
HIGHER SPIN KLEIN SURFACES

SERGEY NATANZON AND ANNA PRATOUSSEVITCH

Abstract. We find all m-spin structures on Klein surfaces of genus larger than
one. An m-spin structure on a Riemann surface P is a complex line bundle
on P whose m-th tensor power is the cotangent bundle of P . A Klein surface
can be described by a pair (P, τ), where P is a Riemann surface and τ is an anti-
holomorphic involution on P . An m-spin structure on a Klein surface (P, τ) is
an m-spin structure on the Riemann surface P which is preserved under the
action of the anti-holomorphic involution τ . We determine the conditions for
the existence and give a complete description of all real m-spin structures on
a Klein surface. In particular we compute the number of m-spin structures on
a Klein surface (P, τ) in terms of its natural topological invariants.

1. Introduction

Under an m-spin Riemann surface we understand a compact Riemann sur-
face P with a complex line bundle e : L → P such that the m-th tensor power
e⊗m : L⊗m → P is isomorphic to the cotangent bundle of P (compare with [Jar]).
This is a natural generalisation of the classical (m = 2) algebraic curves with Theta
characterstics studied by Riemann [R]. The moduli spaces of m-spin Riemann sur-
faces have been studied because of their connections with integrable systems [Wit],
[FSZ]

The invariants of an m-spin Riemann surface (P, e) are given by the genus g of P
and the Arf invariant δ ∈ {0, 1}. The Arf invariant is determined by the parity of
the dimension of the space of sections of the m-spin bundle, see [Ati], [Mum]. For
a given Riemann surface of genus g, the number of corresponding m-spin Riemann
surfaces is m2g. For odd m the Arf invariant is always δ = 0. For even m, the
number of m-spin Riemann surfaces with δ = 1 and δ = 0 is mg−1(mg − 1) and
mg−1(mg + 1) respectively, see [Jar], [NP05], [NP09].

A Klein surface is a generalisation of a Riemann surface in the case of non-
orientable surfaces or surfaces with boundary. A Klein surface is a quotient P/τ ,
where P is a compact Riemann surface and τ : P → P is an anti-holomorphic
involution on P . The category of such pairs (P, τ) is isomorphic to the category of
real algebraic curves, see [AG].
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The boundary of the surface P/τ corresponds to the set of fixed points of the
involution τ and to the set of real points of the corresponding real algebraic curve.
If not empty, the boundary of P/τ decomposes into pairwise disjoint simple closed
smooth contours, called ovals , see [Nat90a]. (The second kind of contours invariant
under the involution τ , called twists, are invariant contours which are not point-
wise fixed by τ .) The topological type of a Klein surface (P, τ) is determined by the
genus g of P , the number k of connected components of the boundary of P/τ and
the orientability (ε = 1) or non-orientability (ε = 0) of P/τ . The invariants (g, k, ε)
of a Klein surface (P, τ) satisfy the conditions 0 6 k 6 g for ε = 0, 1 6 k 6 g + 1
and k ≡ g + 1 mod2 for ε = 1, see [Wei]. Moreover, the space of all Klein surfaces
with the invariants (g, k, ε) is connected, has dimension 3g − 3 for g > 1 and is
K(π, 1), see [Nat75, Nat78].

Under an m-spin Klein surface we understand a Klein surface (P, τ) with an
m-spin structure (P, e : L → P ) and an anti-holomorphic involution β : L → L
such that e ◦ β = τ ◦ e. Recent work [OT] shows the connection between real
2-spin Klein surfaces and Abelian Yang-Mills theory. Combining the topological
invariants (g, k, ε) for the Klein surface (P, τ) and (g,m, δ) for the m-spin surface
(P, e) we obtain the topological invariants (g, k, ε,m, δ) of (P, τ, e, β). In this paper
we prove that for any Klein surface (P, τ) of type (g, k, ε) with g > 2 the number
N(g, k, ε,m, δ) of m-spin Klein surfaces (P, τ, e, β) with the Arf invariant δ only
depends on the invariants (g, k, ε,m, δ). Moreover, we compute the number N =
N(g, k, ε,m, δ):

• For odd m we prove N = mg if g ≡ 1 modm, δ = 0 and N = 0 otherwise.
• For even m, ε = 0 and k = 0 we prove N = mg

2 if g ≡ 1 mod m
2 and N = 0

otherwise.
• For even m, ε = 0 and k > 1 we prove N = mg · 2k−2 if g ≡ 1 mod m

2 and N = 0
otherwise.

• For m ≡ 0 mod4 and ε = 1 we prove N = mg · 2k−2 if g ≡ 1 mod m
2 and N = 0

otherwise.
• For m ≡ 2 mod4, ε = 1 and δ = 0 we prove N = mg

2 (2k−1 + 1) if g ≡ 1 mod m
2

and N = 0 otherwise.
• For m ≡ 2 mod4, ε = 1 and δ = 1 we prove N = mg

2 (2k−1 − 1) if g ≡ 1 mod m
2

and N = 0 otherwise.

For m = 2 similar results were obtained in [Nat90b, Nat04]. The cases when P is
a sphere or a torus require different methods.

Our investigation of m-spin Klein surfaces is based on m-Arf functions. An m-
Arf function is a function on the set π0

1(P ) of oriented simple contours on P with
values in Z/mZ which satisfies certain geometric-algebraic properties. It can also
be interpreted as the monodromy of a natural connection on the m-spin bundle.
According to [NP09], m-Arf functions are in 1-to-1 correspondence with m-spin
Riemann surfaces.

In sections 2 and 3 we extend the constructions from [NP09] to Klein surfaces.
We prove that m-spin Klein surfaces correspond to m-Arf functions which satisfy
the conditions

• σ(τc) = −σ(c) for all c ∈ π0
1(P );

• σ(c) = 0 for any twist c ∈ π0
1(P ).
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In section 4 we prove our main theorems.

The second author is grateful to the Isaac Newton Institute in Cambridge, where
part of this work was done, for its hospitality and support.

2. Coverings of the Group of Automorphisms of the Hyperbolic
Plane

2.1. Standard Covering. Let G = Aut(H) be the full isometry group of the
hyperbolic plane H. Here our model of the hyperbolic plane is the upper half-
plane in C. This group has two connected components, the group G+ = Aut+(H)
of all orientation-preserving isometries of H and the group G− = Aut−(H) of all
orientation-reversing isometries of H. Let eG be the identity element in G. Let
j ∈ G− be the reflection in the imaginary axis, j(z) = −z̄. Then G− = j ·G+.

Definition 2.1. Let π : Gm → G be the Lie group m-fold covering of G given by
Gm = G+

m ∪G−
m with

G+
m =

{

(g, δ) ∈ G+ × Hol(H,C∗)
∣

∣ δm =
d

dz
g

}

,

G−
m =

{

(g, δ) ∈ G− × Hol(H,C∗)
∣

∣ δm =
d

dz̄
g

}

with the product of elements (g1, δ1) and (g2, δ2) in Gm given by

(g2, δ2) · (g1, δ1) =

{

(g2 ◦ g1, (δ2 ◦ g1) · δ1) if (g2, δ2) ∈ G+
m,

(g2 ◦ g1, (δ2 ◦ g1) · δ̄1) if (g2, δ2) ∈ G−
m.

The identity element of Gm is eGm
= (eG, 1), where the second component is the

constant function z 7→ 1.

The centre of G+ = Aut+(H) is trivial, Z(G+) = {eG}. Hence the centre
of G+

m is contained in π−1(eG), the set of elements of the form (eG, exp(2πik/m)),
k = 0, 1, . . . ,m − 1, where the second component is the constant function z 7→
exp(2πik/m). From the group law it follows that all such elements belong to the
centre, hence the centre is cyclic of order m:

Z(G+
m) = π−1(eG) ∼= Z/mZ.

Then U = (eG, exp(2πi/m)) is a generator of the centre,

Z(G+
m) = 〈U〉 = {eGm

, U, U2, . . . , Um−1}.

Let J ∈ G−
m be a pre-image of the reflection j. Then G+

m = J ·G−
m.

Proposition 2.1. For the pre-image J ∈ G−
m of j we have J2 = eGm

.

Proof. The element J must of the form J = (j, δ) with δm = d
dz̄ j = −1, i.e.

δ : H → C
∗ is a constant function with δm = −1. Hence J2 = (j, δ) · (j, δ) =

(j ◦ j, (δ ◦ j) · δ̄) = (eG, |δ|2) = (eG, 1) = eGm
. �

Remark. The Lie group G+ is connected with infinite cyclic fundamental group,
hence the Lie groupm-fold coveringG+

m of G+ is unique up to an isomorphism. The
Lie group G = G+ ∪ G− is not connected and could have several non-isomorphic
Lie group m-fold coverings. In fact we will see (compare with remark after Propo-
sition 2.3) that for odd m there is only one m-fold covering up to isomorphy, while
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for even m there are two non-isomorphic m-fold coverings with pre-images of all
reflections having order 2 or 4 respectively. We are using the former covering which
we described explicitly in Definition 2.1.

Elements of G+ can be classified with respect to the fixed point behavior of their
action on H. An element is called hyperbolic if it has two fixed points, which lie on
the boundary ∂H = R ∪ {∞} of H. A hyperbolic element with fixed points α, β
in R is of the form

τα,β(λ) : z 7→ (λα − β)z − (λ − 1)αβ

(λ− 1)z + (α − λβ)
,

where λ > 0. One of the fixed points of a hyperbolic element is attracting, the other
fixed point is repelling. The axis of a hyperbolic element g is the geodesic between
the fixed points of g, oriented from the repelling fixed point to the attracting fixed
point. The axis of a hyperbolic element is preserved by the element. The map
λ 7→ τα,β(λ) defines a homomorphism R+ → G (with respect to the multiplicative
structure on R+). We have (τα,β(λ))−1 = τα,β(λ−1) = τβ,α(λ).

