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Abstract. We study m-spin bundles on hyperbolic Klein surfaces, i.e. m-spin
bundles on hyperbolic Riemann surfaces with an anti-holomorphic involution.
We describe topological invariants of such bundles and determine the condi-
tions under which such bundles exist. We describe all connected components
of the space of higher spin bundles on Klein surfaces. We prove that any con-
nected component is homeomorphic to a quotient of Rd by a discrete group.
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1. Introduction

A complex line bundle e : L → P on a Riemann surface P , denoted (e, P ), is
an m-spin bundle if the m-th tensor power e⊗m : L⊗m → P is isomorphic to the
cotangent bundle of P . The classical 2-spin structures on compact Riemann surfaces
of genus g = g(P ) were introduced by Riemann [R] (as theta characteristics) and
play an important role in mathematics. Their modern interpretation as complex
line bundles and classification was given by Atiyah [Ati] and Mumford [Mum].
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It was shown that 2-spin bundles have a topological invariant δ = δ(e, P )
in {0, 1}, the Arf invariant, which is determined by the parity of the dimension
of the space of sections of the bundle. Moreover, the space S2

g,δ of 2-spin bundles
on Riemann surfaces of genus g with Arf invariant δ, i.e. the space of such pairs
(e, P ), is homeomorphic to a quotient of R6g−6 by a discrete group of autohomeo-
morphisms, see [Nat89].

The study of spaces of m-spin bundles for arbitrary m started more recently
because of their applications in singularity theory [Dol], [NP11], [NP13], and the
remarkable connection of the compactified moduli space of m-spin bundles with the
theory of integrable systems [Wit], [FSZ]. It was shown that for odd m the space of
m-spin bundles is connected, while for even m (and g > 1) there are two connected
components, distinguished by an invariant which generalises the Arf invariant [Jar].
In all cases each connected components of the space of m-spin bundles on Riemann
surfaces of genus g is homeomorphic to a quotient of R6g−6 by a discrete group of
autohomeomorphisms, see [NP05], [NP09].

The aim of this paper is to determine the topological structure of the space of
m-spin bundles on hyperbolic Klein surfaces. A Klein surface is a non-orientable
topological surface with a maximal atlas whose transition maps are dianalytic, i.e.
either holomorphic or anti-holomorphic, see [AG]. Klein surfaces can be described
as quotients P/〈τ〉, where P is a compact Riemann surface and τ : P → P is an
anti-holomorphic involution on P . The category of such pairs is isomorphic to the
category of Klein surfaces via (P, τ) 7→ P/〈τ〉. Under this correspondence the fixed
points of τ correspond to the boundary points of the Klein surface. In this paper
a Klein surface will be understood as an isomorphy class of such pairs (P, τ). We
will only consider connected compact Klein surfaces. The category of connected
compact Klein surfaces is isomorphic to the category of irreducible real algebraic
curves (see [AG]).

The boundary of the surface P/〈τ〉, if not empty, decomposes into k pairwise
disjoint simple closed smooth contours. These contours correspond to connected
components of the set of fixed points P τ of the involution τ : P → P . They are
called ovals and correspond to connected components of the set of real points of
the corresponding real algebraic curve.

The topological type of the surface P/〈τ〉 is determined by the triple (g, k, ε),
where g is the genus of P , k is the number of connected components of the boundary
of P/〈τ〉 and ε ∈ {0, 1} with ε = 1 if the surface is orientable and ε = 0 otherwise.
In the case ε = 1 the following conditions are satisfied: 1 6 k 6 g + 1 and k ≡
g + 1 mod2. In the case ε = 0 the following conditions are satisfied: 0 6 k 6

g. These classification results were obtained by Weichold [Wei]. It was shown
that the topological type completely determines the connected component of the
space of Klein surfaces. Moreover, the space Mg,k,ε of Klein surfaces of topological

type (g, k, ε) is homeomorphic to the quotient of R3g−3 by a discrete subgroup of
automorphism. In addition to the invariants (g, k, ε), it is useful to consider an
invariant that we will call the geometric genus of (P, τ). In the case ε = 1 the
geometric genus (g+ 1− k)/2 is the number of handles that need to be attached to
a sphere with holes to obtain a surface homeomorphic to P/〈τ〉. In the case ε = 0
the geometric genus [(g− k)/2] is half of the number of Möbius bands that need to
be attached to a sphere with holes to obtain a surface homeomorphic to P/〈τ〉.
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An m-spin bundle on a Klein surface (P, τ) is a pair (e : L → P, β), where
e : L → P is an m-spin bundle on P and β : L → L is an anti-holomorphic
involution on L such that e ◦ β = τ ◦ e.

