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1 Introduction

Let F : A → B be a functor between abelian categories. We have seen that it induces a functor
between the homotopy categories. In particular under the hypothesis that F is exact we have a
commutative diagram as follows

K(A) K(B)

D(A) D(B)

QA QB (1)

Hence, the functor F also descends at the level of derived categories.

Remark 1.1. Indeed, if F is exact we have that

i) F sends quasi-isomorphisms to quasi-isomorphisms: this follows from the fact that, if A• →
B• → C• is a triangle in K(A) with A• qis−−→ B•, then C• is acyclic, that is Hi(C•) = 0 ∀i.
Then, if we apply F we get a triangle F (A•) → F (B•) → F (C•) where F (C•) is again
acyclic (since F and Hi commute) and so F (A•)

qis−−→ F (B•).

ii) F sends acyclic objects to acyclic objects: if A• → B• → C• is a triangle in K(A) with
C• acyclic, then A• → B• is a quasi-isomorphism so F (A•) → F (B•) is also a quasi-
isomorphism, hence F (C•) is acyclic.

Remark 1.2. The above construction rely on the hypothesis that F is exact. If F is not exact, the
situation described in (1) does not hold anymore. Indeed, let F be an additive left (or right) exact
functor and consider an acyclic complex X•. Then we have that X• → 0 is a quasi-isomorphism,
hence when we apply F we have that

F (X•) 0
F (0)=0

is not always a quasi-isomorphism because F (X•) might not be acyclic. Therefore, F does not
send quasi-isomorphisms to quasi-isomorphisms.

Example 1.3. An instance of the situation described in Remark 1.2 is the following. Let us
consider the abelian category A = Z-mod, then the complex

X• = 0→ Z ·p−→ Z→ Z/pZ→ 0

is acyclic (since Hi(X•) = 0 ∀i), hence in particular X• → 0 is a quasi-isomorphism. However,
if we apply the (right exact) functor

F = −⊗ Z/pZ
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to the previous complex, we get

F (X•) = Z/pZ 0−→ Z/pZ
∼=−→ Z/pZ→ 0

which is not acyclic and so in particular F (X•)
0−→ 0 is not a quasi-isomorphism.

In any setting, one works with functors which might or might not be exact. For example, let
X,Y be topological spaces and f : X → Y a continuous function, then at the level of sheaves we
have that

the inverse image f−1 : Sh(Y )→ Sh(X) is exact
the direct image f∗ : Sh(X)→ Sh(Y ) is left exact
the global sections Γ(X,−) : Sh(X)→ Ab is left exact
the Hom-functor Hom(A,−) : Sh(X)→ Ab is left exact
the tensor product A⊗− : Sh(X)→ Sh(X) is right exact

Problem: We need to find a procedure to induce a functor at the level of derived categories
starting from F : A → B between abelian categories without assuming the exactness of F .

Remark 1.4. Note that Remark 1.2 shows that applying degree-wise a functor that is not exact
will not solve the above problem.

2 Injective Objects

Definition 2.1. Let A be an abelian category, I ∈ Ob(A) is an injective object if for any
monomorphism Y ↪→ X and morphism Y → I in A there exists a morphism φ : X → I in A
such that the diagram

0 Y X

I
∃φ

commutes.

Remark 2.2. Note that I ∈ Ob(A) is injective if and only if the functor HomA(−, I) is exact.

Definition 2.3. Let A be an abelian category and consider an X• ∈ Ob(Kom+(A)), then I• ∈
Ob(K+(A)) is an injective resolution of X• if Ii is injective ∀i and there exists a quasi-
isomorphism s : X• → I•.

Example 2.4. An injective resolution of an object A ∈ Ob(A), that is a complex concentrated
in a single degree, is an exact sequence of the form

0→ A→ I0 → I1 → . . .

Definition 2.5. We say that an abelian category A has enough injectives if any A ∈ Ob(A)
is such that there exists A ↪→ I with I injective.

Proposition 2.6 (Existence of Injective Resolutions). Let A be an abelian category with enough
injectives, then ∀A• ∈ Ob(K+(A)) there exists I• ∈ Ob(K+(A)) injective resolution of A• with
A• → I• a quasi-isomorphism.

Proof. See [Huy06, Proposition 2.35] or [Ive12, III.5].

Lemma 2.7. Let A be an abelian category with enough injectives and A•, I• ∈ Ob(Kom+(A))
with I• injective, then

HomK+(A)(A
•, I•) ∼= HomD+(A)(A

•, I•)

Proof. See [Huy06, Lemma 2.39].

Remark 2.8. Lemma 2.7 is saying that we con consider morphisms between a complex and an
injective complex in the homotopy category rather than in the derived category. Note that this
simplify a lot the situation since one does not need to deal with the calculus of fractions explained
in the previous talk.
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Definition 2.9. Let us denote by I ⊂ A the full abelian sub-category of injective objects
of A.

Remark 2.10. Note that K+(I) ↪→ K+(A) inherits the structure of triangulated category.