An element is called parabolic if it has one fixed point, which is on the bound-
ary ∂H. A parabolic element with real fixed point α is of the form

πα(λ) : z 7→ (1 − λα)z + λα2

−λz + (1 + λα)
.

The map λ 7→ πα(λ) defines a homomorphism R → G (with respect to the additive
structure on R). We have (πα(λ))−1 = πα(−λ).

An element that is neither hyperbolic nor parabolic is called elliptic. It has
one fixed point that is in H. Given a base-point x ∈ H and a real number ϕ, let
ρx(ϕ) ∈ G denote the rotation through angle ϕ counter-clockwise about the point
x. Any elliptic element is of the form ρx(ϕ), where x is the fixed point. Thus
we obtain a 2π-periodic homomorphism ρx : R → G (with respect to the additive
structure on R).

Elements of G+
m can be classified with respect to the fixed point behavior of

action on H of their image in G+. We say that an element of Gm is hyperbolic,
parabolic resp. elliptic if its image in G+ has this property.

The homomorphisms

τα,β : R+ → G, πα : R → G, resp. ρx : R → G

define one-parameter-subgroups in the group G. Each of these homomorphisms
lifts to a unique homomorphism into the m-fold cover:

Tα,β : R+ → Gm, Pα : R → Gm resp. Rx : R → Gm.

The elements Tα,β(λ), Pα(λ) and Rx(ξ) are hyperbolic, parabolic and elliptic resp.

A simple computation shows that for x = i ∈ H we obtain

Rx(2π) = (eG, exp(2πi/m)) = U.

Hence

Rx(2πk) = Rx(2π)k = Uk

for x = i ∈ H and any integer k. Since ρx(2πk) = id for any integer k, it follows
that the lifted element Rx(2πk) belongs to π−1(eG) = Z(G+

m). Note that the
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element Rx(2πk) depends continuously on x. But the fibre π−1(eG) is discrete,
so the element Rx(2πk) must remain constant, thus it does not depend on x. We
obtain Rx(2πk) = Uk for any integer k.

The following identities are easy to check geometrically:

Proposition 2.2. We have jτα,β(λ)j−1 = τ−α,−β(λ), jπα(λ)j−1 = π−α(−λ),
jρx(t)j−1 = ρ−x̄(−t). In particular jτ0,∞(λ)j−1 = τ0,∞(λ), jπ0(λ)j

−1 = π0(−λ),
jρi(t)j

−1 = ρi(−t).
Lifting these identities into Gm we obtain the following proposition:

Proposition 2.3. 1) We have

JTα,β(λ)J−1 = J−1Tα,β(λ)J = T−α,−β(λ),

JPα(λ)J−1 = J−1Pα(λ)J = P−α(−λ),
JRx(t)J−1 = J−1Rx(t)J = R−x̄(−t).

2) In particular

JT0,∞(λ)J−1 = J−1T0,∞(λ)J = T0,∞(λ),

JP0(λ)J
−1 = J−1P0(λ)J = P0(−λ),

JRi(t)J
−1 = J−1Ri(t)J = Ri(−t),

JUJ−1 = J−1UJ = U−1.

Proof. 1) The identity jρx(t)j−1 = ρ−x̄(−t) implies that the paths t 7→ JRx(t)J−1

and t 7→ R−x̄(−t) in Gm have the same projection in G and coincide at t = 0,
thus

JRx(t)J−1 = R−x̄(−t).
The proofs of the other identities are similar.

2) The proofs are straightforward. For the last identity recall that U = Ri(2π) and
U−1 = Ri(−2π).

�

Remark. In Proposition 2.1 we proved that J2 = e using the explicit description
of Gm in Definition 2.1 (compare also with the remark after Proposition 2.1). Note
that our proof of Proposition 2.3 works for any Lie group m-fold covering of G, not
just for the one described in 2.1. If we forget about Proposition 2.1, we can use
Proposition 2.3 to derive some information about J2. For the reflection j we have
j2 = e, hence J2 is in the pre-image of e, i.e. J2 = U q for some integer q. The
identities JUJ−1 = U−1 and J−1UJ = U−1 imply JU = U−1J and UJ = JU−1.
We have J3 = J2J = U qJ and, using UJ = JU−1, we obtain J3 = U qJ = JU−q.
On the other hand J3 = JJ2 = JU q. Thus JU−q = JU q and therefore U2q = e.
For odd m this is only possible for q ≡ 0 modm, hence J2 = e, while for even m we
could have q ≡ 0 modm and hence J2 = e or q ≡ m/2 modm and hence J2 = Um/2,
J4 = e.

2.2. Level function.

Definition 2.2. Let ∆ be the set of all elliptic elements of order 2 in G+. Let
Ξ be the complement of the set ∆ in G+, i.e. Ξ = G+\∆. There exists a home-

omorhism G+ → S
1 × C such that ∆ corresponds to {∗} × C and Ξ = G+\∆
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corresponds to (S1\{∗})× C (see, for example, [JN]). From this description it fol-

lows in particular that the subset Ξ is simply connected. The pre-image Ξ̃ ⊂ G+
m

of Ξ consists of m connected components, each of which is homeomorphic to Ξ.
Each connected component of the subset Ξ̃ contains one and only one element of

π−1(eG) = Z(G+
m) = {eGm

, U, . . . , Um−1}.
Let Ξ̃k be the connected component of Ξ̃ that contains Uk. Let a be an element
of G+

m. For a ∈ Ξ̃k we set sm(a) = k. Any a 6∈ Ξ̃ can be written as a = Rx(π) · Uk

for some x ∈ H and some integer k. We set sm(Rx(π) · Uk) = k for integer k. We
call the function sm : G+

m → Z/mZ the level function. We say that a is at the
level k if sm(a) = k.

Remark. Any hyperbolic or parabolic element in G+
m is of the form Tα,β(λ) ·Uk or

Pα(λ) · Uk resp. For elements written in this form we have

sm(Tα,β(λ) · Uk) = k, sm(Pα(λ) · Uk) = k.

Proposition 2.4. For any elements A and B in G+
m we have

sm(BAB−1) = sm(A).

Proposition 2.5. We have sm(JCJ) = −sm(C) for any hyperbolic or parabolic
element C in G+

m.

Proof. Hyperbolic and parabolic elements C of G+
m are of the form Tα,β(λ) · Uk

and Pα(λ) · Uk respectively. According to Proposition 2.3 we have JTα,β(λ)J =
T−α,−β(λ), JPα(λ)J = P−α(−λ) and JUJ = U−1, hence J(Tα,β(λ) · Uk)J =
T−α,−β(λ) · U−k and J(Pα(λ) · Uk)J = P−α(−λ) · U−k. �

Proposition 2.6. We have sm(FCF−1) = −sm(C) for any hyperbolic or parabolic
element C in G+

m and any element F in G−
m.

Proof. We can write the element F ∈ G−
m as F = A · J for some A ∈ G+

m, hence
FCF−1 = A(JCJ)A−1. According to Proposition 2.4 we have sm(A(JCJ)A−1) =
sm(JCJ) and according to Proposition 2.5 we have sm(JCJ) = −sm(C). �

3. Higher Spin on Klein Surfaces

3.1. Higher Spin Bundles on Riemann Surfaces and Lifts of Fuchsian
Groups.

Definition 3.1. Let L → P be complex line bundle over a hyperbolic Riemann
surface P . Let Γ be a torsionfree Fuchsian group such that P = H/Γ. Let E → H

be the induced complex line bundle over H. Let E ≃ H × C be a trivialization of
the bundle E. With respect to this trivialization the action of Γ on E is given by

g · (z, t) = (g(z), δ(g, z) · t),
where δ : Γ × H → C

∗ is a map such that the function δg : H → H given be
δg(z) = δ(g, z) is holomorphic for any g ∈ Γ and

δg2·g1
= (δg2

◦ g1) · δg1

for any g1, g2 ∈ Γ. The map δ is called the transition map of the bundle L → P
with respect to the given trivialization.
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Remark. In particular, if L is the cotangent bundle of the surface P , then the
transition map can be chosen so that δg = (g′)−1. If L is the tangent bundle
of the surface P , then the transition map can be chosen so that δg = g′. Let
L1 → P , L2 → P be two complex line bundles over a Riemann surface P , and let
δ1 resp. δ2 be their transition maps, then δ1 · δ2 is a transition map of the bundle
L1 ⊗ L2 → P . In particular, if δ is the transition map of the bundle L → P , then
δm is a transition map of the bundle Lm = L ⊗ · · · ⊗ L → P (with respect to the
induced trivialization).

Definition 3.2. An m-spin structure on a Riemann surface P is a transition map
δ of a complex line bundle L→ P that satisfies the condition δm

g = (g′)−1, i.e. the
induced transition map δm of the bundle Lm → P coincides with the transition
map of the cotangent bundle of P .

Remark. A complex line bundle L→ P is said to be m-spin if the bundle Lm → P
is isomorphic to the cotangent bundle of P . For a compact Riemann surface P
there is a 1-1-correspondence between m-spin structures on P and m-spin bundles
over P .

Remark. For m = 2 we obtain the classical notion of a spin bundle.

Definition 3.3. Let Γ be a Fuchsian group. A lift of the Fuchsian group Γ into G+
m

is a subgroup Γ∗ of G+
m such that the restriction of the covering map G+

m → G+ to
Γ∗ is an isomorphism Γ∗ → Γ.

The following result was proved in [NP05, NP09]:

Theorem 3.1. Let Γ be a Fuchsian group without elliptic elements. There is a
1-1-correspondence between the lifts of Γ into the m-fold cover of Aut+(H) and
m-spin bundles on the Riemann surface H/Γ.

