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1 Introduction

This is an extended version of a talk given at the Working Seminar on Bridge-
land Stability Conditions in the Department of Mathematical Sciences at the
University of Liverpool in May 2019. The talk aims to explain the physical
background of some of the concepts used in the context of stability conditions
to an audience of mathematicians with no particular background in physics.
After a brief review of how particles and fields relate to representations of the
Poincaré group, we introduce Poincaré Lie superalgebras, central charges and
the BPS bound. Then we investigate the stability of BPS states and use the
N = 2 SU(2) gauge theory as an example of a physical theory where the space
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of ground states (‘moduli space’) separates into chambers with distinct BPS
spectra, separated by ‘walls of marginal stability.’ Finally we augment this ex-
ample by an embedding into string theory, where BPS states are realized by
D-branes, and conclude with some comments on how this relates to the topics
covered in the seminar.

2 Prelude: space, time and matter

2.1 Spacetime without gravity

Spacetime. Space and time are combined into spacetime. If effects of grav-
ity can be neglected, spacetime is modelled by Minkowski space (also called
Minkowski spacetime). We denote by R1,3 the vector space R4 equipped with a
non-degenerate bilinear form η of signature (1, 3),

η(x, y) = −x0y0 + x1y1 + x2y2 + x3y3 = ηµνx
µyν . (1)

Index notation. We use Einstein’s summation convention for the indices
µ, ν = 0, 1, 2, 3: any index which appears twice in a monomial, once as upper
once as lower index, is understood to be summed over its full range. (ηµν) =
diag(−1, 1, 1, 1) is the matrix of the bilinear form η with respect to an orthonor-
mal basis {eµ}, η(eµ, eν) = ηµν . The non-degenerate bilinear form η allows us
to identify V = R1,3 with its dual

V
∼=−→ V ∗ , v 7→ η(v, ·) .

Defining the dual (or reciprocal) basis {eµ} of V by

η(eµ, eν) = ηµν ,

we can assign to each vector v contravariant components vµ and covariant com-
ponents vµ:

v = vµeµ = vµe
µ .

Using that
η(eµ, eν) = ηµν

are the components of the inverse matrix of (ηµν) (which happens to be equal
to the matrix itself), and using Einstein’s summation convention, we can ‘raise
and lower indices’

V µ = ηµνVν , Vµ = ηµνV
ν ,

and have a certain flexibility in writing expressions such as scalar products:

η(v, w) = ηµνv
µwν = ηµνvµwν = vµw

µ = vµwµ .

Well formed equations in index notation satisfy the following criteria: all indices
are either summation indices or free indices. Summation indices appear twice in
a given monomial, once in upper once in lower position, and are understood to
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be summed over. Free indices must be in the same position on each monomial
of a well formed equation, and it is understood that the equation holds for all
values of the index. We remark that the formalism reviewed here generalises ‘in
the obvious way’ from orthonormal to general bases of V .

Minkowski space. Minkowski space M is the affine space modelled on R1,3

(or, in general dimension on R1,n). By common abuse of notation, the same
symbol R1,3 is often used for both the affine space and the underlying vector
space.

The connected isometry group of Minkowski space is the connected Poincaré
group SO0(1, 3) nR4, acting as

x 7→ Λx+ a

where Λ ∈ SO0(1, 3) and a ∈ R4.
Pseudo-orthogonal groups and their Lie algebras. When considered

as a matrix group, SO0(t, s) is the connected component of the identity of the
pseudo-orthogonal group

O(t, s) = {M ∈ GL(t+ s,R)|MT ηM = η} , η = dia(+1, . . .+ 1,−1, . . . ,−1) .

Its Lie algebra is
p(t, s) = so(t, s) + Rt+s .

Angular momentum, momentum and mass. The generators of the Lie
algebra so(1, 3) of SO0(1, 3) are denoted Mµν , µ < ν and Pµ, where µ, ν =
0, 1, 2, 3. Mµν generate rotations (the rotation subgroup SO(3) ⊂ SO0(1, 3))
and ‘boosts.’ Boosts are ‘hyperbolic rotations’ in planes spanned by a timelike
and a spacelike coordinate axis. The orbits in such planes are hyperbolas. In
physics such a hyperbolic rotation corresponds to a transformations between
frames (or ‘observers’), which are moving with constant relative velocity along
the spacelike axis. The generators Pµ generate translations. By the first Noether
theorem, the invariance of a physical theory (defined by an action principle)
under the action of a finite-dimensional Lie group implies the existence of a
conserved quantity. The conserved quantities associated with the generators
of the Poincaré group are the relativistic angular momentum and relativistic
momentum. The relativistic momentum combines energy and momentum:

Pµ = (E, p1, p2, p3) ,

where E = energy, ~p = (p1, p2, p3) is momentum and where we use units where
the speed of light is c = 1. The components of Pµ are not independent:

PµPµ = −E2 + (p1)2 + (p2)2 + (p3)2 = −M2 ,

where M is the mass. For M2 > 0 this relation defines a two-sheeted hyper-
boloid called the mass shell, and the relation between the components of Pµ is
called the mass shell condition. The existence of two sheets is related to the
existence of anti-particles: if a particle is distinct from its anti-particle (e.g.
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electron, in fact most particles) one uses both sheets, but if a particle is iden-
tical to its anti-particle (photon) one used only one sheet. For M2 = 0 the
mass hyperboloid degenerates into a cone. This relates to the fact that massive
and massless particles are qualitatively different. Representations with M2 < 0
would correspond to particles moving faster than the speed of light (‘tachyons’)
and are discarded on grounds of causality.

Representations of the Poincaré group. The irreducible unitary1 rep-
resentations of the Poincaré group as classified by two labels:

• The eigenvalue of the operator PµPµ, which is related to the mass M by
M2 = −PµPµ. In ‘physical’ representations M2 ≥ 0. Representations
with M2 > 0 are called massive representations, representations with
M = 0 are called massless representations.

• A representation of the little group, which is the isotropy subgroup of the
Lorentz group SO0(1, 3) acting on the generators Pµ of translations.

– For M2 > 0 the little group is SO(3). Its unitary irreducible repre-
sentations R have dimension 0, 1, 3, 5, . . ., and can be labeled by the
spin s = 0, 1, 2, . . .. The dimension of the spin-s representation Rs is
dimRs = 1

2s(s+ 1).

– For M = 0 the little group is isomorphic to the two-dimensional Eu-
clidean group SO(2)nR2. For ‘physical’ representations the factor R2

is represented trivially, so that the little group is effectively SO(2) ∼=
U(1). Its unitary irreducible representations are one-dimensional,
and are labeled by the helicity h = 0,±1,±2, . . ..

2.2 Spacetime with gravity

If gravitational effects are relevant, spacetime is modelled by a semi-Riemannian
manifold (M, g) with an indefinite metric of signature (1, 3) (in general dimen-
sion (1, n)). Following Einstein, gravity is not treated as a force, but encoded
in the geometry of spacetime. The metric g is determined by the distribution of
matter (the energy-momentum tensor) through the Einstein equations. If the
particular process one is interested has negligible ‘backreaction’ on the spacetime
geometry, one can treat g is given, and (M, g) as a non-dynamical ‘background.’
Minkowski spacetime is an example of a flat spacetime. It also is maximally sym-
metric, i.e. it hast the maximal number 1

2d(d+ 1) of isometries, where d is the
dimension. A generic spacetime does not have any isometries. The other two
maximally symmetric spacetimes are de Sitter space and anti-de Sitter space,
which have constant positive and negative curvature, respectively. The global
existence of a Lorentzian metric on a manifold is in general obstructed. For
example, the only closed Riemann surface admitting a global Lorentzian metric
is the torus (genus 1).

1We require unitary representations for consistency with quantum theory, where symme-
tries have to be implemented as unitary group representations.
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2.3 Matter

Matter comes in two forms:

• Particles are discrete and localized. They are characterized by their mass,
spin, and possibly charges. Mass and spin assign them to irreducible
unitary representations of the Poincaré group. Charges are labels corre-
sponding to further ‘internal’ group actions.

• Fields are continuous and extend over all of space. Geometrically they
are sections of tensor bundles T → M over spacetime M . Here tensor
bundles refers to bundles which can be constructed out of the tangent
bundle TM →M by taking duals and tensor products,

T = (TM ⊗ TM ⊗ · · · )⊗ (T ∗M ⊗ T ∗M ⊗ · · · )→M ,

and applying symmetrization, anti-symmetrization and contraction. More
generally fields may be sections of vector bundles of the form T ⊗V →M ,
where V →M is a vector bundle associated to a G-principal bundle over
M by some G-representation. The group G contains all ‘internal’ group
actions, where internal means any group action not acting on space-time.
Examples are the group actions associated to electromagnetism and other
interactions. Fields are subject to Lorentz-covariant (Lorentz-equivariant)
field equations. The linear part of such a field equation selects one (or
several) unitary irreducible representation of the Poincaré group. (The
non-linear part encodes interactions.) Thus fields like particles carry mass
and spin (and possibly charges, related to internal G-actions).

