
These notes are the notes accompanying the talk given in the reading seminar on the Fourier Mukai
Transform given on November 22nd 2017. Throughout all schemes and varieties will be considered to be
over an algebraically closed field of characteristic zero unless otherwise stated. The main references are the
books of Huybrechts [1] and Polishchuck [2].

History and motivation

Abelian varieties are a very well studied area of classical mathematics. They were first studied in the 19th
century by Abel and Jacobi when they were studying elliptic integrals. They constructed an abelian surface
which we now know to the the Jacobian of a hyperelliptic curve of genus 2. Through the 19th century they
were studied further by Picard, Frobenius and Poincaré. Then in the 1920’s Lefschetz constructed abelian
varieties as complex tori and produced a lot of general results and finally in the 1940’s Andre Weil formalised
the study of abelian varieties into the modern language of algebraic geometry. Abelian varieties have a very
rigid structure as we will hopefully see through this talk. In particular they provide an excellent testing
ground for new results and a rich source of examples.

Basic definitions

Definition 1. An abelian variety is a commutative group object in the category of complete varieties.

This is the most general possible definition of an abelian variety as given in [2] and is a little misleading
as the fact that an abelian variety is commutative is a consequence rather than a requirement. Let us now
make this definition a little more precise.

Definition 2. A variety is an irreducible and reduced scheme of finite type. A variety X is complete if for
any other variety Y the projection X × Y → Y is a closed map (i.e. it maps closed sets to closed sets).

Definition 3. A group scheme G is a group object in the category of schemes. G is equipped with morphisms
m : G×G→ G, i : G→ G and e : spec(k)→ G which satisfy the usual group axioms.

Now using the above definitions we define an abelian variety to be;

Definition 4. An abelian variety is a group scheme which is complete as a variety.

The group law on an abelian variety A is usually written additively so we write m(a, b) = a + b for
a, b ∈ A, i(a) = −a for the inverse of a and e = 0 ∈ A for the identity. Then for any closed point a ∈ A we
have a map given by;

ta : A→ A such that for all b ∈ A, b 7→ a+ b.

We call this map translation by a. Moreover since ta is an isomorphism for any closed point of A we find
that any abelian variety is non-singular.

Definition 5. Let A and B be abelian varieties then a map f : A → B is a homomorphism of abelian
varieties is f(eA) = eB.

Then some of the rigidity of the structure of abelian varieties can be seen by how maps on abelian varieties
are constructed.

Lemma 6. If A and B are abelian varieties then any map f : A → B is the composition of a translation
and some homomorphism, say h, so we can writef = tf(eA) · h.

We can now use this important result to provide an easy proof to the following lemma,

Lemma 7. The group structure of an abelian variety is commutative .

Proof. First we note that if i is the inversion morphism for a given abelian variety and e is the identity
element then i(e) = e. Hence ti(e) = te and te · h = h by the above lemma for some homomorphism h. Since
i is also a homomorphism we have that the group structure on A is commutative.
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A further example of a homomorphism of abelian varities is the map [n]A : A → A such that a 7→ nȧ for
n ∈ Z. We call this homomorphism multiplication by n.

So we have seen so far that any abelian variety is smooth and the underlying group is commutative. We
now consider the special case when we set k = C.

The link between abelian varieties and complex tori.

For this section we consider all abelian varities to be over the complex numbers. Then the associated complex
manifold to any ableian variety is a compact, complex lie group. The following definition shows that over C
we can realise any abelian variety as a complex tori.

Definition 8. A complex torus is a connected compact, complex lie group.

This can also be seen from another perspective.

Theorem 9 (GAGA). There is a functor from proper C−schemes to compact Hausdorff C−analytic spaces

X 7→ Xan,

which is fully faithful.

A consequence of this is that the category of abelian varieties of dimension n over C sits fully faithfully inside
the category of complex tori of dimension n. When the dimension is one, all abelian varieties are realisable
as complex tori, however when the dimension is at least 2 there are many complex tori which are not abelian
varieties.

Line bundles on abelian varieties.

Before we discuss line bundles in detail we first state an important result that displys some of the rigidity of
abelian varieties.

Lemma 10 (Rigidity Lemma). Let X be a complete variety and let Y, Z be arbitary varieties. Then assume
the map f : X × Y → Y contracts X × y for some point y ∈ Y to a point in Z. Then f is the composition
of the projection X × Y → Y and some morphism h : Y → Z.

For the proof of this Lemma see [2].

Proposition 11 (See-Saw principle.). Let X be a complete irreducible variety and let T be an integral scheme
such that L is a line bundle on X × T . Suppose there exists a line bundle Lt := L|X×t which is trivial for
all closed points t ∈ T , then there exists a line bundle M on T such that

L ∼= p∗M.