We will sketch the proof here: A lift of Γ is of the form

Γ∗ = {(g, δg)
∣

∣ g ∈ Γ, δg ∈ Hol(H,C∗), δm
g =

d

dz
g}.

The corresponding m-spin bundle eΓ∗ : LΓ∗ → P = H/Γ is of the form

LΓ∗ = (H × C)/Γ∗ → H/Γ = P,

where the action of Γ∗ on H × C is given by

(g, δg) · (z, x) = (g(z), δg(z) · x).
Every m-spin bundle on P = H/Γ is obtained as eΓ∗ for some lift Γ∗ of Γ.

Remark. A more general correspondence between a Fuchsian group Γ (with or
without elliptic elements) and m-spin bundles on the orbifold H/Γ was established
in [NP13].

3.2. Lifts of Fuchsian Groups and Arf Functions. Lifts of a Fuchsian group Γ
into G+

m can be described by means of associated m-Arf functions, certain functions
on the space of homotopy classes of simple contours on P = H/Γ with values
in Z/mZ described by simple geometric properties.

Definition 3.4. Let Γ be a Fuchsian group that consists of hyperbolic elements.
Let the corresponding Riemann surface P = H/Γ be a compact surface with finitely
many holes. Let p ∈ P . Let π1(P ) = π1(P, p) be the fundamental group of P . We
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Figure 1: σ(ab) = σ(a) + σ(b) − 1

denote by π0
1(P ) the set of all non-trivial elements of π1(P ) that can be represented

by simple contours. An m-Arf function is a function

σ : π0
1(P ) → Z/mZ

satisfying the following conditions

1. σ(bab−1) = σ(a) for any elements a, b ∈ π0
1(P ),

2. σ(a−1) = −σ(a) for any element a ∈ π0
1(P ),

3. σ(ab) = σ(a)+σ(b) for any elements a and b which can be represented by a pair
of simple contours in P intersecting in exactly one point p with 〈a, b〉 6= 0,

4. σ(ab) = σ(a) + σ(b) − 1 for any elements a, b ∈ π0
1(P ) such that the element ab

is in π0
1(P ) and the elements a and b can be represented by a pair of simple

contours in P intersecting in exactly one point p with 〈a, b〉 = 0 and placed in a
neighbourhood of the point p as shown in Figure 1.

Remark. In the case m = 2 there is a 1-1-correspondence between the 2-Arf func-
tions in the sense of Definition 3.4 and Arf functions in the sense of [Nat04], Chap-
ter 1, Section 7 and [Nat91]. Namely, a function σ : π0

1(P ) → Z/2Z is a 2-Arf
function if and only if ω = 1 − σ is an Arf function in the sense of [Nat04].

Higher Arf functions were introduced in [NP05, NP09], where the following result
was shown:

Theorem 3.2. There is a 1-1-correspondence between the lifts of Γ into G+
m and

m-Arf functions on P = H/Γ.

We will sketch the construction here: Let Ψ : H → P be the natural projection.
Choose q ∈ Ψ−1(p) and let Φ : Γ → π1(P ) be the induced isomorphism. Let Γ∗ be
a lift of Γ in Gm. Let sm be the level function introduced in section 2.2.

Let us consider a function σ̂Γ∗ : π1(P ) → Z/mZ such that the following diagram
commutes

Γ
∼=−−−−→ Γ∗

Φ





y





y

sm|Γ∗

π1(P )
σ̂Γ∗−−−−→ Z/mZ

Then the function σΓ∗ = σ̂Γ∗ |π0

1
(P ) is an m-Arf function, the m-Arf function as-

sociated to the lift Γ∗. Every m-Arf function is obtained as σΓ∗ for some lift Γ∗

of Γ.
The composite mapping eΓ∗ 7→ Γ∗ 7→ σΓ∗ establishes a 1-1-correspondence be-

tween m-spin bundles on P = H/Γ, lifts of the Fuchsian group Γ and m-Arf func-
tions on P .
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3.3. Klein Surfaces and Real Fuchsian Groups.

Definition 3.5. Klein surface (or non-singular real algebraic curve) is a topolog-
ical surface with a maximal atlas whose transition maps are dianalytic, i.e. either
holomorphic or anti-holomorphic. A homomorphism between Klein surfaces is a
continuous mapping which is dianalytic in local charts.

For more information on Klein surfaces, see [AG, Nat90a].

Let us consider pairs (P, τ), where P is a compact Riemann surface and τ : P →
P is an anti-holomorphic involution on P . For each such pair (P, τ) the quotient
P/〈τ〉 is a Klein surface. Each isomorphism class of Klein surfaces contains a surface
of the form P/〈τ〉. Moreover, two such quotients P1/〈τ1〉 and P2/〈τ2〉 are isomorphic
as Klein surfaces if and only if there exists a biholomorphic map ψ : P1 → P2 such
that ψ ◦ τ1 = τ2 ◦ ψ, in which case we say that the pairs (P1, τ1) and (P2, τ2) are
isomorphic. Hence from now on we will consider pairs (P, τ) up to isomorphism
instead of Klein surfaces.

The category of such pairs (P, τ) is isomorphic to the category of real algebraic
curves (see [AG]), where fixed points of τ (i.e. boundary points of the corresponding
Klein surface) correspond to real points of the real algebraic curve.

For example a non-singular plane real algebraic curve given by the equation
F (x, y) = 0 is the set of real points of such a pair (P, τ), where P is the normalisation

and compactification of the surface {(x, y) ∈ C
2

∣

∣ F (x, y) = 0} and τ is given by
the complex conjugation, τ(x, y) = (x̄, ȳ).

All Klein surfaces can be constructed from real Fuchsian groups, a special kind
of non-Euclidean crystallographic groups.

Definition 3.6. A non-Euclidean crystallographic group or NEC group is a discrete
subgroup of Aut(H), see [Macb]. We consider a simple kind of NEC groups, the real

Fuchsian groups. A real Fuchsian group is a NEC group Γ̂ such that the intersection
Γ̂+ = Γ̂ ∩ Aut+(H) is a Fuchsian group consisting of hyperbolic automorphisms,

Γ̂ 6= Γ̂+ and the quotient P = H/Γ̂+ is a compact surface.

Let Γ̂ be a real Fuchsian group. Let Γ̂± = Γ̂ ∩ Aut±(H), PΓ̂ = H/Γ̂+ and

let Φ : H → PΓ̂ be the natural projection. Then for any automorphism g ∈ Γ̂−,
the map τΓ̂ = Φ ◦ g ◦ Φ−1 is an anti-holomorphic involution of PΓ̂. Thus the real

Fuchsian group Γ̂ induces a Klein surface [Γ̂] = (PΓ̂, τΓ̂). It is not hard to see that
any Klein surface is obtained in this way (see [Nat04, Nat75, Nat78]).

Proposition 3.3. Let Γ̂ be a real Fuchsian group and [Γ̂] = (PΓ̂, τΓ̂) the corre-
sponding Klein surface as defined above. The anti-holomorphic involution τ = τΓ̂
on PΓ̂ induces an involution τ = (τΓ̂)∗ on π1(PΓ̂) ∼= Γ̂+. The induced involution
satisfies

τ(f) = gfg−1

for every f ∈ Γ̂+ and g ∈ Γ̂−.

Proof. Let g ∈ Γ̂−. An element f ∈ Γ̂+ corresponds to the contour [Φ(ℓf )] ∈
π1(PΓ̂), where ℓf is the axis of f and Φ : H → PΓ̂ is the natural projection. The
image of f under the induced involution τ corresponds to the contour

[τΓ̂(Φ(ℓf ))] = [(Φ ◦ g ◦ Φ−1)(Φ(ℓf ))] = [Φ(g(ℓf))].



10 SERGEY NATANZON AND ANNA PRATOUSSEVITCH

It is easy to see geometrically that g(ℓf ) is the axis of gfg−1, hence τ(f) = gfg−1.
�

3.4. From Lifts of Real Fuchsian Groups to Higher Spin Bundles on Klein
Surfaces.

Definition 3.7. Anm-spin bundle on a Klein surface (P, τ) is a pair (e : L→ P, β),
where e : L → P is an m-spin bundle on P and β : L → L is an anti-holomorphic
involution on L such that e ◦ β = τ ◦ e.
Definition 3.8. Two m-spin bundles (e1 : L1 → P1, β1) and (e2 : L2 → P2, β2)
on Klein surfaces (P1, τ1) and (P2, τ2) are isomorphic if there exist biholomorphic
maps ϕL : L1 → L2 and ϕP : P1 → P2 such that the obvious diagrams commute:
e2 ◦ ϕL = ϕP ◦ e1, β2 ◦ ϕL = ϕL ◦ β1 and τ2 ◦ ϕP = ϕP ◦ τ1.

Definition 3.9. A lift of a real Fuchsian group Γ̂ into Gm is a subgroup Γ̂∗ of Gm

such that the projection π|Γ̂∗ : Γ̂∗ → Γ̂ is an isomorphism.

Proposition 3.4. To any lift of a real Fuchsian group into the m-fold cover Gm

of Aut(H) we can associate an m-spin bundle on the corresponding Klein surface.

Proof. Let Γ̂∗ be a lift of a real Fuchsian group Γ̂ into the m-fold cover Gm

of Aut(H). Let Γ = Γ̂+ = Γ̂ ∩ Aut+(H) be the corresponding Fuchsian group

and Γ∗ = Γ̂∗∩G+
m be the corresponding lift of Γ. Let P = H/Γ, LΓ∗ = (H×C)/Γ∗

and let eΓ∗ : LΓ∗ → P be the corresponding m-spin bundle as in Theorem 3.1. Let

us choose some (g, δg) ∈ Γ̂∗∩G−
m and consider the mapping (z, x) 7→ (g(z), δg(z)·x̄).