Example: The Fourier transform of the Klein-Gordon equation is the rela-
tivistic mass shell condition:

−�φ+M2φ = 0⇔ PµPµ +M2 = 0 ,

where � = ∂µ∂µ is the d’Alembertian or wave operator.
Remark: Other relativistic wave equations (Maxwell equations, Dirac equa-

tion) have several components, with each component satisfying the Klein-Gordon
equation as a consistency condition. The Klein-Gordon equation selects the
mass (representation of the translation group), whereas the algebraic relations
between the components select the spin/helicity (representation of the little
group).

Remark: While the linear part of a relativistic field equation determines
the mass and spin/helicity of a field, non-linear terms introduce interactions
(note that linear superpositions of solutions will in general not be solutions any
longer). For example

−�φ+M2φ = gφN−1 ,

where N ≥ 3 corresponds to a so-called φN -theory. The constant g is the
so-called coupling constant which measures the strength of the interaction. In
particular, g = 0 is the free (non-interacting) limit.
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2.4 Quantum aspects

Bosons and fermions. The states of a quantum system are described by
vectors v in a separable Hilbert space H. Inequivalent states do not correspond
to vectors v ∈ H but to rays [v] = C∗v ∈ PH. Group actions on rays must only
be representations up to a factor ω ∈ C∗:

[Rg(Rhv)] = [Rghv]⇔ RgRh = ω(g, h)Rgh , ω(g, h) ∈ C∗ .

Associativity of group multiplication implies that ω must be a two-cocycle. Rep-
resentations of a group G ‘up to factors C∗’ are called projective representations
of G. Projective representations of G are representations of a central extension
of G by C∗. In quantum theory, group actions must be unitary. This restricts us
to unitary ray representations of G, where ω takes values in U(1). If the cocycle
ω is trivial, a projective or ray representation is equivalent to an ‘ordinary rep-
resentation.’ Bargmann’s theory of ray representations provides a criterion for
testing whether ray representations are equivalent to ordinary representations
which only involves ‘factors’ ω close to the unit element. If this local criterion
is met all ray representations of a connected, simply connected Lie group are
ordinary representations, and all projective representations of its non-simply
connected factor groups lift to ordinary representations of their universal cover.
This criterion is met by all semi-simple groups, and, by inspection, also for the
connected Poincaré group.

It is convenient to work with ordinary representations of the universal cov-
ering group G̃ instead of projective representations of a non-simply connected
group G. In this sense the ‘quantum mechanical rotation group’ is not SO(3),
but is universal cover Spin(3) ∼= SU(2), while the ‘quantum mechanical Lorentz
group’ is not SO0(1, 3) but Spin0(1, 3) ∼= SL(2,C). In terms of spin and he-
licity this means that we need to allow half-integer values, s = 0, 1

2 , 1, . . . and
h = 0,± 1

2 ,±1, . . .. Particles with integer spin are called bosons, particles with
half integer spin are called fermions. Fields with half integer spin/helicity cor-
respond to sections of spinor bundles S → M over spacetime M . Loosely
speaking, spinor bundles arise as ‘square roots’ of the tangent bundle (quite
literally for the tangent bundle of a Riemann surface without boundary). More
precisely, the tangent bundle is a GL(d,R) vector bundle associated to the frame
bundle. If we require the existence of a Lorentzian metric (which is in general
obstructed), the structure group can be reduced to SO0(1, 3). One can then
try to lift the transition functions of the tangent bundle to Spin0(1, 3) and thus
obtain a Spin0(1, 3) vector bundle S, In general, it is not possible to perform
this lifting consistently globally on M . The obstruction is measured by certain
Stiefel-Whitney classes. Manifolds which admit spin bundles are called spin
manifolds.

Particles and fields. By combining quantum theory with special relativity
(that is, by formulating quantum theory as a theory on Minkowski space with
the Poincaré group as invariance group) we obtain (relativistic) quantum field
theory. In quantum field theory there is no fundamental distinction between
particles and fields, which just correspond to different types of states. The
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states of a single particle of given mass, spin (and possible charges) is described
by its one-particle Hilbert space H ∼= L2(R3,CN , dµ). The elements of H can
be interpreted as ‘momentum-space’ wave functions, that is they encode the
probability distribution for measuring a particular value of the momentum ~p ∈
R3. The multiple components CN encode a unitary irreducible representation
of the Poincaré group determined by the mass and spin/helicity of the particle,
plus possibly further internal G-representations corresponding to its charges.
dµ is the Lorentz invariant measure on the mass shell PµPµ = −M2

Multi-particle states for a given particle species (same mass, spin and charges)
are obtained by taking tensor products of one-particle Hilbert spaces H. Since
quantum mechanical particles are indistinguishable, one does not take the full
tensor product, but either its symmetric or its antisymmetric part. To avoid
causality-violating effects which propagate faster than the speed of light, one
must take the symmetric tensor product for bosons (integer spin) and the anti-
symmetric tensor product for fermions (half-integer spin).

Fboson = C⊕H⊕ (H⊗s H)⊕ · · · , (2)

Ffermion = C⊕H⊕ (H ∧H)⊕ · · · . (3)

This incorporates the Pauli principle which states that two fermsions can never
occupy the same state (have the same one-particle wave function). This principle
explains the stability of atoms and of atomic matter. Without it molecules and
by extension cells and living organisms could not exist, because electrons would
preferably2 occupy their lowest energy state. However the existence of molecules
and and other compounds of atoms relies on electrons being forced to occupy
higher states.

The multiparticle Hilbert spaces Fboson/fermion are called Fock spaces. The
above decomposition corresponds to eigenstates of the particle number: C con-
tains the zero-particle state (‘vacuum’), H one-particle states, and H⊗sN and
H∧N N -particle states. General states do not have a fixed particle number
and therefore have a non-trivial projection onto more than one ‘particle number
sector.’ 3 What is called ‘fields’ in classical physics, that is smooth extended
distributions of energy and momentum, corresponds to so-called coherent quan-
tum states which have contributions from all particle numbers N . Fock spaces
arise naturally when ‘quantizing’ a classical field theory.

2At zero temperature all electrons would sit in the ground state. At finite temperature one
would obtain a thermal distribution favouring low energy states.

3Fineprint: this only holds if there is no ‘central observable’ defining ‘superselection sec-
tors’. In this case sums of states with different particle number are ‘mixed states’ rather than
‘pure states.’ Electrical charge is an example of a central observable defining superselection
sectors.
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3 Supersymmetry, BPS states and central ex-
tensions

3.1 Poincaré Lie superalgebras

There are two types of symmetries in a quantum (field) theory: space-time
symmetries, that is the Poincaré group, and internal symmetries. One natural
question is whether both types of symmetries could be part of a single simple
group, thus ‘unifying’ all symmetries. A no-go theorem of Coleman and Mandula
states that if in a quantum field theory the Poincaré group and internal groups
do not form a direct product, the theory must be non-interacting.4 A later
theorem by Haag, Sohnius and Lopuszanzki showed that the no-go theorem
can be circumvented if one allows a more general concept of symmetry, dubbed
supersymmetry, which uses a ‘graded generalisation’ of the concepts of Lie group
and Lie algebra. We take the Lie algebra point of view in the following.

We denote by V = Rt,s the standard real vector space of dimension t + s,
equipped with a bilinear form of signature (t, s). We may use same symbol for
the affine space over V . The Lie algebra of isometries of the affine space V is
the Poincaré Lie algebra:

p(V ) = so(V )⊕ V .

Its extension to a Lie superalgebra, is called a Poincaré Lie superalgebra. As
Z2-graded vector spaces Poincaré Lie superalgebras take the form

sp(V, S) := (so(V )⊕ V )⊕ S = g0 ⊕ g1 .

where S is a spinor module which may be reducible. The real spinor module
SR is the Spin(V )-module obtained by restricting an irreducible module of the
real Clifford algebra. The complex spinor module S is the Spin(V )-module
obtained by restricting an irreducible module of the complex Clifford algebra
Cl(V ) = Cl(V )⊗ C. For V = R1,3

Cl1,3 ∼= R(4)⇒ SR = R4

which is irreducible as a Spin representation (‘Majorana spinors’), and

Cl4 ∼= C(4)⇒ S = C4 ,

which is reducible as a Spin representation (‘Dirac spinors’), S ∼= SR ⊕ SR. For
V = Rt,s the most general choice for S is

S =

N⊕
i=1

SR .

The case N = 1 is called minimal supersymmetry, while the case N > 1,
where several copies of the irreducible Spin module are used, is called extended
supersymmetry.

