2
= −ρ

ε
.

Note that these equations are decoupled ( ~A and ϕ appear only

in one equation or the other). This makes them easier to solve

in general than Maxwell’s equations, in which the fields tend to

be coupled. In fact, these equations have standard solutions.

For example, for the scalar potential:

ϕ(~r, t) =
1

4πε

∫

ρ(~r′, t′)
|~r − ~r′| d

3~r′, (54)

where:

t′ = t−
∣

∣~r − ~r′
∣

∣

v
, and v =

1
√
µε
. (55)
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Electromagnetic Potentials, Energy and Momentum

The motion of a charged particle in an electromagnetic field is

determined by the Lorentz force (5):

~F = q
(

~E + ~v × ~B
)

. (56)

The motion can also be obtained from conservation of the

total energy E and total momentum ~P, defined by:

E = γmc2 + qϕ, (57)

~P = ~βγmc+ q ~A, (58)

where ~β is the velocity divided by the speed of light, and γ is

the relativistic factor.

If the potentials are independent of time, then the total energy

E is conserved.

If the potentials are independent of a space coordinate (x, y or

z), then the corresponding component of the total momentum
~P is conserved.
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Electromagnetic Energy: Poynting’s Theorem

Since a charged particle moving in an electromagnetic field can

gain or lose energy, and the total energy within a closed system

is conserved, we expect that energy can be stored within the

electromagnetic field itself. The energy within an

electromagnetic field is made explicit using Poynting’s theorem.

From Maxwell’s equations, we can write:

~H · ∇ × ~E − ~E · ∇ × ~H = −vecH · ∂
~B

∂t
− ~E · ~J − vecE · ∂

~D

∂t
. (59)

Using a vector identity, we have:

~H · ∇ × ~E − ~E · ∇ × ~H ≡ ∇ ·
(

~E × ~H
)

. (60)

Combining these results, using Gauss’ theorem, and assuming

we are working in a linear medium (constant permittivity and

permeability) we arrive at Poynting’s theorem:

∂

∂t

∫

V

1

2
~D · ~E +

1

2
~B · ~H dV = −

∫

V
~E · ~J dV −

∫

∂V
~E × ~H · d~S. (61)
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Electromagnetic Energy: Poynting’s Theorem

Poynting’s theorem (61) can be written:

∂

∂t

∫

V

1

2
~D · ~E +

1

2
~B · ~H dV = −

∫

V
~E · ~J dV −

∫

∂V
~E × ~H · d~S.

The first term on the right is the rate at which the electric field
does work on charges within the volume V . We then make the
following interpretations:

• The expression on the left hand side of (61) represents the
rate of change of energy in the electromagnetic field within
the volume V . The energy density in the electric and
magnetic fields is then 1

2
~D · ~E and 1

2
~B · ~H, respectively.

• The second term on the right hand side represents the flux
of energy in the electromagnetic field. That is, the
Poynting vector ~E × ~H represents the flow of energy in the
electromagnetic field per unit time per unit area
perpendicular to ~E × ~H.

Electromagnetism 35 Lecture 1: Fields and Potentials



Electromagnetism and Special Relativity

Finally (for this lecture), we note that the theory of

electromagnetism based on Maxwell’s equations is fully

consistent with Special Relativity.

In particular:

• Electric charge is a Lorentz scalar: all observers will

measure the same charge on a given particle, irrespective of

that particle’s motion.

• The current and charge densities can be combined into a

four-vector ( ~J, cρ) that transforms (under a Lorentz boost)

the same way as the space-time four-vector (~x, ct).

• Similarly, the vector and scalar potentials can be combined

into a four-vector, ( ~A, φ/c).

• The components of the electromagnetic field can be

combined into a second rank tensor, with well-defined

transformation properties under a Lorentz boost.
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Electromagnetism and Special Relativity

The Lorentz transformation of any four-vector can be written

in matrix form. For example, for a boost along the x axis:










x′
y′
z′
ct′











=











γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ











·











x
y
z
ct











, (62)

where:

β =
v

c
, and γ =

1
√

1− β2
. (63)

The current density ( ~J, cρ) and four-potential ( ~A, φ/c) transform

in exactly the same way as the space-time four-vector (~x, ct).

The transformation of the electromagnetic fields is just a little

more complicated...
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Electromagnetism and Special Relativity

Using index notation, we can write the transformation of a

four-vector as:

x′µ = Λµνx
ν. (64)

where the indices µ and ν range from 1 to 4.

Note that we use the summation convention, so that a

summation (from 1 to 4) is implied whenever an index appears

twice in any term.

The transformation of the electromagnetic fields can be

deduced from the transformations of the potentials, and the

space-time coordinates. The result is:

F ′µν = ΛµαΛ
ν
βF

αβ, (65)

where Fαβ is the matrix:

F =











0 Bz −By −Ex/c
−Bz 0 Bx −Ey/c
By −Bx 0 −Ez/c
Ex/c Ey/c Ez/c 0











. (66)
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Electromagnetism and Special Relativity

Applying the Lorentz transformation to the field around a

static point charge, we find that the fields around a relativistic

moving charge are “flattened” towards the plane perpendicular

to the motion of the charge.

We also find a cancellation in the

forces on an adjacent, co-moving

charge, from the electric and magnetic

fields around a moving point charge.

This has important consequences for

bunches of particles in accelerators,

which hold together much longer at

higher energies, because the repulsive

Coulomb forces are mitigated by rela-

tivistic effects.
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Electromagnetism and Special Relativity

Note that any two four-vectors may be combined to form a

Lorentz scalar, using the metric tensor g. For example:

xµx
µ ≡ gµνx

νxµ (67)

where:

g =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1











(68)

is a Lorentz scalar (invariant under a boost).

Note that the metric tensor is used to change an “up” index to

a “down” index (a covariant vector to a contravariant vector).

In any summation over an index, the index should appear once

in the “up” position, and once in the “down” position.
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Electromagnetism and Special Relativity

To write the equations of electromagnetism in explicitly

covariant form (i.e. in a form where the transformations under

a boost are obvious), we need the four-vector differential

operator:

∂µ =

(

∂

∂x
,
∂

∂y
,
∂

∂z
,−1

c

∂

∂t

)

. (69)

The second-order differential operator, �, is called the

d’Alembertian, and is defined by:

� ≡ ∂µ∂
µ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2
. (70)
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Electromagnetism and Special Relativity

With the covariant quantities we have defined, Maxwell’s

equations may be written:

∂µF
µν = −µ0J

ν, (71)

∂λFµν + ∂µF νλ + ∂νFλµ = 0. (72)

The continuity equation may be written as:

∂µJ
µ = 0. (73)

The fields may be derived from the potentials using:

Fµν = ∂µAν − ∂νAµ. (74)

The Lorenz gauge condition is:

∂µA
µ = 0. (75)

In the Lorenz gauge, the potentials satisfy the inhomogeneous

wave equation:

�Aµ = −µ0J
µ. (76)
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Summary

You should be able to:

• write down Maxwell’s equations in differential form, and use

Gauss’ and Stokes’ theorems to change them to integral

form;

• discuss the physical interpretation of Maxwell’s equations,

with some examples relevant to accelerators;

• explain how the dynamics of particles in an accelerator are

governed by the Lorentz force;

• state the relationship between the electromagnetic

potentials and the electromagnetic field, and explain how

the potentials can be used in solving electrodynamical

problems;

• derive Poynting’s theorem, and explain the physical

significance of the different terms;

• write down the equations of electromagnetism in explicitly

covariant form.
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