If (z′, x′) and (z, x) correspond to the same point in LΓ∗ = (H × C)/Γ∗, then
(g(z′), δg(z

′) · x̄′) and (g(z), δg(z) · x̄) correspond to the same point in LΓ∗ . Thus
the mapping (z, x) 7→ (g(z), δg(z) · x̄) induces a map βΓ̂∗ : LΓ∗ → LΓ∗ .

If we choose different (g1, δg1
), (g2, δg2

) ∈ Γ̂∗ ∩ G−
m, then (g1(z), δg1

(z) · x̄) and
(g2(z), δg2

(z) · x̄) correspond to the same point in LΓ∗ . Thus the map βΓ̂∗ does not

depend on the choice of the element g ∈ Γ̂∗ ∩G−
m.

If we apply βΓ̂∗ twice we get

(z, x) 7→ (g(z), δg(z) · x̄)
7→ (g(g(z)), δg(g(z)) · δg(z) · x̄)
= ((g ◦ g)(z), ((δg ◦ g) · δ̄g)(z) · x)
= ((g ◦ g)(z), δg◦g(z) · x)
= (g ◦ g) · (z, x).

We have g ◦ g ∈ Γ̂∗ since g ∈ Γ̂∗ and we have g ◦ g ∈ G+
m for any g ∈ Gm,

hence g ◦ g ∈ Γ̂∗ ∩ G+
m = Γ∗. Thus (z, x) and (g ◦ g) · (z, x) are equal modulo

the action of Γ∗. We have therefore shown that βΓ̂∗ is indeed an involution. We

can now associate with the lift Γ̂∗ of the real Fuchsian group Γ̂ the m-spin bundle
eΓ̂∗ := (eΓ∗ , βΓ̂∗). �

Proposition 3.5. To any m-spin bundle on the Klein surface (P, τ) we can asso-
ciate a lift of a real Fuchsian group into the m-fold cover Gm of Aut(H).

Proof. Any m-spin bundle on (P, τ) is obtained as eΓ∗ for some lift Γ∗ of Γ into Gm.
Let (e : L → P, β : L → L) be an m-spin bundle on (P, τ). We have e ◦ β = τ ◦ e.
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Consider a lift β̃ of β : L→ L to the universal cover L̃ = H × C of L. Let ẽ be the
projection H ×C → P . The map β̃ is bi-anti-holomorphic, invariant under Γ∗ and
with the property ẽ ◦ β̃ = τ ◦ ẽ, hence β̃ is of the form

β̃(z, x) = (g(z), f(z, x)),

where g is some element of Γ̂− and f is some anti-holomorphic map. For a fixed z the
map x 7→ f(z, x) is a bi-anti-holomorphic map C → C, hence f(z, x) = a(z)·x̄+b(z),
where a : H → C

∗ and b : H → C are holomorphic functions. Since β is a bundle
map, it preserves the zero section of L, hence b(z) = 0 for all z. Thus β̃ is of the
form

β̃(z, x) = (g(z), a(z) · x̄),
where a : H → C

∗ is a holomorphic function. Considering the m-fold tensor
products, we obtain an anti-holomorphic involution given by

β̃⊗m(z, x) = (g(z), am(z) · x̄)
on the cotangent bundle of P , hence

am =
d

dz̄
g.

Therefore g̃ = (g, δg) with δg = a defines a lift of the element g into G−
m. The

fact that the map β̃ is invariant under the action of Γ∗ on H × C implies that the
element g̃ = (g, δg) normalises the lift Γ∗, i.e. g̃ · Γ∗ · g̃−1 = Γ∗. The fact that β is
an involution implies that the element g̃ = (g, δg) is of order two. The fact that
g̃ · Γ∗ · g̃−1 = Γ∗ and g̃2 = ẽ implies that the subgroup of Gm generated by Γ∗ and
g̃ is a lift of Γ̂ into Gm. �

3.5. Lifts of Real Fuchsian Groups and Real Arf Functions. A lift Γ̂∗ of
a real Fuchsian group Γ̂ into the m-fold cover Gm of Aut(H) induces a lift Γ∗ =

Γ̂∗∩G+
m of the Fuchsian group Γ = Γ̂∩G+ into G+

m, whence an m-Arf function σΓ̂∗

on H/Γ. Let us study the special properties of such m-Arf functions.

Lemma 3.6. Let Γ̂ be a real Fuchsian group, Γ = Γ̂+ = Γ̂ ∩G+ the corresponding
Fuchsian group, [Γ̂] = (P = H/Γ, τ) the corresponding Klein surface and Γ̂∗ a lift

of Γ̂. Then the induced m-Arf function σ = σΓ∗ on P has the following property:
σ(τc) = −σ(c) for any c ∈ π0

1(P ).

Proof. The anti-holomorphic involution on P is given by τ = Φ ◦ f ◦ Φ−1, where
f ∈ Γ̂− = Γ̂ ∩G− and Φ is the natural projection H → P . The induced involution

on π0
1(P ) ∼= Γ ∼= Γ∗ is given by conjugation by an element of (Γ̂∗)− = Γ̂∗ ∩ G−

m,
which according to Proposition 2.6 changes the sign of sm, hence σ(τc) = −σ(c)
for all c ∈ π0

1(P ). �

Definition 3.10. We call an m-Arf function on a Klein surface (P, τ) compatible
(with the involution τ) if σ(τc) = −σ(c) for any c ∈ π0

1(P ).

To understand the structure of a Klein surface (P, τ), we look at the contours
which are invariant under the involution τ . There are two kinds of invariant con-
tours, depending on whether the restriction of τ to the invariant contour is identity
or a ”half-turn”.
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Definition 3.11. Let (P, τ) be a Klein surface. The set of fixed points of the
involution τ is called the set of real points of (P, τ) and denoted by P τ . The set P τ

decomposes into pairwise disjoint simple closed smooth contours, called ovals.

Definition 3.12. A twist (or twisted oval) is a simple contour in P which is in-
variant under the involution τ but does not contain any fixed points of τ .

Remark. A twisted oval is not an oval, however the corresponding element of H1(P )
is a fixed point of the induced involution and the corresponding element of π1(P )
is preserved up to conjugation by the induced involution.

Lemma 3.7. Let σ be a compatible m-Arf function on a Klein surface (P, τ). If m
is odd, the σ vanishes on all ovals and all twists. If m is even, then σ(c) is either
equal to 0 or to m/2 for any oval and any twist c.

Proof. For any invariant contour c ∈ π0
1(P ) ∼= Γ, whether oval or twist, we have

τc = c and therefore σ(τc) = σ(c). On the other hand σ is compatible, hence
σ(τc) = −σ(c) for all c. Therefore 2σ(c) = 0 modulo m. For odd m this implies
σ(c) = 0, while for even m we can have either σ(c) = 0 or σ(c) = m/2. �

Not all compatible m-Arf functions correspond to lifts of real Fuchsian groups.
We will prove now that if an m-Arf function corresponds to a lift of a real Fuchsian
group, then stronger conditions on the twists than Lemma 3.7 are satisfied.

For a hyperbolic automorphism c ∈ Aut+(H) let c̄ be the reflection whose mir-
ror coincides with the axis of c, let

√
c be the hyperbolic automorphism such

that (
√
c)2 = c and let c̃ = c̄

√
c. The discussion summarised in section 2.2 of [Nat04]

(compare with Theorem 4.2 for more details) implies

Lemma 3.8. If c ∈ Γ̂ is a hyperbolic element that corresponds to an oval on
P = H/Γ̂, then Γ̂ contains the reflection c̄. If c ∈ Γ̂ is a hyperbolic element that

corresponds to a twist on P = H/Γ̂, then Γ̂ contains the element c̃ = c̄
√
c.

Lemma 3.9. Let Γ̂ be a real Fuchsian group, Γ = Γ̂+ = Γ̂ ∩G+ the corresponding
Fuchsian group, [Γ̂] = (P = H/Γ, τ) the corresponding Klein surface and Γ̂∗ a lift

of Γ̂. Then the induced m-Arf function σ = σΓ∗ on P vanishes on all twists.

Proof. We need to show that the case m even, c a twist, σ(c) = m/2 is not possible.
Let c be a hyperbolic element in Γ ∼= π0

1(P ) which corresponds to a twist. According

to Lemma 3.8 the group Γ̂ contains the element c̃ = c̄
√
c. Let C ∈ (Γ̂∗)+ and

C̃ ∈ (Γ̂∗)− be the lifts of c and c̃ resp. Without loss of generality we can assume

that c = τ0,∞(λ), so that c̃ = j · τ0,∞(λ/2). Then the lift of c̃ in Γ̂∗ is of the form
JT0,∞(λ/2) ·U q for some integer q. Using identities from Proposition 2.3 we obtain
that

(JT0,∞(λ/2)U q)2 = (JT0,∞(λ/2)U q)(JT0,∞(λ/2)U q)

= (JT0,∞(λ/2)U q)(U−qJT0,∞(λ/2))

= JT0,∞(λ/2)JT0,∞(λ/2) = JJT0,∞(λ/2)T0,∞(λ/2)

= T0,∞(λ/2)T0,∞(λ/2) = T0,∞(λ).

The element T0,∞(λ) is therefore in Γ̂∗ and is a pre-image of (c̃)2 = c, hence T0,∞(λ)

is the lift of c in Γ̂∗. We obtain that σ(c) = sm(T0,∞) = 0. �
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Definition 3.13. A real m-Arf function on a Klein surface (P, τ) is an m-Arf
function on P such that

(i) σ is compatible with τ , i.e. σ(τc) = −σ(c) for any c ∈ π0
1(P ).

(ii) σ vanishes on all twists.

Lemmas 3.6 and 3.9 imply:

Theorem 3.10. Let Γ̂∗ be a lift of a real Fuchsian group Γ̂. Then the induced
m-Arf function σ = σΓ̂∗ is a real m-Arf function on the Klein surface [Γ̂].