4More precisely, the asymptotic time evolution operator (‘S-matrix’) is the identity.
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Following physicist’s conventions, we denote antisymmetric brackets (such
as commutators in the case of an underlying associative algebra) by [·, ·], and
symmetric brackets (such as anti-commutators in the case of an underlying
associative algebra) by {·, ·}. A Lie superalgebra structure requires:

[g0, g0] ⊂ g0 , [g0, g1] ⊂ g1 , {g1, g1} ⊂ g0 .

The bracket on g0 is the one of the Poincaré Lie algebra. The bracket [so(V ), S])
is fixed by S being an so(V) ∼= spin(V ) module. Further constraints arise from
the Z2-graded version of the Jacobi identity. The bracket between V and S
must be trivial, and it remains to specify

{S, S} ⊂ V

This is equivalent to specifying a real, symmetric, spin(V ) equivariant bilinear
form on the spinor module S. All such forms have been classified for arbitrary
signature (t, s) and spinor module S.

The Lie superbracket extends the Lie bracket on g0 to bracket with is Z2-
graded symmetry: antisymmetric on g0 and between g0 and g1, but symmetric
on g1. The bracket between so(V ) and S is fixed by S being an so(V ) module.
It turns out that bracket has to vanish between V and S, so that the only
choice one has to make is a the bracket on S. It turns out that this has to be
valued in V (‘supertransformations are square roots of translations’), and that
the extension of p(V ) to a Lie superalgebra sp(V ) is equivalent to the choice of a
real, symmetric, vector-valued, spin(V )-equivariant bilinear form on the spinor
module S:

{·, ·} : S × S → V .

N-extended supersymmetry algebra based on V = R1,3. In physicist’s
notation the symmetric bracket S × S → V is specified as

{Qiα, Q
j
β} = (Cγµ)αβPµδ

ij .

and this is referred to as the ‘supersymmetry algebra’ (or ‘supertranslation al-
gebra’). The supercharges Qiα, i = 1, . . . , N, α = 1, . . . , 4 are the generators of
sp(V ) belonging to S, while Pµ, µ = 0, 1, 2, 3 are the components of the rela-
tivistic momentum, aka generators of translations. γµ are the Dirac-γ matrices,
which represent the generators of Cl(V ) on SR. Finally C is the so-called charge
conjugation matrix, which relates particles and anti-particles. The matrix C is
either symmetry or antisymmetric, and has the property that the matrix Cγµ

is symmetric for all µ. This is necessary in order that the rhs is symmetric in
the multi-indices (α, i), (β, j), as required to define a symmetric bracket.

We can rephrase this as follows. It is sufficient to consider the minimal case
N = 1, which is equivalent to taking i = j fixed. We need a real, vector-valued,
symmetric, spin(V )-equivariant bilinear form Π ∈ (Sym(S∗ × S∗) × V )spin(V ),
so that we can define

{s, t} = Π(s, t) , ∀s, t ∈ S .
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It can be shown that vector space (Sym(S∗ × S∗) × V )spin(V ) is spanned by
vector-valued bilinear forms Πβ which are defined in terms of so-called super-
admissible bilinear forms S by

〈Π(s, t), v〉 = β(vs, t) , ∀s, t ∈ S, ∀v ∈ V

where 〈·, ·〉 is the scalar product on V , and where vs denote Clifford multipli-
cation, that is the action of V ⊂ Cl(V ) on its module S. Now introduce bases
Qα, Pµ for S, V and expand s = sαQα, t = tαQα, v = vµPµ. Then

Π(s, t) = sαtβ{Qα, Qβ} = sαtβMµ
αβPµ

where Mµ
αβ are the coefficients of Π with respect to the basis. Taking the scalar

product with v gives
〈Π(s, t), v〉 = sαtβvµM

µ
αβ .

Since Π is obtained by taking a scalar bilinear form β and performing Clifford
multiplication in the first argument, the coefficients Mµ

αβ take the special form5

Mµ
αβ = (Cγµ)αβ

where C is the matrix of the bilinear form β. Therefore

{Qα, Qβ} = Mµ
αβPµ = (Cγµ)αβPµ

The standard choice for β is the bilinear form defined by the charge conjugation

matrix C. This matrix defines an isomorphism S
∼=−→ S∗ from the complex spinor

module to its dual. Therefore it also defines a complex, bilinear form

βC : S× S→ C ,

which can be shown to be either symmetric or antisymmetric, and to be Spin in-
variant. Moreover this bilinear form is super-admissible, meaning that it defines
a complex, symmetric, Spin equivariant bilinear form

ΠC : S× S→ V ⊗ C .

Using that V ∼= V ∗ we can write this as

ΠC(γ·, ·, ·) : V ⊗ C× S× S→ C , (v, s, t) 7→ βC(vs, t) = βC(γvs, t)

where vs = γvs = vµγ
µs denotes Clifford multiplication.

The complex spinor module S always carries at least either a Spin-invariant
quaternionic structure or a Spin-invariant real structure. For V = R1,3 there
exists a Spin-invariant real structure ρ, whose fixed points can be identified with

5Depending on conventions for index notation, this term might take different forms. In my
favourite convention it’s actually not (Cγµ)αβ but (γµC−1)αβ ...
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the real spinor module, Sρ ∼= SR. This allow to restrict ΠC to real, symmetric,
vector-valued, Spin-equivariant bilinear form on SR:

(ΠC)|SR×SR : SR × SR → V .

This then defines the minimal four-dimensional supersymmetry algebra. For
the ‘N -extended supersymmetry algebra’ with N > 1 one essentially takes N
copies.

Remark: Restriction to N ≤ 8 Mathematically any positive integer N
makes sense, but for theories withN > 8 the smallest massless representation on
fields contains fields of spin larger than 2. For such theories Poincaré covariant,
unitary, interacting field equations can only be formulating by using infinitely
many fields (‘higher spin theories,’ possibly a zero tension limit of string theory).
Similar remarks apply to theories in dimension D > 11. In general dimension D,
the realisation of supersymmetry in field theories requires to limit the number
of real supercharges to 16 without coupling to gravity and to 32 with coupling
to gravity. In four dimension this implies N ≤ 8, in D = 11 there is a unique
theory, eleven-dimensional supergravity.

3.2 Central charges and the BPS bound

Supersymmetry and Stability. Simple supersymmetry implies the positivity
of energy, E ≥ 0. If the supersymmetry algebra admits a central extension
(which happens for N > 1, then supersymmetry implies a stronger bound: the
mass M of any state is bounded from below by the modulus of its central charge
Z, that is the eigenvalue of the central operator, likewise denoted Z (since on
irreducible representation Z is proportional to the identity):

M ≥ |Z| .

States which saturate this ‘BPS bound’

M = |Z|

are called BPS states. They can only decay into other BPS states (semi-stability
in the terminology of the seminar), and transform in short or BPS representa-
tions of the supersymmetry algebra, where part of the generators at trivially.
Many supersymmetric theories do not have a unique ground state, but a ‘moduli
space of vacua’ M. Then the central charge in general depends on the choice
of the ground states, and varies if we deform along M. A subset of the BPS
states is absolutely stable, that is they cannot even decay into other BPS states
(stability in the terminology of the seminar). Upon variation over M we may
encounter special loci (hypersurface) where such stable states become unstable.
Such hypersurfaces are called walls of marginal stability, and they decompose
M into chambers. Upon deformation through such a wall the BPS spectrum
changes, that is wall crossing removes or adds states to the BPS spectrum. In
the following we provide examples.
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Toy example: Supersymmetric quantum mechanics. Consider the
algebra:

2Q2 = {Q,Q} = H .

Here H is the Hamilton operator (generator of time-translations, an essentially
self-adjoint operator on a separable Hilbert space H). The supercharge Q =
Q†, is a Hermitian operator, which is the ‘square root’ of the Hamiltonian.
Suppose the representation of this algebra on H is unitary, and let v be an
energy eigenstate, Hv = Evv. Then:

0 ≤ 2(Qv,Qv) = 2(v,Q†Qv) = (v, 2Q2v) = (v,Hv) = Ev(v, v)⇒ Ev ≥ 0 ,

since we assumed unitarity. The spectrum of the Hamiltonian is non-negative.
Real life example: ‘Simple’ (N = 1) supersymmetry in d = 4 and

the positivity of energy.

{Qα, Qβ} = (Cγµ)αβPµ .

Consider a massive representation of p(1, 3). Then PµPµ = −M2, where M2 >
0. By an SO0(1, 3) transformation Pµ-eigenstates can be brought to the from
(M, 0, 0, 0) (‘rest frame’) and one obtains the bound

M ≥ 0 .