Proposition 2.11. Let A be an abelian category with enough injectives, then the functor

i : K+(I)→ D+(A)

is an equivalence of categories.

Proof. It is enough to show that the above functor is fully faithful and essentially surjective. See
[Huy06, Proposition 2.40].

3 Derived Functors and Their Properties

Let F : A → B be a left exact functor between abelian categories where in particular A has
enough injectives. Using the previous results, we can consider the diagram

K+(I) K+(A) K+(B)

D+(A) D+(B)

i

K(F )

QA QB

i−1

Definition 3.1. The right derived functor of F is given by

RF := QB ◦K(F ) ◦ i−1.

Remark 3.2. Note that after the restriction to K+(I) quasi-isomorphisms are sent to quasi-
isomorphisms and so the restriction extends to a functor

D+(A) ∼= K+(I) ∼= D+(I)→ D+(B).

Definition 3.3. The higher derived functors of F are given by

RiF := Hi ◦RF.

Remark 3.4. Let us list some properties of the (higher) derived functors

1. RF is exact since it is composition of exact functors.

2. RiF = 0 if i < 0.

3. R0F (A) = F (A) because

RiF (A) = Hi(. . .→ F (I0)
α−→ F (I1)→ . . .)

hence
R0F (A) = kerα = F (A)

since F is left exact

4. Given a short exact sequence 0→ A→ B → C → 0 in A, we have that RiF induces a long
exact sequence of the form

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ R2F (A)→ . . .

This follows from the fact that such short exact sequence in A corresponds to a distinguished
triangle A → B → C → A[1] in D+(A) and, after applying RF to such triangle, one gets
a distinguished triangle RF (A) → RF (B) → RF (C) → RF (A)[1] in D+(B). Considering
Hi of the latter triangle gives the claimed long exact sequence.

5. The same procedure explained for a left exact functor works for a right exact functor
F : A → B under the assumption that A is an abelian category with enough projectives.
Using projective objects and projective resolutions (instead of injective objects and injective
resolutions) allows to construct the left derived functor LF : D−(A)→ D−(B).
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6. There is a more general setting one can consider in order to defined a derived functor, see
[Huy06, p. 48] or [GM13, III.6.3]

Definition 3.5. A triangulated sub-category K ⊂ K+(A) is adapted to F if

i) given A• ∈ K acyclic then F (A•) is acyclic

ii) any A• ∈ K+(A) is quasi-isomorphic to a complex in K.

In particular, using adapted classes allows to avoid projective resolution (that in some cases
do not exist) and injective resolutions (which can be quite difficult to handle) considering
instead other resolutions (for example free, flat, flabby, etc.).

7. If F1 : A → B and F2 : B → C are left exact functors between abelian categories such that
there exist adapted classes I1 ⊂ A and I2 ⊂ B with F1(I1) ⊂ I2 then we have a natural
isomorphism

R(F2 ◦ F1) ∼= RF2 ◦RF1.

For instance, see [Huy06, Proposition 2.58].

8. Another advantage of considering RiF is given by the fact that one gets a complex and not
just some objects; in particular, this means that RiF carries much more information.

Example 3.6. Let A be an abelian category with enough injectives and A ∈ Ob(A), then the
functor

HomA(A,−) : A → Ab

is left exact. Its higher derived functors are given by

ExtiA(A,−) := Hi ◦RHomA(A,−).

In particular, if 0 → X → Y → Z → 0 is a short exact sequence in A, applying the functor
ExtiA(A,−) yields the well known long exact sequence

0 HomA(A,X) HomA(A, Y ) HomA(A,Z)

Ext1A(A,X) Ext1A(A, Y ) . . .

Example 3.7. Let us go back to Example 1.3 and consider again the acyclic complex

X• = 0→ Z ·p−→ Z→ Z/pZ→ 0

in the category A = Z-mod. We saw that applying F = −⊗Z/pZ does not give an acyclic complex
because F is only right exact. Now, if we apply the higher left derived functor LiF to X• we get

LiF (X•) = 0→ Z/pZ
∼=−→ Z/pZ 0−→ Z/pZ

∼=−→ Z/pZ→ 0.

Indeed, the first term that appears after the zero on the left in LiF (X•) is

L1F (Z/pZ) ∼= L1F (P (Z/pZ)) ∼= H1(F (Z ·p−→ Z)) ∼= H1(Z/pZ 0−→ Z/pZ) ∼= Z/pZ

where P (Z/pZ) denotes a projective resolution of Z/pZ, that is Z ·p−→ Z. That this term can be
identified with Tor1(Z/pZ,Z/pZ). Moreover, the complex LiF (X•) is now acyclic.

Proposition 3.8. Let A be an abelian category with enough injectives and consider A,B ∈
Ob(A), that is A and B are two complexes concentrated in degree zero, then

ExtiA(A,B) ∼= HomD+(A)(A,B[i]).

Proof. See [Huy06, Proposition 2.56].

Remark 3.9. In particular, note that if i < 0 Proposition 3.8 implies that there are no morphism
in the derived category between A and B[i].
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