Remark. We slightly change terminology here. In [Nat04, Nat94] 2-Arf functions
satisfying (i) were called real Arf functions, while 2-Arf functions satisfying (i)
and (ii) were called non-special real Arf functions.

Remark. One can show that in the presence of ovals (P τ 6= ∅) compatibility with τ
implies property (ii). However, if P τ = ∅ and m is even, there exist compatible
Arf functions which assume the value m/2 on all twists. We will not be interested
in these Arf functions since they do not come from real Fuchsian groups.

Definition 3.14. Two lifts (Γ̂∗)1 and (Γ̂∗)2 of a real Fuchsian group Γ̂ are similar

if (Γ̂∗)−1 = (Γ̂∗)−2 · U q for some integer q.

Remark. Note that for similar lifts (Γ̂∗)1 and (Γ̂∗)2 of a real Fuchsian group Γ̂ we

have (Γ̂∗)+1 = (Γ̂∗)+2 .

Theorem 3.11. Let Γ̂ be a real Fuchsian group. The mapping that assigns to a
lift Γ̂∗ of Γ̂ into Gm the m-Arf function of (Γ̂∗)+ establishes a 1-1-correspondence

between similarity classes of lifts of the real Fuchsian group Γ̂ and real m-Arf func-
tions on the Klein surface [Γ̂].

Proof. According to Theorem 3.10, we can assign to any lift Γ̂∗ of Γ̂ a real m-Arf
function σ = σΓ̂∗ on [Γ̂].

Let σ be a real m-Arf function on [Γ̂]. We will show that there exist m lifts of Γ̂
such that the m-Arf function induced by each of the lifts is equal to σ. Moreover,
these m lifts are similar to each other.

According to Theorem 3.2 there exists a unique lift Γ∗ into G+
m of the group Γ =

Γ̂+ such that the induced m-Arf function is equal to σ. Choose an element f in Γ̂−.
To uniquely determine a lift of the group Γ̂ = 〈Γ, f〉 = Γ∪f ·Γ we need to specify a

lift F ∈ (Γ̂∗)− of f . To ensure that the set Γ∗ ∪F ·Γ∗ is indeed a group we require
FΓ∗F−1 = Γ∗ and F 2 ∈ Γ∗. According to Proposition 3.3, we have fgf−1 = τg
and hence σ(fgf−1) = σ(τg). The Arf function σ is real, hence σ(τg) = −σ(g).
Thus σ(fgf−1) = σ(τg) = −σ(g) and therefore FΓ∗F−1 = Γ∗.

If P is separating, we can assume without loss of generality that f = j. The
lifts of f are then of the form F = J ·U q. Using identities from Proposition 2.3 we
obtain for any integer q that

F 2 = (JU q)2 = (JU q)(JU q) = (JU q)(U−qJ) = J2 = ẽ.

If P is non-separating, we can assume without loss of generality that f =
jτ0,∞(λ/2), where the element τ0,∞(λ) corresponds to a twist. The lifts of f are
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then of the form F = JT0,∞(λ/2)U q. Using identities from Proposition 2.3 we
obtain as in the proof of Lemma 3.9 that for any integer q

F 2 = (JT0,∞(λ/2) · U q)2 = T0,∞(λ).

Since the Arf function σ is real, we have

σ(τ0,∞(λ)) = 0 = sm(T0,∞(λ)),

hence the element F 2 = T0,∞(λ) is in Γ∗. The properties FΓ∗F−1 = Γ∗ and

F 2 ∈ Γ∗ imply that the subgroup of Γ̂∗ generated by Γ∗ and F is a lift of Γ̂. �

3.6. From Higher Spin Bundles on Klein Surfaces to Lifts of Real Fuch-
sian Groups.

Theorem 3.12. There is a 1-1-correspondence between m-spin bundles on Klein
surfaces and similarity classes of lifts of real Fuchsian groups into the m-fold
cover Gm of Aut(H).

Proof. We will show that similar lifts of a real Fuchsian group Γ̂ induce isomorphic
m-spin bundles on the corresponding Klein surface. The uniformisations of the
anti-holomorphic involutions that correspond to similar lifts of Γ̂ are of the form
β̃1(z, x) = (g(z), δg(z) · x̄) and β̃2(z, x) = (g(z), ζ · δg(z) · x̄), where ζ ∈ C, ζm = 1.
Then taking ϕL(z, x) = (z,

√
ζ · x) and ϕP = idP (see Definition 3.8) we can see

that two m-spin bundles on the Klein surface are isomorphic:

ϕL(β̃1(z, x)) = ϕL(g(z), δg(z) · x̄) = (g(z),
√

ζ · δg(z) · x̄),

β̃2(ϕL(z, x)) = β̃2(z,
√

ζ · x) = (g(z), ζ · δg(z) ·
√

ζ · x)

= (g(z), ζ ·
√

ζ̄ · δg(z) · x̄) = (g(z),
√

ζ · δg(z) · x̄). �

Theorems 3.11 and 3.12 immediately imply

Theorem 3.13. The mapping that assigns to an m-spin bundle on a Klein surface
the corresponding real m-Arf function establishes a 1-1-correspondence.

4. Classification of Real Arf Functions

4.1. Topological Invariants of Klein Surfaces.

Definition 4.1. Given two Klein surfaces (P1, τ1) and (P2, τ2), we say that they
are topologically equivalent if there exists a homeomorhism φ : P1 → P2 such that
φ ◦ τ1 = τ2 ◦ φ.

Let (P, τ) be a Klein surface. We say that (P, τ) is separating or of type I if
the set P\P τ is not connected, otherwise we say that it is non-separating or of
type II . The topological type of (P, τ) is the triple (g, k, ε), where g is the genus of
the Riemann surface P , k is the number of connected components of the fixed point
set P τ of τ , ε = 0 if (P, τ) is non-separating and ε = 1 otherwise. We say that a real

Fuchsian group Γ̂ is of topological type (g, k, ε) if the corresponding Klein surface
is of topological type (g, k, ε). In this paper we consider hyperbolic surfaces, hence
g > 2.

The following result of Weichold [Wei] gives a classification of Klein surfaces up
to topological equivalence:
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Theorem 4.1. Two Klein surfaces are topologically equivalent if and only if they
are of the same topological type. A triple (g, k, ε) is a topological type of some Klein
surface if and only if either ε = 1, 1 6 k 6 g + 1, k ≡ g + 1 mod 2 or ε = 0,
0 6 k 6 g.

Any separating Klein surface can be obtained by gluing together a Riemann sur-
face with boundary with its copy via the identity map along the boundary compo-
nents. If we replace the identity map with a half-turn on some of the boundary com-
ponents, we obtain a non-separating Klein surface. Moreover, all non-separating
Klein surfaces are obtained in this way.

We will use the description of generating sets of real Fuchsian groups given
in [Nat04, Nat75, Nat78]:

Recall that for a hyperbolic automorphism c ∈ Aut+(H), c̄ is the reflection
whose mirror coincides with the axis of c,

√
c is the hyperbolic automorphism such

that (
√
c)2 = c and c̃ = c̄

√
c.

Theorem 4.2. (Generating sets of real Fuchsian groups)

1) Let (g, k, 1) be a topological type of a Klein surface, i.e. 1 6 k 6 g + 1 and
k ≡ g + 1 mod2. Let n = k. Let g̃ = (g + 1 − n)/2. Let

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn)

be a generating set of a Fuchsian group of signature (g̃, k), then

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn, c̄1, . . . , c̄n)

is a generating set of a real Fuchsian group Γ̂ of topological type (g, k, 1). Any
real Fuchsian group of topological type (g, k, 1) is obtained in this way.

2) Let (g, k, 0) be a topological type of a Klein surface, i.e. 0 6 k 6 g. Let us choose
n ∈ {k + 1, . . . , g + 1} such that n ≡ g + 1 mod2. Let g̃ = (g + 1 − n)/2. Let

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn)

be a generating set of a Fuchsian group of signature (g̃, n), then

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn, c̄1, . . . , c̄k, c̃k+1, · · · , c̃n)

is a generating set of a real Fuchsian group Γ̂ of topological type (g, k, 0). Any
real Fuchsian group of topological type (g, k, 0) is obtained in this way.

3) Let Γ̂ be a real Fuchsian group as in part 1 or 2 and let (P, τ) be the corresponding
Klein surface. We now think of the elements

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn)

as contours in π0
1(P ) rather than generators of Γ̂. We have P τ = c1 ∪ · · · ∪ ck.

The contours c1, . . . , ck correspond to ovals, the contours ck+1, . . . , cn correspond
to twists. Let P1 and P2 be the connected components of the complement of
the contours c1, . . . , cn in P . Each of these components is a surface of genus
g̃ = (g + 1 − n)/2 with n holes. We have τ(P1) = P2. We will refer to P1 and
P2 as decomposition of (P, τ) in two halves. (Note that such a decomposition is
unique if (P, τ) is separating, but is not unique if (P, τ) is non-separating since
the twists ck+1, . . . , cn can be chosen in different ways.) Then

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn)
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Figure 2: Canonical system of curves

is a generating set of π0
1(P1), while its image under τ gives a generating set of

π0
1(P2). For two invariant contours ci and cj, we say that a contour of the form

ri ∪ (τℓ)−1 ∪ rj ∪ ℓ,
where ℓ is a simple path in P1 starting on cj and ending on ci, ri is the path
along ci from the end point of ℓ to the end point of τ(ℓ) and rj is the path along cj
from the starting point of τ(ℓ) to the starting point of ℓ, is a bridge between ci
and cj. (If ci or cj is an oval, the path ri or rj respectively consists of just one
point.) Let d1, . . . , dn−1 be contours which only intersect at the base point, such
that di is a bridge between ci and cn. Let a′i = (τai)

−1 and b′i = (τbi)
−1 for

i = 1, . . . , g̃. Then

(a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, . . . , cn−1, d1, . . . , dn−1)

is a generating set of π0
1(P ). Note that τ(ci) = ci and τ(di) = c

|ci|
i d−1

i c
|cn|
n ,

where |cj | = 0 if cj is an oval and |cj | = 1 if cj is a twist. We will refer to such
a generating set as a symmetric generating set of type (g̃, k, n).