Thus masses are non-negative in supersymmetric theories. More generally, en-
ergy is non-negative, because if we consider multi-particle systems, M is the
total energy measured in the centre of mass frame. A famous application is
Witten’s proof of the Schoen-Yau positivity theorem for the ADM mass in gen-
eral relativity. Note that this proof does not depend on nature being actually
supersymmetric, it just uses that Einstein gravity can be embedded into a su-
persymmetric theory. A key concept used in the proof is the one of a Killing
spinor, which is analogues to the one of a Killing vector. This concept is widely
used in spin geometry.

Toy example: A stripped down version of four-dimensional N = 2
supersymmetry. Consider the algebra6

{Qi, Q†j} = δijH , i, j = 1, 2 ,

{Q1, Q2} = Z = {Q†1, Q
†
2} .

where H = H† is the Hamiltonian, and where Z = Z† is central, [Z,Qi] =
[Z,H] = 0. Z is also called a central charge. By Schur’s Lemma central opera-
tors act as multiplets of the identity on irreducible representations. Taking the
linear combinations

a =
1√
2

(Q1 +Q†2) , b =
1√
2

(Q1 −Q†2) ,

6While so far supercharges were real Lie superalgebra generators, here I work with complex
generators which (under the hood) are complex linear combinations of real generators. This
is natural for the N = 2 superalgebra since SR ⊕ SR ∼= S. In this example Z is Hermitan (real
eigenvalues), for (my) convenience. In examples with interesting stability properties Z has a
complex spectrum.
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the algebra can be rewritten:7

{a, a†} = H + Z , {b, b†} = H − Z ,

where {a, a} = 0, etc. Then on unitary, irreducible representations, for an
energy eigenstate v:

0 ≤ ((a† ± a)v, (a† ± a)v) = (v, {a, a†}v) = (v, (H + Z)v) = (Ev + Z)(v, v)

Here we used that Z has the same eigenvalue on all states of an irreducible
representation. For v 6= 0 it follows that Ev + Z ≥ 0. Therefore H ≥ −Z. A
similar computation for b, b† gives H ≥ Z. This is the BPS bound:

H ≥ |Z| > 0 .

The spectrum of the Hamiltonian is bounded from below by the modulus of the
central charge.

Thus we have examples of the following central concepts.

• The BPS bound: the values of ‘central charges’ on irreducible representa-
tions provide a lower bound for the eigenvalues of the energy:

H ≥ |Z| .

• BPS states are states which saturate the BPS bound, Hv = Zv. They are
invariant under part of the supersymmetry algebra. Assume without loss
of generality that Z > 0. Then

0 = (v, (H − Z)v) = (v, {b, b†}v) = ((b† ± b)v, (b† ± b)v) .

By unitarity this implies (b± b†)v = 0 for v 6= 0, and therefore bv = b†v =
0. Thus b, b† act trivially (as multiplication by zero) on BPS states.

Real life case: Extended N = 2 supersymmetry in d = 4, central
charges and the BPS bound. N = 2 supersymmetry algebra in d = 4 is:

{Qiα, Q
j
β} = (Cγµ)αβPµδ

ij , i, j = 1, 2 .

This algebra admits a complex central extension. The Spin0(1, 3) decomposition
on the left hand side:

(4× 4)sym = 10 = V + Λ0V + ΛmaxV + · · ·

where apart from V we have only shown irreducible representations that trans-
form trivially under Spin0(1, 3). Of course, on needs to make sure that the
superbracket can be extended consistently. The centrally extended N = 2 su-
persymmetry algebra is:

{Qiα, Q
j
β} = (Cγµ)αβPµδ

ij +QCαβε
ij + P (Cγ∗)αβε

ij

7We remark that this is a Clifford algebra written in terms of ‘fermionic ladder operators.’
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where P,Q are Hermitian and commute with all other generators, where

(εij) =

(
0 1

−1 0

)

and where −γ∗ ∝ γ0γ1γ2γ3 represents the generator ΛtopV ⊂ Cl1,3. To check
that the algebra is consistent, we remark that in the representation we have cho-
sen Cαβ and (Cγ∗)αβ are antisymmetric. Thus all terms on r.h.s. are symmetric
in the multi-indices (α, i), (β, j), as required.

Working out the representation theory leads to a structure analogous to the
previous toy example. In particular, the BPS bound for massive representations
is:

M ≥ |Z| =
√
Q2 + P 2 ,

where Z = Q + iP is the complex central charge of the representation. One
example of a BPS representation isN = 2 (BPS or short) vector multiplet, which
for M = |Z| = 0 turns into the massless vector multiplet. Vector multiplets
contain a vector field, two fermions of Spin 1/2, called gaugini, and a scalar
field. In more detail they have the following field content:

• Massless vector multiplet.

Field Helicity content degrees of freedom

Vector field A h = ±1 2

2 fermions λ1, λ2 h = ± 1
2 ,±

1
2 4

1 complex scalar a h = 0, 0 2

• Short massive (BPS) vector multiplet.

Field Spin content degrees of freedom

Vector field W s = 1 3

2 fermions λ1, λ2 s = 1
2 ,

1
2 4

1 real scalar r h = 0 1

Massive and massless vector multiplets are related by a Higgs mechanism. Note
that massive and massless vector fields have a different number of degrees of
freedom, which is compensated for by the scalar degrees of freedom. A massive
vector field transform in the three-dimensional spin one representation of the
little group SO(3), a massless vector corresponds to two irreducible representa-
tions of the little group SO(2). Physically the difference is that massless vector
particles propagate with the speed of light and only have two degrees of freedom
transverse to the direction of motion, while a massive vector particle propagates
slower than the speed of light and has a third, longitudinal degree of freedom.
To make a massless vector massive we need a scalar to provide the additional
degree of freedom. This is the (one version of) the Higgs effect.

14



3.3 Stability of BPS states

We now turn to the question under which conditions BPS particles can be
unstable and decay into other particles. As an example we start with a theory
that is a supersymmetric extension of Maxwell theory. It contains a massless
vector multiplet with vector field A, which we will call the Maxwell vector
multiplet. The couplings between the components of the multiplet are encoded
in a holomorphic function F (a), where a is the complex scalar field. This theory
does not have a unique ground state. Ground stables are labeled by the constant
part of the scalar field, called its vacuum expectation value, which we also
denote a. The vacuum expectation value a is a local coordinate on M, but not
necessarily the most convenient. We denote the coordinate we choose onM by
u.

We now consider add states in this theory which carry electric charge q
or magnetic charge p with respect to the vector field A. ‘Carrying charge’
means that these states interact in a certain with the vector field A. Otherwise
we only assume that these combine into BPS representations of the N = 2
supersymmetry algebra, and that the interaction terms which couple them to the
massless vector multiplet are supersymmetry invariant. While we do not specify
any further details, we remark that there are many N = 2 supersymmetric
theories of this type. Examples that we will come to later are the N = 2
supersymmetric SU(2) gauge theory studied famously by Seiberg and Witten,
and type II string theory on space-times of the form R1,3 × X, where X is
a Calabi-Yau threefold (‘compactification of type II string theory on X, i.e.
we take the view point that X is ‘small’ so the effectively spacetime is four-
dimensional.)

Under the stated assumptions states carry a central charge Z which depends
on the magnetic and electric charge p, q, and, through F (a) on the choice of a
ground state:

Z = paD(u) + qa(u) ,

where
aD = F ′(a) ,

and where a(u) is the vacuum expectation value of the complex scalar in the
Maxwell vector multiplet.8

Consider now three BPS states with charges (p, q), (p1, q1) and (p2, q2). Can
the particle with charges (p, q) decay into the others? Charge conservation
implies

q = q1 + q2 , p = p1 + p2 ⇒ Z = Z1 + Z2 .

For the masses M = |Z|, Mi = |Zi|, i = 1, 2 this implies

M = |Z| = |Z1 + Z2| ≤ |Z1|+ |Z2| = M1 +M2 .

8We will see later that generically all states except those in the Maxwell vector multiplet
are massless, and thus are ‘excited states’. They do not enter into the definition of the ground
state, except through interactions that have already been accounted for in the prepotential
F . We will see what this means concretely later.
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However, energy conservation allows the decay only if

M ≥M1 = M2 .

Therefore decay is marginally possible if

M = M1 +M2 .

Since we must have Z = Z1 + Z2 and M = M1 + M2 a decay is only possible
if the Z,Z1, Z2 are collinear (as two-component real vectors). A further con-
straint comes from charge quantization (Dirac quantization): the allowed values
of electric charges lie on a lattice Γ ∼= Z⊕ Z. We choose a normalization where
p, q ∈ Z. There are two cases:

1. aD/a 6∈ R. This is the generic situation (meaning: for a generic choice of
the prepotential this is the situation at a generic point on M). Then a
decay is only possible if p, q are co-prime. If we draw the allowed central
charges as a lattice embedded into C, then decays are possible if the BPS
states are on the same line through the origin. The lattice points closest
to the origin have co-prime entries and minimal mass among the points
on their line, hence they cannot decay.