In this paper we determine the connected components of the space of m-spin
bundles on Klein surfaces, i.e. equivalence classes of m-spin bundles on Klein sur-
faces up to topological equivalence as defined in section 3.6. We find the topological
invariants that determine such an equivalence class and determine all possible val-
ues of these invariants. We also show that every equivalence class is a connected set
homeomorphic to a quotient of Rn by a discrete group, where the dimension n and
the group depend on the class. For m = 2 these results were obtained in [Nat90],
[Nat99], [Nat04].

We will now explain the results in more detail. Let (P, τ) be a Klein surface of
type (g, k, ε). In this paper we will consider hyperbolic Klein surfaces (P, τ), i.e. we
assume that the underlying Riemann surface P is hyperbolic, g > 2. We will also
assume that the geometric genus of (P, τ) is positive, i.e. k 6 g − 2 if ε = 0 and
k 6 g − 1 if ε = 1.

Let m be odd. In this case we show that g ≡ 1 modm. Moreover, assuming that
m is odd and g ≡ 1 modm, the space of m-spin bundles on Klein surfaces of type
(g, k, ε) is not empty and is connected.

Now let m be even. A restriction of the bundle e gives a bundle on the ovals.
Let K0 and K1 be the sets of ovals on which the bundle is trivial and non-trivial
respectively. We show that |K1| ·m/2 ≡ 1 − gmodm.

If m is even and ε = 0, the Arf invariant δ of the bundle e and the cardinalities
ki = |Ki| for i = 0, 1 determine a (non-empty) connected component of the space
of m-spin bundles on Klein surfaces of type (g, k0 + k1, 0) if and only if

k1 ·
m

2
≡ 1 − gmodm.

If m is even and ε = 1, the bundle e determines a decomposition of the set of
ovals in two disjoint sets, K0 and K1, of similar ovals (for details see section 3.1).
The bundle e induces m-spin bundles on connected components of P\P τ . The Arf

invariant δ̃ of these induced bundles does not depend on the choice of the connected
component of P\P τ . This invariant δ̃ and the cardinalities kji = |Ki ∩ Kj| for
i, j ∈ {0, 1} determine a connected component of the space of m-spin bundles on
Klein surfaces of type (g, k0

0 + k1
0 + k0

1 + k1
1 , 1) if and only if

(a) If g > k + 1 and k0
0 + k1

0 6= 0 then δ̃ = 0.

(b) If g > k + 1 and m ≡ 0 mod4 then δ̃ = 0.

(c) If g = k + 1 and k0
0 + k1

0 6= 0 then δ̃ = 1.

(d) If g = k + 1 and m ≡ 0 mod4 then δ̃ = 1.

(e) If g = k + 1 and k0
0 + k1

0 = 0 and m ≡ 2 mod4 then δ̃ ∈ {1, 2}.
(f) (k0

1 + k1
1) ·m/2 ≡ 1 − gmodm.

We also show that every connected component of the space of m-spin bundles
on Klein surfaces of genus g is homeomorphic to a quotient of R3g−3 by a discrete
subgroup of automorphisms which depends on the component (see Theorem 4.3).

The paper is organised as follows:
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In section 2 we recall the classification results from [NP15]. We assign to every
m-spin bundle on a Klein surface (P, τ) a function on the set of simple contours in P
with values in Z/mZ, calledm-Arf function. Moreover, we determine the conditions
for anm-Arf function to correspond to anm-spin bundle on a Klein surface. We call
such functions real m-Arf functions. Thus the problem of topological classification
of m-spin bundles on Klein surfaces is reduced to topological classification of real
m-Arf functions.

We determine the topological invariants of real m-Arf functions in section 3. In
section 4 we use these topological invariants to describe connected components of
the space of m-spin bundles on Klein surfaces.

The second author is grateful to the Isaac Newton Institute in Cambridge, where
part of this work was done, for its hospitality and support.