4.2. Topological Invariants of Higher Arf Functions. In this section we recall
the topological invariants of m-Arf functions as described in [NP05, NP09].

Definition 4.2. A canonical system of curves on a compact Riemann surface P of
genus g with n holes is a set of simply closed curves {ã1, b̃1, . . . , ãg, b̃g, c̃1, . . . , c̃n}
based at a point p ∈ P with the following properties:

1) The contour c̃i encloses a hole in P for i = 1, . . . , n.
2) Any two curves only intersect at the point p.
3) A neighbourhood of the point p with the curves is homeomorphic to the one

shown in Figure 2.
4) The system of curves cuts the surface P into n + 1 connected components of

which n are homeomorphic to a ring and one is homeomorphic to a disc and has
boundary

ã1b̃1ã
−1
1 b̃−1

1 . . . ãg b̃g ã
−1
g b̃−1

g c̃1 . . . c̃n.

If {ã1, b̃1, . . . , ãg, b̃g, c̃1, . . . , c̃n} is a canonical system of curves, then we call the cor-
responding set {a1, b1, . . . , ag, bg, c1, . . . , cn} of elements in the fundamental group
π1(P ) a standard generating set or a standard basis of π1(P ).
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Remark. Note that a symmetric generating set as defined in Theorem 4.2 is not a
standard generating set in the sense of Definition 4.2, however it is free homotopic
to a standard one.

Definition 4.3. Let σ : π0
1(P ) → Z/mZ be an m-Arf function. For g = 1 we

define the Arf invariant δ = δ(P, σ) as

δ = gcd(m,σ(a1), σ(b1), σ(c1) + 1, . . . , σ(cn) + 1),

where
{a1, b1, ci (i = 1, . . . , n)}

is a standard (or symmetric) generating set of the fundamental group π1(P ). For g >

2 and even m we define the Arf invariant δ = δ(P, σ) as δ = 0 if there is a standard
(or symmetric) generating set

{ai, bi (i = 1, . . . , g), ci (i = 1, . . . , n)}
of the fundamental group π1(P ) such that

g
∑

i=1

(1 − σ(ai))(1 − σ(bi)) ≡ 0 mod 2

and as δ = 1 otherwise. For g > 2 and odd m we set δ = 0.

Definition 4.4. For even m and g > 2 we say that an m-Arf function with Arf
invariant δ is even if δ = 0 and odd if δ = 1.

Remark. The Arf invariant δ is a topological invariant of the Arf function σ, i.e. it
does not change under self-homeomorphisms of the Riemann surface P .

The following is a special case of our earlier classification result, Theorem 5.3
in [NP09]:

Theorem 4.3. Let P be a hyperbolic Riemann surface of genus g with n holes.
Let c1, . . . , cn be contours around the holes as in Definition 4.2. Let σ be an m-Arf
function on P and let δ be the m-Arf invariant of σ. Then

(a) If g > 2 and m ≡ 1 mod2 then δ = 0.
(b) If g > 2 and m ≡ 0 mod2 and σ(ci) ≡ 0 mod2 for some i then δ = 0.
(c) If g = 1 then δ is a divisor of gcd(m,σ(c1) + 1, . . . , σ(cn) + 1).
(d) σ(c1) + · · · + σ(cn) ≡ (2 − 2g) − nmodm.

The following result describes the construction of suchm-Arf functions. It follows
from Lemma 3.7, Lemma 3.9, Theorem 4.9 and the proof of Theorem 5.3 in [NP09].

Theorem 4.4. Let P be a hyperbolic Riemann surface of genus g with n holes.
Then for any standard generating set

(a1, b1, . . . , ag, bg, c1, . . . , cn)

of π1(P ) and any choice of values α1, β1, . . . , αg, βg, γ1, . . . , γn in Z/mZ with

γ1 + · · · + γn ≡ (2 − 2g) − nmodm,

there exists an m-Arf function σ on P such that σ(ai) = αi, σ(bi) = βi for i =
1, . . . , g and σ(ci) = γi if i = 1, . . . , n. The Arf invariant δ of this m-Arf function σ
satisfies the following conditions:

(a) If g > 2 and m ≡ 1 mod2 then δ = 0.
(b) If g > 2 and m ≡ 0 mod2 and γi ≡ 0 mod2 for some i then δ = 0.
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(c) If g > 2 and m ≡ 0 mod2 and γ1 ≡ · · · ≡ γn ≡ 1 mod2 then δ ∈ {0, 1} and

δ ≡
g

∑

i=1

(1 − αi)(1 − βi)mod 2.

(d) If g = 1 then δ = gcd(m,α1, β1, γ1 + 1, . . . , γn + 1).

Remark. Note that in the case g > 2 the formula for δ in part (c) holds on some
standard generating set by definition. The important statement is that, in the case
that m ≡ 0 mod2 and γ1 ≡ · · · ≡ γn ≡ 1 mod 2, this formula holds for any standard
generating set.

In the special case of a compact Riemann surface without holes (i.e. n = 0) we
have

Proposition 4.5. Let P be a compact Riemann surface of genus g > 2. Assume
that 2 − 2g ≡ 0 modm. Then for any standard generating set (a1, b1, . . . , ag, bg)
of π1(P ) and any choice of values α1, β1, . . . , αg, βg in Z/mZ, there exists an m-
Arf function σ on P such that σ(ai) = αi, σ(bi) = βi for i = 1, . . . , g. The Arf
invariant δ of this m-Arf function σ satisfies the following conditions:

(a) If m is odd then δ = 0.
(b) If m is even then δ ∈ {0, 1} and

δ ≡
g

∑

i=1

(1 − αi)(1 − βi)mod 2.

4.3. Values of Real Arf Functions on Symmetric Generating Sets.

Lemma 4.6. Let (P, τ) be a Klein surface and let σ be an m-Arf function on P .
(Here we do not assume that σ is a real Arf function.) Let d be a bridge as defined
in Theorem 4.2.

• Let (P, τ) be separating. Then

σ(τd) = −σ(d).

• Let (P, τ) be non-separating. Let c1, . . . , cn be invariant contours such that the
first k correspond to ovals and the next n − k correspond to twists (see Theo-
rem 4.2). Assume that σ vanishes on all twists ck+1, . . . , cn. Then

σ(τd) = −σ(d).

Proof. Let d = ri ∪ (τℓ)−1 ∪ rj ∪ ℓ be a bridge between ci and cj as in Theorem 4.2.

• If ci and cj are both ovals we have (see Figure 3):

d = (τℓ)−1 ∪ ℓ,
τd = ℓ−1 ∪ τℓ = d−1.

Now we see that σ(τd) = σ(d−1) = −σ(d).
• If ci is an oval and cj is a twist we have (see Figure 4):

d = (τℓ)−1 ∪ rj ∪ ℓ,
τd = ℓ−1 ∪ τrj ∪ τℓ,

(τd)−1 = (τℓ)−1 ∪ (τrj)
−1 ∪ ℓ

=
(

(τℓ)−1 ∪ rj ∪ ℓ
)

∪
(

ℓ−1 ∪ r−1
j ∪ (τrj)

−1 ∪ ℓ
)

= d ∪ cj .
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Figure 3: A bridge between ovals ci and cj

Using Property 3 of Arf functions we obtain

σ((τd)−1) = σ(d) + σ(cj).

Using Property 2 of Arf functions we obtain σ((τd)−1) = −σ(τd) and therefore

σ(τd) = −σ(d) − σ(cj).

Now we see that σ(cj) = 0 implies σ(τd) = −σ(d).
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Figure 4: A bridge between an oval ci and a twist cj

• If ci and cj are both twists we have (see Figure 5):

d = ri ∪ (τℓ)−1 ∪ rj ∪ ℓ,
τd = ℓ−1 ∪ τrj ∪ τℓ ∪ τri

and

(τd)−1

= (τri)
−1 ∪ (τℓ)−1 ∪ (τrj)

−1 ∪ ℓ
= ((τri)

−1 ∪ r−1
i ) ∪ (ri ∪ (τℓ)−1 ∪ rj ∪ ℓ) ∪ (ℓ−1 ∪ r−1

j ∪ (τrj)
−1 ∪ ℓ)

= ci ∪ d ∪ cj .
Using Property 3 of Arf functions we obtain

σ((τd)−1) = σ(ci) + σ(d) + σ(cj).

Using Property 2 of Arf functions we obtain σ((τd)−1) = −σ(τd) and therefore

σ(τd) = −σ(d) − σ(ci) − σ(cj).
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Now we see that σ(ci) = σ(cj) = 0 implies σ(τd) = −σ(d).
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Figure 5: A bridge between two twists ci and cj

�

Lemma 4.7. Let (P, τ) be a Klein surface of type (g, k, ε) and σ an m-Arf func-
tion on P . Let c1, . . . , cn be invariant contours as in Theorem 4.2, with c1, . . . , ck
corresponding to ovals and ck+1, . . . , cn corresponding to twists. Let

B = (a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, . . . , cn−1, d1, . . . , dn−1)

be a symmetric generating set of π0
1(P ). Assume that

(i) σ(ai) = σ(a′i), σ(bi) = σ(b′i) for i = 1, . . . , g̃,
(ii) 2σ(ci) = 0 for i = 1, . . . , n− 1.
(iii) σ(ci) = 0 for i = k + 1, . . . , n.