Example: aD = 1, a = i. Then the state (p, q) = (mp′,mq′) where
m ∈ Z>0 can decay into m particles of charge (p′, q′). States with co-
prime (p, q) like (1, n), n ∈ Z cannot decay.

Along the axes the stable states are (±1, 0) and (0,±1). One decay which
we will interested in later is (1, 0) → (1,−1) + (0, 1). This is consistent
with charge conservation, but not possible for aD/a 6∈ R.

2. aD/a ∈ R. This situation is special (occuring for generic prepotentials
along ‘curves of marginal stability’). The conditions for decay become less
restrictive, because the lattice of central charges collapses to a line. States
that otherwise would be stable may now be able to decay. As an example,
consider aD = 1, a =

√
2. Then the decay (1, 0) → (1,−1) + (0, 1) is

possible.

This resulting picture is that the ground state manifolds decomposes into cham-
bers which are separated by ‘walls of marginal stability.’ Within each chamber
the spectrum of BPS states does not change when we move among vacua. When
reaching a wall of marginal stability, some BPS states become unstable and de-
cay, while new BPS states may occur, and therefore the chamber on the other
side has a different spectrum of BPS states. Our example was one-dimensional,
but it extends to higher-dimensional ground state manifolds, where BPS states
carry charges (pi, q

i), i = 1, . . . , NV under several Maxwell vector multiplets.
Remark: Multiple BPS bounds. In theories with higher supersymmetry

2 < N ≤ 8, we can have several charges and resulting BPS bounds:

M ≥ |Z1| ≥ |Z2| ≥ · · · ≥ 0 .
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Depending on how many bounds are saturated, there are several types of BPS
representations. The smallest BPS representations are always as large as mass-
less representations.

Remark: Supersymmetry algebras with N > 8 are well defined as algebras,
but any realisation as a filed theory requires to admit fields with spin s > 2.
Interacting unitary field theories seem to require infinity many fields. Such
‘higher-spin’ field theories fall outside the standard framework of field theory,
though they may be related to the zero-tension limit of string theory.

3.4 Main example: the Seiberg Witten solution of N = 2
SU(2) gauge theory

3.4.1 Introduction of the model

As an example we take the N = 2 SU(2) gauge theory, which contains 3 vector
multiplets which transform in the adjoint representation of the ‘gauge group’
SU(2). The three vector multiplets are labeled by their charges under the
subgroup (maximal torus) U(1) ⊂ SU(2). In the following we represent vector
muliplets by their highest (spin) components, the vector fields A,W+,W−:

Vector multiplet Electric charge q Magnetic charge q

A 0 0

W+ 1 0

W− −1 0

The moduli space M of this theory is locally parametrized by the vacuum
expectation value a of the complex scalar in the Maxwell vector multiplet A.
Since vacua related by a→ −a we can use u := 1

2a
2 to parametrize M = C. It

turns out that for a 6= 0 the W±-multiplets are massive. We can then use an
effective description where all relevant information is encoded in the prepotential
F (a) of the Maxwell vector multiplet.

3.4.2 The free theory

In the free (non-interacting limit) the prepotential is

F (a) =
1

2
τ0a

2 ,

where τ0 ∈ C is a complex constant. Parametrizing τ0 in the form

τ0 =
θ

2π
+

4πi

g2
,

we obtain two real constants: g is the coupling constant which (in the full,
interacting theory) measures the strength of interactions, θ is the ‘θ-angle’ which
appears as coefficient of the ‘topological term’

∫
R1,3 θF ∧F , where F ∈ Ω2(R1,3)
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is closed; therefore
∫
R1,3 θF ∧ F is a boundary term which does not contribute

to the equations of motion (as long as θ is constant).
The central charge of a BPS state in this theory is

Z(p,q) = paD + qa

where

aD = F ′(a) =
dF

da
.

In the free theory

Z(p,q) = pτ0a+ qa⇒M(p,q) = |pτ0 + qa|

The vector multiplet A has charges (p, q) = (0, 0) and is massless for all a ∈ C.
The vector multiplets W± have charges (p, q) = (0,±1) and mass M(0,±1) = |a|.
They are massless for a = 0 but massive for a 6= 0. This is an example of the
Higgs mechanism.

The full SU(2) theory also contains ‘solitons’ that is extended field configura-
tions which solve the field equations and are particle-like, in the sense that they
are localized and have finite mass, spin and charges. These include monopoles
with charges (p, q) = (±1, 0) and dyons with charges (p, q) = (±1,±1).9 They
are part of complete BPS supersymmetry representations, namely hypermulti-
plets which consist of 4 real scalars and two fermions. If we set θ = 0, and use
that in an expansion around the free limit 0 < g � 1, their masses and are

M(±1,0) ≈M(±1,±1) ≈
4π

g
|a| .

As long as a 6= 0, monopoles and dyons are much heavier as as the W± vector
multiplets, since g−1 � 1. Below will see how this picture is modified by
interactions, and ask whether whether BPS states are stable for all a ∈ C.

3.4.3 The ‘perturbative’ theory, and a problem

We now turn to the interacting theory. Perturbation theory allows to compute
corrections around the free limit as power series in the coupling constant g. It is
widely believed that perturbation theory, and supported by empirical evidence,
that perturbation theory is a valid asymptotic expansion, but it is also expected
that it has zero radius of convergence. For the N = 2 SU(2) gauge theory, the
perturbative corrections can be computed exactly. The prepotential and its
derivatives are

F (a) =
i

2π
a2 ln

a2

Λ2

aD = F ′(a) =
i

π
a

(
ln
a2

Λ2
+ 1

)
τ(a) :=

i

π

(
ln
a2

Λ2
+ 3

)
=:

θ(a)

2π
+

4πi

g2(a)

9There is an infinite tower of dyons, but here we only need the lightest such states.
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In the ‘perturbative theory’, the couplings τ, g, θ have become functions of the
vacuum expectation value a. In general, through the procedure of perturbative
renormalization, couplings become ‘running couplings’ which depend on the
energy scale at which they are defined or measured. In our description this
scale dependence is expressed through the vacuum expectation a and the scale
Λ, at which the coupling g diverges,

g(a)
a→Λ−−−→∞ .

Perturbation theory is believed to be an asymptotic expansion with zero radius
of convergence. In the case at hand it is valid for |a| � 1. While we cannot draw
conclusions of what exactly happens in the strong ‘coupling region’ of small |a|,
we can probe the effect of the singularity (branch point) at a = 0 by computing
the monodromy of (aD(u), a(u)) along a loop around a = 0 inside the region
|a| � 1. Using u = 1

2a
2 as coordinate on M = C\{0} we find:(

aD

a

)
u→e2πiu−−−−−−→

(
−1 2

0 −1

)
= M∞

(
aD

a

)
.

This monodromy is consistent with the singularity at a = 0 being due to the W±

vector multiplets becoming massless at this point.10 Under the transformation
M∞ the vector (aD, a) changes, but this is a symmetry transformation in the
sense that the theory is mapped back to itself, up to re-labeling states.

One can show that the picture that perturbation theory suggests for M is
qualitatively wrong. The reason is that N = 2 supersymmetry requires that

ds2 = Imτ(a)dadā

is a positive definite (‘special’ Kähler) metric onM. The positivity of Imτ also
follows from the natural requirement that the coupling g(a) should be real. One
can check that Imτ(a), as computed in perturbation theory is indeed positive
for |a| � 1. But as the imaginary part of a holomorphic function it is harmonic
and cannot have a minimum on the complex plane. Therefore Imτ must become
negative for sufficiently small |a|.

3.4.4 The Seiberg-Witten solution

Since no consistent picture of the dynamics of the theory arises from the per-
turbative analysis, ‘non-perturbative’ aspects seem to be relevant. The class of
non-perturbative effects that one expects to be present are instantons, which
in the functional integral formulation correspond to non-trivial saddle points.

10In perturbation theory logarithmic expressions for running couplings encode the charges of
intermediate states. We are working in the set-up of an effective field theory, whose definition
relies on a separation of states into light and heavy states. If a state which generically is heavy
becomes light in some region of the moduli space, this inconsistency manifest themselves as a
characteristic singularity.
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Instanton corrections to observables come with a weight factor e−1/g2 , and are
therefore non-analytic in the coupling g at the expansion point g = 0.

At the time of the seminal paper by Seiberg and Witten, it was known that
the instanton corrections to F (a) take the form

FNP (a) =

∞∑
k=1

Fk
(

Λ

a

)4−k

a2 ,

and F1 had been computed and found to be non-zero F1 6= 0. Later FNP was
computed exactly by Nekrasov using localization techniques, and found to agree
with the solution given by Seiberg and Witten based on consistency arguments.