2. Higher Spin Structures on Klein Surfaces

2.1. Higher Spin Structures. A Riemann surface P of genus g > 2 can be
described as a quotient P = H/Γ of the hyperbolic plane H by the action of a
Fuchsian group Γ.

Definition 2.1. Let P be a compact Riemann surface. A line bundle e : L→ P is
an m-spin bundle (of rank 1) if the m-fold tensor power L⊗ · · · ⊗L coincides with
the cotangent bundle of P . (For m = 2 we obtain the classical notion of a spin
bundle.)

Higher spin bundles on a Riemann surface P can be described by means of as-
sociated higher Arf functions, certain functions on the space of homotopy classes
of simple contours on P with values in Z/mZ described by simple geometric prop-
erties.

Definition 2.2. Let Γ be a Fuchsian group that consists of hyperbolic elements.
Let the corresponding Riemann surface P = H/Γ be a compact surface with finitely
many holes. Let p ∈ P . Let π1(P ) = π1(P, p) be the fundamental group of P . We
denote by π0

1(P ) the set of all non-trivial elements of π1(P ) that can be represented
by simple contours. An m-Arf function is a function

σ : π0
1(P ) → Z/mZ

satisfying the following conditions

1. σ(bab−1) = σ(a) for any elements a, b ∈ π0
1(P ),

2. σ(a−1) = −σ(a) for any element a ∈ π0
1(P ),

3. σ(ab) = σ(a)+σ(b) for any elements a and b which can be represented by a pair
of simple contours in P intersecting in exactly one point p with 〈a, b〉 6= 0,

4. σ(ab) = σ(a) + σ(b) − 1 for any elements a, b ∈ π0
1(P ) such that the element ab

is in π0
1(P ) and the elements a and b can be represented by a pair of simple

contours in P intersecting in exactly one point p with 〈a, b〉 = 0 and placed in a
neighbourhood of the point p as shown in Figure 1.

Remark. In the case m = 2 there is a 1-1-correspondence between the 2-Arf func-
tions in the sense of Definition 2.2 and Arf functions in the sense of [Nat04], Chap-
ter 1, Section 7 and [Nat91]. Namely, a function σ : π0

1(P ) → Z/2Z is a 2-Arf
function if and only if ω = 1 − σ is an Arf function in the sense of [Nat04].
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Figure 1: σ(ab) = σ(a) + σ(b) − 1
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Figure 2: Canonical system of curves

Higher Arf functions were introduced in [NP05, NP09], where the following result
was shown:

Theorem 2.1. There is a 1-1-correspondence between the m-spin structures and
m-Arf functions on a given Riemann surface.

We will denote an m-spin structure and its corresponding m-Arf function by the
same letter.

We recall the topological invariants of m-Arf functions as described in [NP05,
NP09].

Definition 2.3. A canonical system of curves on a compact Riemann surface P of
genus g with n holes is a set of simply closed curves {ã1, b̃1, . . . , ãg, b̃g, c̃1, . . . , c̃n}
based at a point p ∈ P with the following properties:

1) The contour c̃i encloses a hole in P for i = 1, . . . , n.
2) Any two curves only intersect at the point p.
3) A neighbourhood of the point p with the curves is homeomorphic to the one

shown in Figure 2.
4) The system of curves cuts the surface P into n + 1 connected components of

which n are homeomorphic to a ring and one is homeomorphic to a disc and has
boundary

ã1b̃1ã
−1
1 b̃−1

1 . . . ãg b̃g ã
−1
g b̃−1

g c̃1 . . . c̃n.

If {ã1, b̃1, . . . , ãg, b̃g, c̃1, . . . , c̃n} is a canonical system of curves, then we call the cor-
responding set {a1, b1, . . . , ag, bg, c1, . . . , cn} of elements in the fundamental group
π1(P ) a standard generating set or a standard basis of π1(P ).
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Definition 2.4. Let σ : π0
1(P ) → Z/mZ be an m-Arf function. For g > 1 and even

m we define the Arf invariant δ = δ(P, σ) as δ = 0 if there is a standard generating
set

{ai, bi (i = 1, . . . , g), ci (i = 1, . . . , n)}
of the fundamental group π1(P ) such that

g
∑

i=1

(1 − σ(ai))(1 − σ(bi)) ≡ 0 mod 2

and as δ = 1 otherwise. For g > 1 and odd m we set δ = 0. For g > 1 we say that
the m-Arf function is even if δ = 0 and odd if δ = 1. For g = 1 we define the Arf
invariant δ = δ(P, σ) as

δ = gcd(m,σ(a1), σ(b1), σ(c1) + 1, . . . , σ(cn) + 1),

where
{a1, b1, ci (i = 1, . . . , n)}

is a standard generating set of the fundamental group π1(P ).

