

EXERCISES ON CHOW GROUPS

(1) Fix a point $p \in \mathbb{P}^2$. We know that $\text{Bl}_p \mathbb{P}^2 \cong \mathbb{F}_1 = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$. Compute $\text{CH}_*(\text{Bl}_p \mathbb{P}^2)$ in two ways and compare the results (i.e., using the blow-up formula and the projective bundle formula).

(2) Consider a smooth curve $\iota: C \hookrightarrow \mathbb{P}^2$ of degree $d \geq 1$.

(a) Let $d = 3$. Determine the kernel of the map

$$\iota_*: \text{CH}_1(C) \rightarrow \text{CH}_1(\mathbb{P}^2).$$

(b) Prove that the localisation sequence

$$\text{CH}_1(C) \rightarrow \text{CH}_1(\mathbb{P}^2) \rightarrow \text{CH}_1(\mathbb{P}^2 \setminus C) \rightarrow 0$$

is left exact if and only if $d \leq 2$.

(3) Let $C, C' \subset \mathbb{P}^2$ be integral plane curves that intersect properly.

(a) Suppose C is smooth. Compute $C \cdot C'$ via Fulton's definition.

(b) Suppose both C and C' are singular. Compute

$$(C \times C') \cdot \Delta \in \text{CH}_0(C \cap C').$$

(4) Let S be a smooth quasi-projective surface, $p \in S$ a closed point.

Let $C \subset \text{Bl}_p S$ be the exceptional curve of the blow-up of S at a point. Compute the self-intersection $C \cdot C \in \text{CH}_0(C)$.

(5) Let X, Y be smooth projective varieties. A class $\Gamma \in \text{CH}_k(X \times Y)$ is called a *correspondence*. We define the homomorphism Γ_* as follows:

$$\Gamma_* := \text{pr}_{Y,*}(\Gamma \cdot \text{pr}_X^*(-)): \text{CH}_l(X) \rightarrow \text{CH}_{l+k-\dim(X)}(Y).$$

(a) Let $\Delta \in \text{CH}_{\dim(X)}(X \times X)$ be the class of the diagonal. Prove that

$$\Delta_* = \text{id}: \text{CH}_l(X) \rightarrow \text{CH}_l(X).$$

(b) Let $f: X \rightarrow Y$ be any morphism and $\Gamma_f \in \text{CH}_{\dim(X)}(X \times Y)$ be the class of the graph of f . Prove that

$$(\Gamma_f)_* = f_*: \text{CH}_l(X) \rightarrow \text{CH}_l(Y).$$

(6) Let C be an elliptic curve.

(a) Compute the self-intersection $\Delta^2 = \Delta \cdot \Delta$ of the diagonal.

(b) Compute the following map:

$$\mathcal{F} := [C \times C]_* + \Delta_* + \frac{1}{2}\Delta_*^2: \text{CH}_*(C) \rightarrow \text{CH}_*(C).$$

(This is a variant of the Fourier (-Mukai) transform induced by the Poincaré bundle.)

(c) Compute the matrix representing the endomorphism

$$\mathcal{F}^H: H^0(C, \mathbb{Q}) \oplus H^2(C, \mathbb{Q})$$

induced by \mathcal{F} , using the standard basis. Does this give you an element of $\text{SL}_2(\mathbb{Z})$?

(d) Do the same for curves of other genera.

Around Chow's moving lemma. Let's first recall the statement (see Voisin II, Lemma 9.22):

Lemma 0.1. *Let X be a smooth algebraic variety, $Y \subset X$ a smooth closed subvariety, $Z \in \text{CH}_k(X)$.*

Then there exists a cycle $T = \sum n_i T_i$ of X such that:

- *T is rationally equivalent to Z ,*
- *for each i , T_i intersects Y properly.*
- *Moreover, we may choose T so that T_i is **generically smooth** along $Y \cap T_i$ and $T_i \cap Y$ is **generically transverse**.*

Remark 0.2. In his book, Fulton says T_i and Y intersects transversally when the intersection is **generically transverse** (see Fulton, Example 11.4.2 in page 206).

Remark 0.3. With Fulton's definitions, it seems that a transverse intersection is NOT necessarily a proper intersection. Namely, he doesn't require a transverse intersection to have a correct codimension.

For example, consider two lines $L_1 = \{x = 0\}$ and $L_2 = \{x = 1\}$ inside \mathbb{A}^2 . Then $L_1 \cap L_2 = \emptyset$. I guess it is a transverse intersection, but not proper since

$$\dim(L_1 \cap L_2) \neq \dim L_1 + \dim L_2 - \dim \mathbb{A}^2 = 0.$$

Let's work on one exercise:

Exercise. *Let C be the exceptional curve of the blow up $f: \mathbb{F}_1 \rightarrow \mathbb{P}^2$ at a point. The goal is to find a cycle $T = \sum n_i T_i$ which is rationally equivalent to C and intersects properly with C .*

- (1) *Prove that at least one n_i is negative, i.e., such a T cannot be effective.*
- (2) *Let H be a hyperplane class on \mathbb{P}^2 . Prove that $f^*\mathcal{O}(3H) \otimes \mathcal{O}(-C)$ and $f^*\mathcal{O}(3H) \otimes \mathcal{O}(-2C)$ are very ample on \mathbb{F}_1 .*
- (3) *Prove that there exist $T_1 \in |3f^*H - 2C|$ and $T_2 \in |3f^*H - C|$ which intersect with C properly (indeed, transversally).*
- (4) *Prove that $T = T_2 - T_1$ is rationally equivalent to C .*