Then σ is a real m-Arf function on (P, τ).

Remark. Condition (iii) means that σ vanishes on all twists.

Proof. To be real, the m-Arf function σ must vanish on all twists and be compatible
with τ , i.e. satisfy the equation σ(τx) = −σ(x) for all x ∈ π0

1(P ). Condition (iii)
implies that σ vanishes on all twists. We will first check the equation σ(τx) = −σ(x)
for all x in B.

• x = ai, bi, i = 1, . . . , g̃: Recall that a′i = (τai)
−1, hence τai = (a′i)

−1 and
σ(τai) = σ((ai)

′−1) = −σ(a′i). Condition (i) implies σ(a′i) = σ(ai), hence
σ(τai) = −σ(a′i) = −σ(ai). Similarly σ(τbi) = −σ(bi).

• x = a′i, b
′
i, i = 1, . . . , g̃: Recall that a′i = (τai)

−1, hence τa′i = a−1
i and σ(τa′i) =

σ(a−1
i ) = −σ(ai). Condition (i) implies σ(ai) = σ(a′i), hence σ(τa′i) = −σ(ai) =

−σ(a′i). Similarly σ(τb′i) = −σ(b′i).
• x = ci, i = 1, . . . , n − 1: Recall that τci = ci for an oval ci, i = 1, . . . , k,

while τci is conjugate to ci for a twist ci, i = k + 1, . . . , n − 1. In both cases
σ(τci) = σ(ci). Condition (ii) implies 2σ(ci) = 0 for i = 1, . . . , n − 1, hence
σ(τci) = σ(ci) = −σ(ci).

• x = di, i = 1, . . . , n − 1: Condition (iii) implies that σ vanishes on all twists.
According to Lemma 4.6, it follows that σ(τdi) = −σ(di) for i = 1, . . . , n− 1.

Consider σ̃ : π1(P ) → Z/mZ given by σ̃(x) = −σ(τx). The involution τ is an
orientation-reversing homeomorphism, so it is easy to check using Definition 3.4 that
if σ is an m-Arf function then so is σ̃. We have checked that for any x in B we have
σ(τx) = −σ(x), hence σ̃(x) = −σ(τx) = σ(x). Thus we have two m-Arf functions,
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σ and σ̃, which coincide on a generating set. We can conclude that σ and σ̃ coincide
everywhere on π1(P ), i.e. for any x ∈ π1(P ) we have σ(τx) = −σ̃(x) = −σ(x). This
shows that the Arf function σ is real. �

4.4. Classification and Enumeration of Real Arf Functions. Let (P, τ) be
a Klein surface of type (g, k, ε), g > 2. Let c1, . . . , cn be invariant contours as in
Theorem 4.2. The contours c1, . . . , ck correspond to ovals. In the separating case
(ε = 1) we have n = k. In the non-separating case ε = 0 we have n > k and the
contours ck+1, . . . , cn correspond to twists. Let

B = (a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, . . . , cn−1, d1, . . . , dn−1)

be a symmetric generating set of π0
1(P ). Let P1 and P2 be the connected compo-

nents of the complement of the contours c1, . . . , cn in P . Each of these components
is a surface of genus g̃ = (g + 1 − n)/2 with n holes. We have τ(P1) = P2.

Lemma 4.8. Let σ be a real m-Arf function on (P, τ), then

σ(c1) + · · · + σ(cn) = 1 − gmodm

and

g = 1 mod
m

2
if m is even,

g = 1 modm if m is odd.

Proof. Theorem 4.3, applied to P1, implies that

σ(c1) + · · · + σ(cn) = (2 − 2g̃) − n = 1 − gmodm.

Moreover, σ(ci) ∈ {0,m/2} for even m and σ(ci) = 0 for odd m completes the
proof. �

Theorem 4.9. Let ε = 0 and let m be even. Recall that in this case n > k.

1) Let σ be a real m-Arf function on (P, τ). Then

σ(ai) = σ(a′i) and σ(bi) = σ(b′i) for i = 1, . . . , g̃,

σ(c1), . . . , σ(ck) ∈ {0,m/2}, σ(ck+1) = · · · = σ(cn) = 0,

σ(c1) + · · · + σ(ck) = 1 − gmodm,

g = 1 mod(m/2).

2) Let the set of values V in (Z/mZ)4g̃+2n−2 be

(α1, β1, . . . , αg̃, βg̃, α
′
1, β

′
1, . . . , α

′
g̃, β

′
g̃, γ1, . . . , γn−1, δ1, . . . , δn−1).

Assume that

αi = α′
i and βi = β′

i for i = 1, . . . , g̃,

γ1, . . . , γk ∈ {0,m/2}, γk+1 = · · · = γn−1 = 0,

γ1 + · · · + γk = 1 − gmodm.

Then there exists a real m-Arf function σ on (P, τ) with values V on the gener-
ating set B. For this m-Arf function we have

σ(cn) = 0.

3) The number of real m-Arf functions on (P, τ) is

mg for k = 0 and mg · 2k−1 for k > 1.
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4) The Arf invariant δ ∈ {0, 1} of a real m-Arf function σ on (P, τ) is given by

δ =

n−1
∑

i=1

(1 − σ(ci))(1 − σ(di))mod 2.

5) Consider γ1, . . . , γn−1 as above. Let

Σ =

n−1
∑

i=1

(1 − γi)(1 − δi).

Out of mn−1 possible choices for (δ1, . . . , δn−1) ∈ (Z/mZ)n−1 there are mn−1/2
which give Σ = 0 mod 2 and mn−1/2 which give Σ = 1 mod2.

6) The number of even and odd real m-Arf functions respectively on (P, τ) is

mg

2
for k = 0 and mg · 2k−2 for k > 1.

Proof. 1) For the real m-Arf function σ on (P, τ) we have σ(ci) ∈ {0,m/2} for
i = 1, . . . , k according to Lemma 3.7 and σ(ci) = 0 for i = k + 1, . . . , n by
Definition 3.13. Lemma 4.8 implies σ(c1) + · · · + σ(cn) = 1 − gmodm and
g = 1 mod(m/2). Furthermore σ(ck+1) = · · · = σ(cn) = 0 implies σ(c1) + · · · +
σ(cn) = σ(c1) + · · · + σ(ck).

2) We know that 1 − g = γ1 + · · · + γk modm and γ1, . . . , γk are multiples of
m/2, hence 2 − 2g = 0 modm. This implies, according to Proposition 4.5, that
the values V on B determine a unique m-Arf function σ on P . According to
Lemma 4.7, to show that this m-Arf function σ is real, it is sufficient to show
that σ(cn) = 0. Lemma 4.8 implies that

1 − g = σ(c1) + · · · + σ(cn) = γ1 + · · · + γn−1 + σ(cn)modm.

On the other hand γ1 + · · · + γk = 1 − gmodm and γk+1 = · · · = γn−1 = 0,
hence

1 − g = γ1 + · · · + γn−1 modm.

Comparing these equations we obtain

σ(cn) = 0 modm.

Thus σ is a real m-Arf function.
3) There arem2g̃ ways to choose αi = α′

i and βi = β′
i. For k > 1 there are 2k−1 ways

to choose γ1, . . . , γk−1, while γk is determined by the condition γ1 + · · · + γk =
1 − gmodm. There is only one way to choose γk+1, . . . , γn−1. There are mn−1

ways to choose δ1, . . . , δn−1. Hence for k > 1 there are

m2g̃+n−1 · 2k−1 = mg · 2k−1

different choices of V and hence different choices for a real m-Arf function σ.
For k = 0 there are

m2g̃+n−1 = mg

different choices of V and hence different choices for a real m-Arf function σ.
4) According to Proposition 4.5 the Arf invariant δ ∈ {0, 1} of an Arf function σ

with values V on B is determined by the equation

δ =

g̃
∑

i=1

(1 − αi)(1 − βi) +

g̃
∑

i=1

(1 − α′
i)(1 − β′

i) +

n−1
∑

i=1

(1 − γi)(1 − δi)mod 2.
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Using αi = α′
i and βi = β′

i we obtain

g̃
∑

i=1

(1 − αi)(1 − βi) +

g̃
∑

i=1

(1 − α′
i)(1 − β′

i) = 2

g̃
∑

i=1

(1 − αi)(1 − βi) = 0 mod 2,

hence

δ =

n−1
∑

i=1

(1 − γi)(1 − δi)mod 2.

Note that (1−γi)(1−δi) 6= 0 mod2 if and only if γi and δi are both even. Hence

δ =
∣

∣{i ∈ {1, . . . , n− 1}
∣

∣ γi and δi are even}
∣

∣mod 2.

5) We need to determine, for given γi, how many of the mn−1 ways to choose δi
lead to

Σ =

n−1
∑

i=1

(1 − γi)(1 − δi)

being even and odd respectively. If there exists r ∈ {1, . . . , n− 1} such that γr

is even, then for any choice of δ1, . . . , δ̂r, . . . , δn−1 exactly half of the possible
choices for δr will lead to even Σ and half to odd Σ. What about the case
when all γi are odd? Recall that γi ∈ {0,m/2} for i = 1, . . . , k and γi = 0
for i = k + 1, . . . , n − 1, i.e. γi is odd if and only if i ∈ {1, . . . , k}, γi = m/2,
m = 2 mod4. Thus the case when all γi are odd is only possible if m = 2 mod4,
γ1 = · · · = γk = m/2 and n = k + 1. Recall that n = g + 1 mod 2, comparing
with n = k + 1 we obtain k = gmod 2. Recall that 1 − g = γ1 + · · · + γk,
comparing with γ1 = · · · = γk = m/2 we obtain 1 − g = k ·m/2 modm. Using
k = gmod 2 and m/2 = 1 mod2 we obtain 1 − g = gmod 2. This contradiction
shows that γ1, . . . , γn−1 cannot all be odd.