Remark. The Arf invariant δ is a topological invariant of the Arf function σ, i.e. it
does not change under self-homeomorphisms of the Riemann surface P .

Definition 2.5. Let P be a hyperbolic Riemann surface of genus g (with holes). Let
σ be anm-Arf function on P . The topological type of σ is a tuple (g, δ, n0, . . . , nm−1),
where δ is the Arf invariant of σ and nj is the number of contours around the holes
with value of σ equal to j.

The following are special cases of the earlier classification results in [NP09],
compare with Theorems 4.3, 4.4 and Proposition 4.5 in [NP15].

Theorem 2.2. Let P be a hyperbolic Riemann surface of genus g with n holes.
Let c1, . . . , cn be contours around the holes as in Definition 2.3. Let σ be an m-Arf
function on P . Let δ be the m-Arf invariant of σ. Then

(a) If g > 1 and m ≡ 1 mod2 then δ = 0.
(b) If g > 1 and m ≡ 0 mod2 and σ(ci) ≡ 0 mod2 for some i then δ = 0.
(c) If g = 1 then δ is a divisor of gcd(m,σ(c1) + 1, . . . , σ(cn) + 1).
(d) σ(c1) + · · · + σ(cn) ≡ (2 − 2g) − nmodm.

Theorem 2.3. Let P be a hyperbolic Riemann surface of genus g with n holes.
Then for any standard generating set

(a1, b1, . . . , ag, bg, c1, . . . , cn)

of π1(P ) and any choice of values

(α1, β1, . . . , αg, βg, γ1, . . . , γn)

in (Z/mZ)2g+n with

γ1 + · · · + γn ≡ (2 − 2g) − nmodm

there exists an m-Arf function σ on P such that σ(ai) = αi, σ(bi) = βi for i =
1, . . . , g and σ(ci) = γi if i = 1, . . . , n. The Arf invariant δ of this m-Arf function σ
satisfies the following conditions:

(a) If g > 1 and m ≡ 1 mod2 then δ = 0.
(b) If g > 1 and m ≡ 0 mod2 and γi ≡ 0 mod2 for some i then δ = 0.
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(c) If g > 1 and m ≡ 0 mod2 and γ1 ≡ · · · ≡ γn ≡ 1 mod2 then δ ∈ {0, 1} and

δ ≡
g
∑

i=1

(1 − αi)(1 − βi)mod 2.

(d) If g = 1 then δ = gcd(m,α1, β1, γ1 + 1, . . . , γn + 1).

2.2. Klein Surfaces.

Definition 2.6. Klein surface (or non-singular real algebraic curve) is a topolog-
ical surface with a maximal atlas whose transition maps are dianalytic, i.e. either
holomorphic or anti-holomorphic. A homomorphism between Klein surfaces is a
continuous mapping which is dianalytic in local charts.

For more information on Klein surfaces, see [AG, Nat90].

Let us consider pairs (P, τ), where P is a compact Riemann surface and τ : P →
P is an anti-holomorphic involution on P . For each such pair (P, τ) the quotient
P/〈τ〉 is a Klein surface. Each isomorphism class of Klein surfaces contains a surface
of the form P/〈τ〉. Moreover, two such quotients P1/〈τ1〉 and P2/〈τ2〉 are isomorphic
as Klein surfaces if and only if there exists a biholomorphic map ψ : P1 → P2 such
that ψ ◦ τ1 = τ2 ◦ ψ, in which case we say that the pairs (P1, τ1) and (P2, τ2) are
isomorphic. Hence from now on we will consider pairs (P, τ) up to isomorphism
instead of Klein surfaces.

The category of such pairs (P, τ) is isomorphic to the category of real algebraic
curves (see [AG]), where fixed points of τ (i.e. boundary points of the corresponding
Klein surface) correspond to real points of the real algebraic curve.