Seiberg and Witten started from the observation that there was no Kähler
metric on M with the right asymptotic behaviour at |a| � 1. Therefore there
has to be more than one singularity (branchpoint). They assumed the minimal
case of two singularities (which was later shown to be the only possible solution
satisfying all physical requirements). Then they made an educated guess of the
nature (monodromy) of the singularity. Physically acceptable (that is, inter-
pretable) singularities on M arise at points where states which are otherwise
massive become massless. According to the perturbative theory (and the free
theory), the W±-vector multiplets become massless at a = 0. In this region of
M the theory is strongly coupled, that is g is large. One general idea how to
deal with the large coupling behaviour of a theory is to re-write the theory in
different variables, so that the theory is weakly coupled in the new variables. For
gauge theories such a transformation is provided by electric-magnetic duality,
which exchange the electric and magnetic degrees of freedom of the photon-like
field A, and acts as g → 1

g on the coupling.

The N = 2 SU(2) theory has magnetic monopoles with charges (±1, 0),
according to the semiclassical analysis valid at |a| � 1. Seiberg and Witten
postulated that one of the two singularities corresponds to monopoles becoming
massless. The corresponding strong coupling regime can be reparametrized as a
theory of light and weakly coupled mononoples. Monopoles with charges (±1, 0)
become massless at aD = 0, and they choose a coordinate u onM such that this
happens at u = 1. The corresponding monodromy matrix M1 is determined by
the charges of the particles which become massless. What happens at the second
singularity, which with their choice of u happens at u = −1, is determined by
the monodromy M∞ of the perturbative prepotential, M∞ = M1M−1 where
M−1 is the monodromy around the second singularity. M−1 corresponds to
dyons with charges (±1,±1), which exist for |a| � 1 and become massless for
a+ aD = 0.

For this scenario to work out the massive vector multiplets W±, which exist
for |a| � 1 and would become massless at a = 0 must become unstable and
disappear from the BPS spectrum in some region around a = 0. In other words,
there must be curve of marginal stability where aD/a ∈ R, so that the decay

(0,±1)→ (±1,±1) + (∓1, 0)
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is possible. The condition

| ± a| = | ± (a+ aD)|+ | ∓ aD|

is clearly met at u ± 1 where aD = 0 and a + aD = 0, respectively. So if
the curve exists, it will run through the special points u = ±1. Seiberg and
Witten conjectured that the curve roughly looks like |u| = 1. This turned out
to be right. The curve is not the unit circle, and the analytic expression is
complicated.

For completeness we sketch how Seiberg and Witten then obtain their solu-
tion. They observe

• that the monodromy group generated byM∞,M1,M−1 is Γ(2) ⊂ SL(2,Z),
the congruence subgroup mod 2 of the modular group,

• that M = C\{1,−1} ∼= H/Γ(2)
6:1−−→ H/SL(2,Z) is precisely a fundamen-

tal domain for the family

Eu y
2 = (x− 1)(x+ 1)(x− u)

of elliptic curves.

The quantities (aD(u), a(u)) can be regarded as sections of a vector bundle V
over M. Seiberg and Witten argue that the fibre over u can be identified with
the space of meromorphic one-forms with vanishing residue on the elliptic curve
Eu, modulo differentials of meromorphic functions on Eu. Concretely, aD and
a arise as period integrals of a familiy of merormorphic differentials λ,

aD =

∫
γ1

λ , a =

∫
γ2

λ

where γ1, γ2 is a basis of the first homology group of Eu, normalized such that
the intersection product is γ1γ2 = 1. They then show that the unique choice
(up to exact forms), which satisfies all physical requirements is

λ =

√
2(λ2 − uλ1)

2π

where

λ1 =
dx

y
, λ2

xdx

dy

is a basis for the meromorphic differentials with zero residue module exact mero-
morphic differentials.

In this construction a positive definite metric arises as follows. The modular
parameter τu of Eu is

τu =

∫
γ1
λ1∫

γ2
λ1

.
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Now

τ(a) = F ′′(a) =
daD
da

=
daD/du

da/du
=

∫
γ1

dλ
du∫

γ2
dλ
du

=

∫
γ1
λ1∫

γ2
λ1

= τu .

Therefore the complex coupling τ(a) is identified with the modular parame-
ter τu of a family of elliptic curves, and this guarantees that its imaginary part
is positive.

3.5 Embedding into string theory and D-branes

The family Eu of elliptic curves in the Seiberg-Witten solution geometrizes the
problem of describing the full dynamics of the gauge theory, but it is only an
auxiliary geometric construction, and not a part of space-time itself. It remains
a bit mysterious why periods on a family of elliptic curves control the masses
of the W± vector multiplets and of monopoles and dyons. This changes once
we embed the N = 2 SU(2) gauge theory into string theory. More precisely,
the gauge theory arises as very specific ‘fine-tuned’ limit, which decouples the
infinitely many extra degrees of freedom that string theory has.

As a crude working definition, we introduce strings (p = 1) together with
p-dimensional membranes or p-branes, (p > 1) as immersed submanifolds of a
semi-Riemannian space-time (M, g) of signature (1, n), where we allow n > 3.

φ : Σ1,p →M .

One part of the action functional for such a p-brane is given by the volume of
its worldsheet Σ1,p, measure with the metric induced by the metric of M :

S = −Tp
∫

volφ∗g .

The minus sign is conventional and Tp is a characteristic constant for the p-
brane, its so called tension. We consider space-times of the form R1,3 × X,
where X is compact and where the immersions have the form

Σ1,p → Rt × Sp ,

where Rt ⊂ R1,3 parametrizes time, and where Sp ⊂ X is a compact submanifold
of X of dimension p. We also assume that we are interested in length scales on
M which are much larger than the size of X, so that we are left with an effective
theory on R1,3. From this point of view p-branes embedded as above appear as
point particles. For a static particle the action is minimized by minimizing the
volume of Sp so that the mass of such particles is bounded from below by the
volume of Sp:

M ≥ Tvol(Sp) .

Stable static configurations correspond to M = TVol(Sp), where Sp is a sub-
manifold of minimal volume.

In a supersymmetric setup, where the background R1,3 ×X arises as a so-
lution to the field equation of supersymmetric theory, and where the dynamics
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of the p-brane is described by a supersymmetric action functional, the states of
an embedded p-brane can be a BPS state. This imposes conditions on the sub-
manifold Sp and as well on other data that describe how the p-branes couples
to the background. If the p-brane carries central charge under a supersymme-
try algebra, masses of its particle-like excitations are subject to a BPS bound
M ≥ |Z(Sp)|, which depends on Sp (and data on it). This shows that the cen-
tral charge of a BPS p-brane is related to the volume of the submanifold Sp,
|Z(Sp)| = TVol(Sp).

Often the effective theory on R1,3 has a moduli space of vacua, which includes
moduli corresponding to deformations of the internal manifold X. Then the
volumes of submanifolds Sp change. In particular, the volume might become
zero, giving rise to additional massless states. Moreover, in a supersymmetric
theory, upon variation of moduli we might reach a wall of marginal stability
where Sp ceases to satisfy the conditions for a BPS states (remember that Sp
carries additional data).

Let us turn to string theory specifically, where he fundamental objects are
1-branes, that is strings, which can be open (segments) or closed (loops). For
open strings one may choose Neumann or Dirichlet boundary conditions. With
Dirichlet boundary conditions there is no momentum conservation at then ends,
therefore the submanifolds on which open strings can end are dynamical p-
branes, called Dp–branes.

There are several type of string theories, which differ by the specification
of addtionial data in the action functional. We will consider the type-IIA and
type-IIB theories, which are supersymmetric. The spacetimes strings can ‘live’
in are subject to various consistency conditions. For type-II strings spacetime
M must be ten-dimensional. Moreover for spacetimes of the form R1,3 ×X the
compact factor X must be Ricci-flat (up to corrections computable in pertur-
bation theory). If the effective theory on R1,3 is to be N = 2 supersymmetric,
as required to make contact with an N = 2 SU(2) gauge theory, then X must
have Riemannian holonomy H, such that SU(2) ( H ⊂ SU(3) ⊂ SO(6), that
is X must be a Calabi-Yau threefold. The massless spectrum of a type-II the-
ory on such a background contains four-dimensional N = 2 supergravity, sev-
eral four-dimensional vector multiplets, and further neutral (uncharged) matter
multiplets. By taking a limit where only one vector multiplet remains, one can
account for the Maxwell vector multiplet A of the SU(2) gauge theory. To de-
scribe the W± vector multiplets and the monopoles and dyons, one needs to
include D-branes.