6) For k > 1 there are 1
2 · (mn−1 · 2k−1) = mn−1 · 2k−2 ways to choose the values

γi, δi that lead to even and odd Σ respectively. Therefore the number of real
m-Arf functions which are even and odd respectively is

m2g̃ ·mn−1 · 2k−2 = mg · 2k−2.

For k = 0 there are 1
2 ·mn−1 = mn−1 ways to choose the values γi, δi that lead

to even and odd Σ respectively. Therefore the number of real m-Arf functions
which are even and odd respectively is

m2g̃ · 1

2
mn−1 =

mg

2
.

�

Theorem 4.10. Let ε = 1 and let m be even. Recall that in this case n = k.

1) Let σ be a real m-Arf function on (P, τ). Then

σ(ai) = σ(a′i) and σ(bi) = σ(b′i) for i = 1, . . . , g̃,

σ(c1), . . . , σ(ck) ∈ {0,m/2},
σ(c1) + · · · + σ(ck) = 1 − gmodm,

g = 1 mod(m/2).
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2) Assume that

1 − g = 0 mod
m

2
.

Let the set of values V in (Z/mZ)4g̃+2k−2 be

(α1, β1, . . . , αg̃, βg̃, α
′
1, β

′
1, . . . , α

′
g̃, β

′
g̃, γ1, . . . , γk−1, δ1, . . . , δk−1).

Assume that

αi = α′
i and βi = β′

i for i = 1, . . . , g̃,

γ1, . . . , γk−1 ∈ {0,m/2}.
Then there exists a real m-Arf function σ on (P, τ) with

σ(ai) = α1, σ(bi) = βi, σ(a′i) = α′
i, σ(b′i) = β′

i, σ(ci) = γi, σ(di) = δi.

For this m-Arf function we have

σ(ck) = (1 − g) − γ1 − · · · − γk−1 modm.

3) The number of real m-Arf functions on (P, τ) is

mg · 2k−1.

4) The Arf invariant δ ∈ {0, 1} of a real m-Arf function σ on (P, τ) is given by

δ =
k−1
∑

i=1

(1 − σ(ci))(1 − σ(di))mod 2.

5) Consider γ1, . . . , γk−1 as above. Let

Σ =

k−1
∑

i=1

(1 − γi)(1 − δi).

In the case m = 2 mod 4, γ1 = · · · = γk−1 = m/2 any choice of (δ1, . . . , δk−1) ∈
(Z/mZ)k−1 gives Σ = 0 mod 2. In all other cases, out of mk−1 possible choices
for (δ1, . . . , δk−1) ∈ (Z/mZ)k−1 there are mk−1/2 which give Σ = 0 mod2 and
mk−1/2 which give Σ = 1 mod2.

6) In the case m = 0 mod 4 the number of even and odd real m-Arf functions
respectively is

mg · 2k−2.

In the case m = 2 mod4 the numbers of even and odd real m-Arf functions
respectively are

mg · 2k−1 + 1

2
and mg · 2k−1 − 1

2
.

Proof. 1) For the real m-Arf function σ on (P, τ) we have σ(ci) ∈ {0,m/2} for
i = 1, . . . , k according to Lemma 3.7. Lemma 4.8 implies σ(c1) + · · · + σ(ck) =
1 − gmodm and g = 1 mod(m/2).

2) We know that 1 − g = 0 mod(m/2), hence 2 − 2g = 0 modm. This implies,
according to Proposition 4.5, that the values V on B determine a unique m-Arf
function σ on P . According to Lemma 4.7, to show that this m-Arf function σ
is real, it is sufficient to show that 2σ(ck) = 0. Lemma 4.8 implies that

1 − g = σ(c1) + · · · + σ(ck) = γ1 + · · · + γk−1 + σ(ck)modm,

hence
σ(ck) = (1 − g) − γ1 − · · · − γk−1 modm.
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We know that 1−g and γ1, . . . , γk are multiples ofm/2, hence 2σ(ck) = 0 modm.
Thus σ is a real m-Arf function.

3) There are m2g̃ ways to choose αi = α′
i and βi = β′

i. There are 2k−1 ways to
choose γ1, . . . , γk−1. There are mk−1 ways to choose δ1, . . . , δk−1. Hence there
are

m2g̃+k−1 · 2k−1 = mg · 2k−1

different choices of V and hence different choices for a real m-Arf function σ.
4) The Arf invariant δ ∈ {0, 1} of an Arf function σ with values V on B is determined

by the equation

δ =

g̃
∑

i=1

(1 − αi)(1 − βi) +

g̃
∑

i=1

(1 − α′
i)(1 − β′

i) +
k−1
∑

i=1

(1 − γi)(1 − δi)mod 2.

Using αi = α′
i and βi = β′

i we obtain

g̃
∑

i=1

(1 − αi)(1 − βi) +

g̃
∑

i=1

(1 − α′
i)(1 − β′

i) = 2

g̃
∑

i=1

(1 − αi)(1 − βi) = 0 mod 2,

hence

δ =
k−1
∑

i=1

(1 − γi)(1 − δi)mod 2.

Note that (1 − γi)(1 − δi) 6= 0 mod 2 only if γi and δi are both even. Hence

δ =
∣

∣{i ∈ {1, . . . , k − 1}
∣

∣ γi and δi are even}
∣

∣mod 2.

5) We need to determine, for given γi, how many of the mk−1 ways to choose

δi lead to Σ =
k−1
∑

i=1

(1 − σ(ci))(1 − σ(di)) being even and odd respectively. If

there exists r ∈ {1, . . . , k − 1} such that γr is even, then for any choice of

δ1, . . . , δ̂r, . . . , δk−1 exactly half of the possible choices for δr will lead to Σ being
even and odd respectively. What about the case when all γi are odd? Recall
that γi ∈ {0,m/2} for i = 1, . . . , k− 1, i.e. γi is odd if and only if γi = m/2 and
m = 2 mod4. Thus the case when all γi are odd is only possible if m = 2 mod4
and γ1 = · · · = γk−1 = m/2. In this case Σ is even.

6) Let m = 0 mod 4. For any of the 2k−1 ways to choose γ1, . . . , γk−1 the number
of ways to choose δ1, . . . , δk−1 so that Σ is even and odd respectively is mk−1/2.
Thus the number of even and odd real m-Arf functions is

m2g̃ · 2k−1 · m
k−1

2
= mg · 2k−2

respectively. Let m = 2 mod 4. For any of the 2k−1 − 1 ways to choose

(γ1, . . . , γk−1) 6= (m/2, . . . ,m/2)

the number of ways to choose δ1, . . . , δk−1 so that Σ is even and odd respectively
is mk−1/2. For (γ1, . . . , γk−1) = (m/2, . . . ,m/2) any of the mk−1 choices of
δ1, . . . , δk−1 gives even Σ. Therefore the number of choices of γi and δi that give
odd Σ is

(2k−1 − 1)
mk−1

2
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and the number of choices of γi and δi that give even Σ is

(2k−1 − 1)
mk−1

2
+mk−1 = (2k−1 + 1) ·mk−12.

Thus the number of even and odd real m-Arf functions is

m2g̃ · (2k−1 ± 1) · m
k−1

2
= m2g̃+k−1 · 2k−1 ± 1

2
= mg · 2k−1 ± 1

2
.

respectively.
�

Theorem 4.11. Let m be odd.

1) Let σ be a real m-Arf function on (P, τ). Then

σ(ai) = σ(a′i) and σ(bi) = σ(b′i) for i = 1, . . . , g̃,

σ(c1) = · · · = σ(cn) = 0,

g = 1 modm.

2) Assume that

g = 1 modm.

Let the set of values V in (Z/mZ)4g̃+2n−2 be

(α1, β1, . . . , αg̃, βg̃, α
′
1, β

′
1, . . . , α

′
g̃, β

′
g̃, γ1, . . . , γn−1, δ1, . . . , δn−1).

Assume that

αi = α′
i and βi = β′

i for i = 1, . . . , g̃,

γ1 = · · · = γn−1 = 0.

Then there exists a real m-Arf function σ on (P, τ) with

σ(ai) = α1, σ(bi) = βi, σ(a′i) = α′
i, σ(b′i) = β′

i, σ(ci) = γi, σ(di) = δi.

For this Arf function we have σ(cn) = 0.
3) The number of real m-Arf functions on (P, τ) is mg.

Proof. 1) For the real m-Arf function σ on (P, τ) we have σ(ci) = 0 for i = 1, . . . , k
according to Lemma 3.7 and σ(ci) = 0 for i = k + 1, . . . , n by Definition 3.13.
Lemma 4.8 implies σ(c1) + · · · + σ(cn) = 1 − gmodm and g = 1 modm.

2) The condition g = 1 modm implies 2 − 2g = 0 modm, hence, according to
Proposition 4.5, the values V on B determine a unique m-Arf function σ on P .
According to Lemma 4.7, to show that thism-Arf function σ is real, it is sufficient
to show that σ(cn) = 0. Lemma 4.8 implies that

σ(c1) + · · · + σ(cn) = 1 − gmodm.

On the other hand γ1 = · · · = γn−1 = 0, hence

σ(c1) + · · · + σ(cn) = γ1 + · · · + γn−1 + σ(cn) = σ(cn)modm.

Comparing these equations we obtain

σ(cn) = 1 − gmodm.

The condition g = 1 modm implies σ(cn) = 0 modm. Thus σ is a real m-Arf
function.
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3) There are m2g̃ way to choose αi = α′
i and βi = β′

i, only one way to choose
γ1, . . . , γn−1 and mn−1 ways to choose δ1, . . . , δn−1, hence there are

m2g̃+n−1 = mg

different choices of V and hence different choices for a real m-Arf function σ.
�
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