For example a non-singular plane real algebraic curve given by the equation
F (x, y) = 0 is the set of real points of such a pair (P, τ), where P is the normalisation
and compactification of the surface {(x, y) ∈ C2

∣

∣ F (x, y) = 0} and τ is given by
the complex conjugation, τ(x, y) = (x̄, ȳ).

Definition 2.7. Given two Klein surfaces (P1, τ1) and (P2, τ2), we say that they
are topologically equivalent if there exists a homeomorhism φ : P1 → P2 such that
φ ◦ τ1 = τ2 ◦ φ.

Let (P, τ) be a Klein surface. We say that (P, τ) is separating or of type I if
the set P\P τ is not connected, otherwise we say that it is non-separating or of
type II . The topological type of (P, τ) is the triple (g, k, ε), where g is the genus of
the Riemann surface P , k is the number of connected components of the fixed point
set P τ of τ , ε = 0 if (P, τ) is non-separating and ε = 1 otherwise. In this paper we
consider hyperbolic surfaces, hence g > 2.

The following result of Weichold [Wei] gives a classification of Klein surfaces up
to topological equivalence:

Theorem 2.4. Two Klein surfaces are topologically equivalent if and only if they
are of the same topological type. A triple (g, k, ε) is a topological type of some Klein
surface if and only if either ε = 1, 1 6 k 6 g + 1, k ≡ g + 1 mod 2 or ε = 0,
0 6 k 6 g.

Remark. The inequality k 6 g + 1 for plane real algebraic curves is known as the
Harnack inequality [Har].
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To understand the structure of a Klein surface (P, τ), we look at the contours
which are invariant under the involution τ . There are two kinds of invariant con-
tours, depending on whether the restriction of τ to the invariant contour is identity
or a ”half-turn”.

Definition 2.8. Let (P, τ) be a Klein surface. The set of fixed points of the
involution τ is called the set of real points of (P, τ) and denoted by P τ . The set P τ

decomposes into pairwise disjoint simple closed smooth contours, called ovals.

Definition 2.9. A twist (or twisted oval) is a simple contour in P which is invariant
under the involution τ but does not contain any fixed points of τ .

Remark. A twisted oval is not an oval, however the corresponding element of H1(P )
is a fixed point of the induced involution and the corresponding element of π1(P )
is preserved up to conjugation by the induced involution.

2.3. Symmetric Generating Sets. Any separating Klein surface can be obtained
by gluing together a Riemann surface with boundary with its copy via the iden-
tity map along the boundary components. If we replace the identity map with a
half-turn on some of the boundary components, we obtain a non-separating Klein
surface. Moreover, all non-separating Klein surfaces are obtained in this way. More
precise statement is given by the following description of generating sets of real
Fuchsian groups from [Nat04, Nat75, Nat78]:

Theorem 2.5. Recall that an orientation-preserving isometry of H is hyperbolic
if it has two fixed points, which lie on the boundary of H. One of the fixed points
of a hyperbolic element is attracting, the other fixed point is repelling. The axis
of a hyperbolic element is the geodesic between its fixed points, oriented from the
repelling fixed point to the attracting fixed point. For a hyperbolic isometry c, let c̄
be the reflection whose mirror coincides with the axis of c, let

√
c be the hyperbolic

isometry such that (
√
c)2 = c and let c̃ = c̄

√
c.

1) Let (g, k, 1) be a topological type of a Klein surface, i.e. 1 6 k 6 g + 1 and
k ≡ g + 1 mod2. Let n = k. Let g̃ = (g + 1 − n)/2. Let

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn)

be a generating set of a Fuchsian group of signature (g̃, k), then

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn, c̄1, . . . , c̄n)

is a generating set of a real Fuchsian group Γ̂ of topological type (g, k, 1). Any
real Fuchsian group of topological type (g, k, 1) is obtained in this way.

2) Let (g, k, 0) be a topological type of a Klein surface, i.e. 0 6 k 6 g. Let us choose
n ∈ {k + 1, . . . , g + 1} such that n ≡ g + 1 mod2. Let g̃ = (g + 1 − n)/2. Let

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn)

be a generating set of a Fuchsian group of signature (g̃, n), then

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn, c̄1, . . . , c̄k, c̃k+1, · · · , c̃n)
is a generating set of a real Fuchsian group of topological type (g, k, 0). Any real
Fuchsian group of topological type (g, k, 0) is obtained in this way.