The spectrum of D-branes of a supersymmetric string theory can be found by
analysing poly-vector extensions of its supersymmetry algebra. Central charges
correspond to pointlike BPS states, as we have seen. By admitting poly-vector
charges (that is additional terms in the supersymmetry algebra which trans-
form as antisymmetric tensors under the Lorentz group) we obtain extended
BPS p-branes. Such branes minimize a bound for the tension Tp as a function
of the central charges, and have an excitation spectrum which organises into
supersymmetry representations. Type-II string theories have D-branes which
are BPS in this sense. The II-A theory has D2, D4 and D6 branes while the
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II-B theory has D1, D3 and D5 branes.
If such a D-brane is immersed as Σ1,p → Rt × Sp ⊂ R1,3 ×X, the resulting

configuration is only BPS if Sp satifies certain conditions. In particular, for
the D2 and D4 branes of IIA the submanifold Sp, p = 2, 4, must be a complex
submanifold of X (that is a holomorpic curve or surfaces in the Calabi-Yau
three-fold X, respectively), while for the D3 branes of IIB the submanifold
S3 must be a special Lagrangian submanifold, that is a Lagrangian manifold
calibrated by the holomorphic top form.

Let us indicate how the physical properties of these BPS states are related
to geometric properties of Sp ⊂ X. For concreteness we take the D3-branes
of the IIB theory. We introduce a basis AI , BI for the third homology group
H3(X,Z), with standard intersection products AIBJ = δIJ = −BJAI . We
expand the special Lagrangian submanifold S3 in this basis

[S3] = pIBI − qIAI .

Then the expansion coefficients, pI , qI ∈ Z, I = 0, 1, . . . h2,1 (where hp,q denotes
the Hodge numbers of X) are the magnetic and electric charges of the BPS
states with respect to h2,1 + 1 Maxwell-like vector fields. The central charge is

Z = pIFI − qIXI ,

where (FI , X
I) are analogous to (aD, a) in the gauge theory. The moduli space

M relevant for this problem is the space of complex structures of X. Thus
(FI , X

I) are locally functions of h2,1 complex parameters zA, which parametrize
the complex structures of the Calabi-Yau threefold X. Like (aD, a) the quanti-
ties (FI , X

I) can be expressed as period integrals

XI =

∫
AI

Ω , FI =

∫
BI

Ω

where Ω is the holomorphic top-form of X.
Note that in contrast to family Eu of elliptic curves, the family XzA of

Calabi-Yau threefolds is a part of space-time, and the mass-dependence of BPS
states has a direct geometrical interpretation. Since S3 is special Lagrangian,
it is a calibrated submanifold, that is its volume is minimal in its homology
class, and can be computed by a calibrating form, which in our case is Ω. In
other words |Z| is the volume of Sp, and the masses of BPS states are given by
this volume multiplied with the tension Tp. Limits where BPS states become
massless corresponds to special points in the moduli space of complex structures
of X where some periods of Ω vanish, which in turn implies that the volume of
Sp goes to zero.

For completeness, we give a specific example of a string theory background
where the analogue of the Seiberg-Witten solution has been found, and where
the Seiberg-Witten solution of the N = 2 SU(2) gauge theory can be obtained
by taking a limit which decouples all the extra states. To be precise we give
a pair, related by mirror symmetry. On realization is IIA string theory on
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X4
1,1,2,2,6[12], the degree-12 hypersurface in the weighted projective space

P4
1,1,2,2,6 :=

(
C5\Σ

)
/
(
(z1, z2, z3, z4, z5) ∼= (λz1, λz2, λ

2z3, λ
2z4, λ

6z5)
)
,

which has two vector multiplets, h1,1 = 2 (and h2,1 + 1 = 129 hypermultiplets).
One of these vector multiplets becomes in the limit the Maxwell vector multiplet
of the gauge theory, while the charged vector multiplets W± and monopoles and
dyons correspond to states of D2 branes on holomorphic curves and D4 branes
on holomorphic surfaces.

The second realization is by IIB theory on the mirror X̃ which has h̃2,1 = 2

and h̃1,1 = 128. In this description the vector multiplet moduli are complex
structure moduli, which allows to compute their prepotential exactly. The mir-
ror can be obtained by the Greene-Plesser orbifold construction, that is the
mirror is realized by the same family of hypersurface as X, but with only 2
(instead of 128) complex. Explicitly, the defining polynomial is:

p = z12
1 + z12

2 + z6
3 + z6

4 + z2
5 − 12ψz1z2z3z4z5 − 2φz6

1z
6
2 .

3.6 Outlook: stability conditions

We now begin to see how the stability of BPS states in string theory is related
to geometrical concepts of stability. If BPS states disappear from the spectrum
of a physical theory, then the corresponding geometrical objects should become
unstable, too. To really make contact several further steps need to be made.

In particular, D-branes carry more data than we have specified so far. The
IIA D-branes (which for historical reasons are called B-branes) do not only
require a complex submanifold, but also a holomorphic vector bundle E with
a Hermitian connection ∇E . The reason is that we can have multi-D-brane
states. If two D-branes are close to each other, extra light states are present,
corresponding to open strings with one end of each brane. The corresponding
data define a holomorphic version Yang-Mills theory, which geometrically is
encoded in (E,∇E). The Hermiticity condition on the connection, which is
part of the Yang-Mills equations, requires that the vector bundle E is µ-stable.
At this point we make contact with stability conditions in the ‘classical’ setting.

From the string theory point of view stability conditions must be consistent
with mirror symmetry. For physicists mirror symmetry means that IIA string
theory on R1,3 ×X, where X is a Calabi-Yau threefold is physically equivalent
(same physical observables) to IIB string theory on R1,3×X̃, where X̃ is another
Calabi-Yau manifold, called the mirror. If true this implies that the stability
conditions for D2 and D4 branes on complex submanifolds of X must somehow
map to stability conditions for D3 branes on special Lagrangian submanifolds
on X̃, which is a highly non-trivial statement.

Following Kontevich’s proposal, mirror symmetry should be rephrased as
homological mirror symmetry between the derived category of coherent sheaves
on X and the Fukaya catetogory of Lagrangians on the mirror X̃. Work along
this line lead to the definition of Π-stability for D-branes by Douglas, which in
turn motived Bridgeland’s definition.
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4 Literature

[1] is a heroic effort by a mathematician to explain quantum field theory in
a mathematically solid way and thus to build ‘A Bridge Between Mathemati-
cians and Physicists.’ [2] is an introduction into mirror symmetry within the
framework of Kontsevich proposal of homological mirror symmetry. It has been
written jointly by mathematicians and physicists and covers stability in much
detail. My exposition of supersymmetry is partly based on the standard text
book [3], which is a hard read for mathematicians, and on [4], which is written by
mathematicians and contains the classification of Poincaré Lie superalgebras in
arbitrary dimension and signature. For poly-vector extensions I used [5], a good
reference for the mathematical aspects is mathematicians [6] The discussion of
BPS states for the N = 2 SU(2) gauge theory follows [7], who also found the
exact solution for the effective low energy theory that we sketch. The general-
ization to string theory is due to [8], and was elaborated on in many subsequent
papers. The detailed relation with the N = 2 SU(2) gauge theory was worked
out in [9]. Some elementary aspects of quantum field theory and string theory
will be covered in the textbook on string theory (aiming at MSc and beginning
PhD students) that I am currently writing. Access to the current ‘in progress’
document is possible through dropbox, with the understanding that the text is
used for personal use only. If you are interested, please just write me an e-mail.
Feedback on the text is welcome.

A BPS bounds and gravity

Application: Witten’s proof of the Schoen-Yau positive mass theo-
rem in general relativity. The positivity of mass in N = 1 supersymmetry
has a famous application, namely Witten’s proof of the positive mass theorem
(Schoen/Yau) using the Israel-Nester construction. The theorem states that
in Einstein gravity coupled to matter subject to the field equations and the
‘strong energy condition’ the ‘ADM mass’ of an asymptotically flat space-time
is non-negative. How does this relate to supersymmetry? We are familiar with
‘bosonic symmetries of space-time,’ namely isometries. These are diffeomor-
phisms which preserve the metric. They are generated by Killing vectors V
which satisfy the Killing equation LV g = 0, where LV is the Lie derivative.
This concept of a symmetry extends to other fields, in particular to tensor fields
T , that is to sections of tensor bundles over space time: LV T = 0. We say that
a configuration Φ = g, . . . involving serveral fields is invariant under the trans-
formation generated by a vector field V if LV Φ = 0. Similarly, supersymmetry
transformations ε · Q := εαi Q

i
α can act on field configurations. A spinor ε is

called a Killing spinor for Φ if (εQ) · Φ = 0. Minkowksi space-time is invariant
under all supersymmetry transformations, where the Killing spinors are con-
stant, but otherwise arbitrary. On a curved background Killing spinor fields are
in general not constant, but parallel (covariantly constant) in a suitable sense.
In supergravity the metric g shares a supersymmetry representation with one
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or several gravitini ψ (spin 3/2 fields), plus possibly fields of lower spin. The
set of supergravity Killing spinor equations contains the equation

(εQ)ψ = Dψ + · · · = 0 ,

where D is the connection induced by the Levi-Civita connection on the spin
bundle. Thus Killing spinors are parallel spinors. Note that this equation may
contain further terms, which can be combined with D to define a connection.