This is an important statement and in particular shows the following;

Remark 12.

1. If L is trivial on at least one fiber of the projection of X × T then L is trivial.

2. Suppose that L and L′ are both line bundles on X × T such that Lt = L′t for all closed points t ∈ T
then

L ∼= L′ ⊗ p∗M for some line bundle M on T .

Example 13. Let A be an abelian variety and L a line bundle on A. Then m∗L = q∗L⊗ p∗L if and only if
t∗aL
∼= L for all a ∈ A. Here p and q are the projection maps given by p : A×A→ A and q : A×A→ A.
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Line bundles that satisfy the property t∗aL
∼= L are called translation invariant line bundles and are a very

important class of line bundles on abelian varieties which we will see more of later. The next theorem we
wish to discuss is a cornerstone result in the study of abelian varieties. It was first published by Lang in
1959 and is in part due to earlier work of Wiel. In particular this theorem gives us nice conditions on the
product of 3 irreducible complete varieties for line bundles to be trivial.

Theorem 14 (Theorem of the square.). Let X,Y and Z be irreducible, complete varieties and let x0 ∈ X,
y0 ∈ Y and z0 ∈ Z be closed points. Then a line bundle on X×Y ×Z is trivial if and only if the restrictions

L|X×Y×z0 , L|X×y0×Z and L|x0×Y×Z

are trivial.

Proof. First we note that the restriction of L to the product X × Y × Z is trivial over the fiber at x0 so we
just have to show that it is trivial for all other points x ∈ X. Connecting x0 to any point x ∈ X describes a
complete curve so it is enough to reduced to the case when X is a curve. First we prove the result for when
X is a smooth curve. For every x ∈ X let C ⊂ X be the smooth curve passing through x and x0. Let C̃ be
the normalisation of C and if we assume that the theorem holds on C̃ × Y × Z then the pull back of a line
bundle L to C × Y × Z is trivial. This shows that L|x×Y×Z is trivial. So for any points (x, z) ∈ X × Z the
restriction L|x×Y×z is also trivial. Finally since Y is complete the line bundle L is simply the pull-back of a
line bundle L′ on X ×Z and hence L′ ∼= L|X×y×Z is trivial. For the proof of the case when X is not smooth
see [2].

The following remark shows a useful consequence of this theorem.

Remark 15. Let A be an abelian variety and consider the product A × A × A along with projections πi :
A×A×A for i = 1, 2, 3. The group law on A×A×A is given as m : A×A×A→ A where (a, b, c) 7→ a+b+c.
Then there exists a map mi,j : A × A × A → A given by the composition m · (πi, πj) such that we have the
following isomorphism

m∗L⊗ π∗1L⊗ π∗2L⊗ π∗3L ∼= m∗12L⊗m∗13L⊗m∗23L.
Theorem 16 (Theorem of the square). Let A be an abelian variety then for all points a, b ∈ A we have

t∗a+bL⊗ L ∼= t∗aL⊗ t∗bL for all line bundles L on A.

The result in the above theorem is obtained by pulling back the isomorphism in Remark 15 along the map
A→ A×A×A where c 7→ (c, a, b).

Definition 17. We now define the (very important) map

φL : A(k)→ Pic(A), a 7→ t∗aL⊗ L−1.

The above theorem says this map is a homomorphism.

We now want to introduce the Picard functor for abelian varieties. First we recall that for any variety X
the Picard functor is a functor which for any other variety T associated the group of all equivalence classes
of line bundles on X × T , where two line bundles are equivalent if they are isomorphic up to tensoring by
the pull back of a line bundle on T . If X is a projective variety then the Picard functor is represented by
the algebraic group Pic(X).

Definition 18. Pic(X) is the group of all isomorphism classes of line bundles / invertible sheaves on X.

Since for any abelian variety A, Pic(A) is an algebraic group we can consider the subgroup Pic0(A) which
consist of all translation invariant line bundles on A.

Pic0(A) := {L ∈ Pic(A) : t∗aL
∼= L, for all a ∈ A}.

The subgroup Pic0(A) represents all line bundles on A which are topologically equivalent to zero i.e. line
bundles whose the first Chern class vanishes. Another nice property of translation invariant line bundles is
that if they are non-trivial then they have trivial cohomology. This is shown by the following theorem.