Einstein gravity can be embedded into supergravity, and this was used by
Witten to prove the positivity of the ADM mass. Note that all is used for the
argument is that Einstein gravity can be embedded into a larger supersymmetric
theory. Witten’s argument does not require that supersymmetry is actually
realized in nature. NB: spinors are used in an approach Riemannian geometry,
G-structures and special holonomy, which has been dubbed spin geometry.

Example: The Gibbons-Hull bound in Einstein-Maxwell theory.
For Einstein-Maxwell theory the Gibbons-Hull bound is a generalization of the
positivity theorem for the mass. Einstein-Maxwell theory can be embedded
into N = 2 supergravity by adding two spin 3/2 fields, called gravitini. In this
theory one has asymptotically flat solutions of finite mass, electric charge Q and
magnetic charge P . In the supergravity theory this corresponds to a central
charge Z = Q+ iP . The Gibbons-Hull bound applying for such space-times is
the corresponding BPS bound

M2 ≥ Q2 + P 2

The family of Reissner-Nordstrom solutions of Einstein-Maxwell theory de-
scribes static (non-rotating) black holes with electric and magnetic charges.
This family has an extremal limit, which is the lowest mass solution (for given
charges) where a horizon exists. (Solution beyond this limit have a naked sin-
gularity and are deemed unphysical by the cosmic censorship principle.) The
extremality bound coincides with the BPS bound, and thus supersymmetry for-
bids naked singularities (within this family at least). The line element of the
extremal Reissner-Nordstrom solution is

ds2 = −H(r)−2dt2 +H(r)2(r)(dr2 + r2dΩ2
2)

whrere (t, r, θ, φ) are spherical coordinates and

H(r) = 1 +
|Z|
r

= 1 +

√
Q2 + P 2

r
.

B Poly-vector extensions and p-branes

Example: The M-algebra, poly-vector extensions and p-branes. The
centrally extended N = 2 algebra has the following Spin representation content:

(S× S)sym → V + Λ0V + ΛmaxV
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On the rhs we have admitted, apart from the vector module V corresponding
to translations to further factors which a ‘central’, and i.p. singlets under Spin.

Beyond central extensions we can admit ‘polyvector extensions,’ that is terms
on the rhs which are not central, but transform in representations of the Lorentz
group and which are allowed by the representations appearing on the lhs. While
central charges indicate the existence of pointlike BPS states saturating a mass
bound, non-central polyvector charges are carried by extended objects, mem-
branes of dimension p ≥ 1, or p-branes for short. BPS p-branes saturate a lower
bound on the tension (energy per volume) in terms of the polyvector charge.
The simplest BPS branes are infinitely extended planar objects, which have
infinite volume, and therefore infinite mass and charge. This is dealt with by
going to densities, or by imposing periodic boundary conditions and compact-
ifying the extended directions into a torus. More generally, one can consider
p-branes on curved space-times. Finite mass objects arise whenever the p-brane
is mapped to a compact p-dimension submanifold. To have a non-zero mass,
the submanifold must have a volume which is both finite and minimal within
the class of submanifolds which can be reached by deforming the embedding
‘with finite energy.’

As an example for a poly-vector extension consider the unique eleven-dimension
supersymmetry algebra:

{Qα, Qβ} = (CγM )αβPM

The lhs contains the following Spin representations:

(SR × SR)sym = V ⊕ Λ2V ⊕ Λ5V

As a check compare dimensions:

1

2
32× 33 = 528 = 11 + 55 + 462

The so-called M-algebra is the maximal poly-vector extension, where all possible
Spin representations appear on the rhs:

{Qα, Qβ} = (CγM )αβPM+
1

2
(CγMN )αβZMN+

1

5!
(CγM1M2M3M4M5)αβZM1M2M3M4M5

A field configuration of eleven-dimensional supergravity carrying charge Z12 is
an planar supermembrane solution, which we take to be extended in the (1, 2)
plane for concreteness:

ds2 = H−2/3ds2
1,2 +H1/3ds2

0,8 , H = 1 +
|Z12|
|~x− ~x0|6

,

where ~x is a coordinate on the transverse R8. This solution saturates the bound

T2 ≥ |Q2|
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where T2 is the tension (energy per volume) and where Q2 is the Z12 charge per
volume.

The supermembrane solution, also called M2-brane solution, is a higher di-
mensional cousin of the electrically charged, extremal Reisner-Nordstrom solu-
tions. It is charged under a four-form gauge field, which in eleven dimensions
requires membrane-like rather than point-like sources.

The action principle for a membrane, and more generally for a p-brane, can
be obtained by generalizing the action of a relativistic particle, or by deriving
the effective action for the collective modes of a solitonic p-brane solution. (This
reflects that we can view a p-brane as either fundamental or solitonic.)

The action for a relativistic particle with mass m and charge q, in a space-
time (M, g) with electromagnetic field A is

S = −m
∫
dt
√
|det Φ∗g| − q

∫
A

where
Φ : Σ→M

is a parametrized timelike curve in M , the worldline of the particle. The electro-
magnetic potential is a one-form, the associated electromagnetic field strength
is F = dA.

The generalization to a p-brane is

S = −T
∫
dpσ

√
|det Φ∗g| −Q

∫
A

where Φ is now a parametrized (1 + p)-dimensional surface in M , with one
timelike tangent vector at each point, where T is the p-brane tension, A a
(p + 1)-form potential with associated field strength (p + 2)-form F = dA,
and Q the p-brane charge. Supermembrane actions contain additional terms
involving spinorial variables on Σ. They also obey a relation between T and Q
which in suitable units is T = |Q|. This relation corresponds to the saturation
of a BPS bound.

Closed supermembranes where the ground state energy is finite and non=zero
require that that the membrane is embedded into spacetime as Φ : Σ→ Rt×S ⊂
M with S ⊂M defining a nontrival class in H2(M,Z). Supermembrane charges
are then the integeger expansion coefficients of S in a basis of H2(M,Z).

Field configurations with finite ZM1M2M3M4M5
are called five-branes, or M5-

branes. An infinitely extended planar M5-brane has metric

ds2 = H−1/3ds2
1,5 +H2/3ds2

0,5

where

H = 1 +
|Q5|
|~x− ~x0|

where ~x are coordinates on the transverse R5. The bound saturated is

T5 ≥ |Q5|
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where T5 is the brane tension and Q5 the charge density. M5 branes are the
magnetic partners of M2 branes.

References

[1] E. Zeidler, Quantum Field Theory. Springer, 2006.

[2] P. A. et al, ed., D-branes and Mirror Symmetry. Clay Mathematics
Monographs Vol. 4. AMS, 2009.

[3] J. Wess and J. Bagger, Supersymmetry and Supergravity. Princeton
University Press, 1992.

[4] D. V. Alekseevsky and V. Cortés, Classification of n-(super)-extended
poincare algebras and bilinear invariants of spinor representations of
spin(p,q), Commun. Math. Phys. 183 (1997) 477–510.

[5] P. K. Townsend, “M-theory from its superalgebra.” Lecture notes, 1997.

[6] D. V. Alekseevsky, V. Cortés, C. Devchand, and A. Van Proeyen,
Polyvector Super-Poincare Algebras, Commun. Math. Phys. 253 (2004)
385–422, [hep-th/0311107].

[7] N. Seiberg and E. Witten, Monopole Condensation, And Confinement In
N=2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B426 (1994) 19–52,
[hep-th/9407087].

[8] S. Kachru and C. Vafa, Exact results for N=2 compactifications of
heterotic strings, Nucl. Phys. B450 (1995) 69–89, [hep-th/9505105].

[9] S. Kachru, A. Klemm, W. Lerche, P. Mayr, and C. Vafa, Nonperturbative
results on the point particle limit of N=2 heterotic string compactifications,
Nucl. Phys. B459 (1996) 537–558, [hep-th/9508155].

30

http://xxx.lanl.gov/abs/hep-th/0311107
http://xxx.lanl.gov/abs/hep-th/9407087
http://xxx.lanl.gov/abs/hep-th/9505105
http://xxx.lanl.gov/abs/hep-th/9508155

	Introduction
	Prelude: space, time and matter
	Spacetime without gravity
	Spacetime with gravity
	Matter
	Quantum aspects

	Supersymmetry, BPS states and central extensions
	Poincaré Lie superalgebras
	Central charges and the BPS bound
	Stability of BPS states
	Main example: the Seiberg Witten solution of N=2 SU(2) gauge theory
	Introduction of the model
	The free theory
	The `perturbative' theory, and a problem
	The Seiberg-Witten solution

	Embedding into string theory and D-branes
	Outlook: stability conditions

	Literature
	BPS bounds and gravity
	Poly-vector extensions and p-branes