Theorem 19. Let A be an abelian variety then for any non-trivial L ∈ Pic0(A) we have

H∗(A,L) = 0.
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Ampleness of line bundles

.
In this section of the talk we will discuss some requirements of line bundles on ableian varieties to be

ample and some properties of ample line bundles on abelian varieties. Let A be an abelian variety and L a
line bundle on A. Recall from the previous section that there is a map φL : A(k) → Pic0(A). Then we call
the subgroup K(L) ⊂ A(k) the kernel of the map φL and in particular K(L) = A if and only if L ∈ Pic0(A).

Proposition 20. Let L be a line bundle on an abelian variety A such that H0(A,L) 6= 0 then L|K(L) is
trivial.

Theorem 21. A line bundle L on an abelian variety A is ample if and only if there exists some n > 0 such
that H0(A,Ln) and K(L) is finite.

Theorem 22. Every abelian variety is projective.

Proof. To prove this claim we give a sketch of the proof from [2] where we see it is enough to find an effective
divisor on A such that the complement of A by D is open affine. Choose a effective divisor D′ and an open
affine chart say U ′ such that A = U ′ ∪D′. Now select a non-zero function f ∈ O(U ′) that vanishes on the
intersection of D′ and U ′. Let zf be the zero divisor of f and let z̄f be its closure in A. Then U is affine
if the line bundle L = OA(D) is ample. To show this we use the above theorem and show that the kernal
K(L) is finite. To show this we note that by translating if necessary U contains 0. Let B ⊂ K(L) bf the
connected component of zero then the restriction of O(D) to B is trivial. Since B is not contained in D the
intersection of B and D is empty so B is a complete variety contained in an affine variety so B is a point.
Hence we conclude that K(L) is finite.

Before we proceed to the next section it is worth noting that all the above results for line bundles on
abelian varieties are generalisable to complex tori. Over the complex numbers line bundles on complex tori
are described by their Appel-Humbert datum and this allows us to describe the map φL and its kernel K(L)
in a similar way to above. For more details and for general results on line bundles on complex tori see [2]
and [3].

The dual abelian variety

Throughout this section let A be an abelian variety and let L be a ample line bundle on A. Recall from
the previous section if L is ample then the map φL is surjective and its kernel K(L) is finite. We now
want to introduce the dual of an abelian variety. Some of the material covered in this section requires more
background knowledge than previous sections particularly the construction of quotients of group schemes by
the action of a finite subgroup scheme. For full details see [2] or [3].
Now Let A be an abelian variety then we define the dual abelian variety Â to be the quotient of A by the
action of K(L).

Theorem 23. Let A be an abelian variety and L an ample line bundle on A then the quotient A/K(L)
exists and is an abelian variety.

Sketch of proof. By definition A is an abelian group scheme so to prove the theorem we first need to prove
that K(L) is a finite subgroup scheme of A and that the quotient by the action is well defined. For full details
of this step see [2]. Once we know this we show that the dimension of the quotient is equal the dimension of
A and since the chartersitic of the ground field is zero all group schemes will be smooth hence A/K(L) is a
variety. The final step is to show that its is also complete.

Definition 24. For any abelian variety with an ample line bundle L the dual variety is given by

Â = A/K(L).
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Another approach to define the dual abelian variety (as discussed in [1]) is to consider the exponential
sequence associated to an abelian variety A,

0→ Z→ OA → O∗A → 0.

This is an short exact sequence so we apply cohomology to it to obtain a exact sequence

H1(A,Z)→ H1(A,O)→ H1(A,O∗)→ H2(A,Z)→ H2(A,O).

We then define the dual abelian variety to be the quotient

Â = H1(A,O)/H1(A,Z).

Claim 25. Â = Pic0(A).

A sketch of a proof for the above claim is as follows.

Proof. First we note that H1(A,O∗) = Pic(A) and the map c1 : H1(A,O∗) → H2(A,Z) is the first Chern
map. Then Â ⊂ Pic0(A) since the induced action on H1(A,O is trivial so every line bundle in Â is
translation invariant hence is contained in Pic0A. Conversely for any L ∈ Pic0(A) we have i∗(L) = L−1

hence c1(L) = −L and i|H2(A,Z) = id. Finally since H2(A,Z) is torsion free c1(L) = 0 hence L ∈ Â.

The final property of abelian varieties I would like to mention is that on the product of an abelian variety
with its dual there exists a uniquely determined line bundle. To make this more precise we have the following
theorem.

Theorem 26 (Universal property of abelian varieties). Let A be an abelian variety then there is a uniquely
determined line bundle P on A× Â called the Poincaré bundle such that;

1. P|A×{y} ∈ Pic0(A× {y}) for all y ∈ Â

2. P|{e}×Â is trivial.

The line bundle P corresponds to the identity on Â.
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