3) Let Γ̂ be a real Fuchsian group as in part 1 or 2 and let (P, τ) be the corresponding
Klein surface. We now think of the elements

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn)
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as contours in π1(P ) rather than generators of Γ̂. We have P τ = c1 ∪ · · · ∪ ck.
The contours c1, . . . , ck correspond to ovals, the contours ck+1, . . . , cn correspond
to twists. Let P1 and P2 be the connected components of the complement of
the contours c1, . . . , cn in P . Each of these components is a surface of genus
g̃ = (g+1−n)/2 with n holes. We have τ(P1) = P2. We will refer to P1 and P2

as a decomposition of (P, τ) into two halves. (Note that such a decomposition is
unique if (P, τ) is separating, but is not unique if (P, τ) is non-separating since
the twists ck+1, . . . , cn can be chosen in different ways.) Then

(a1, b1, . . . , ag̃, bg̃, c1, . . . , cn)

is a generating set of π1(P1), while its image under τ gives a generating set of
π1(P2). For two invariant contours ci and cj, we say that a contour of the form

ri ∪ (τℓ)−1 ∪ rj ∪ ℓ,
where ℓ is a simple path in P1 starting on cj and ending on ci, ri is the path
along ci from the end point of ℓ to the end point of τ(ℓ) and rj is the path along cj
from the starting point of τ(ℓ) to the starting point of ℓ, is a bridge between ci
and cj. (If ci or cj is an oval, the path ri or rj respectively consists of just one
point.) Let d1, . . . , dn−1 be contours which only intersect at the base point, such
that di is a bridge between ci and cn. Let a′i = (τai)

−1 and b′i = (τbi)
−1 for

i = 1, . . . , g̃. Then

(a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, . . . , cn−1, d1, . . . , dn−1)

is a generating set of π1(P ). Note that τ(ci) = ci and τ(di) = c
|ci|
i d−1

i c
|cn|
n ,

where |cj | = 0 if cj is an oval and |cj | = 1 if cj is a twist. We will refer to such
a generating set as a symmetric generating set of type (g̃, k, n).

Remark. Note that a symmetric generating set is not a standard generating set in
the sense of Definition 2.3, however it is free homotopic to a standard one, hence
it can be used in the same way as a standard set for computations, for example of
the Arf invariant.

2.4. Real Arf Functions. In this section we recall the results from [NP15] on the
classification of those Arf functions that correspond to m-spin structures on a Klein
surface that are invariant under the anti-holomorphic involution.

Definition 2.10. A real m-Arf function on a Klein surface (P, τ) is an m-Arf
function on P such that

(i) σ is compatible with τ , i.e. σ(τc) = −σ(c) for any c ∈ π0
1(P ).

(ii) σ vanishes on all twists.

Theorem 2.6. Let (P, τ) be a Klein surface. An m-spin bundle on P is invariant
under τ if and only if the corresponding m-Arf function is real. The mapping that
assigns to an m-spin bundle on P the corresponding m-Arf function establishes
a 1-1-correspondence between m-spin bundles invariant under τ and real m-Arf
functions on (P, τ).

Let (P, τ) be a Klein surface of type (g, k, ε), g > 2. Let c1, . . . , cn be invariant
contours and

B = (a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, . . . , cn−1, d1, . . . , dn−1)

a symmetric generating set of π1(P ) as in Theorem 2.5.
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Theorem 2.7. Let ε = 0 and let m be even. Recall that in this case n > k,
the contours c1, . . . , ck correspond to ovals, the contours ck+1, . . . , cn correspond to
twists.

1) Let σ be a real m-Arf function on (P, τ). Then

σ(ai) = σ(a′i) and σ(bi) = σ(b′i) for i = 1, . . . , g̃,

σ(c1), . . . , σ(ck) ∈ {0,m/2}, σ(ck+1) = · · · = σ(cn) = 0,

σ(c1) + · · · + σ(ck) ≡ 1 − gmodm,

g ≡ 1 mod(m/2).

2) Let the set of values V in (Z/mZ)4g̃+2n−2 be

(α1, β1, . . . , αg̃, βg̃, α
′
1, β

′
1, . . . , α

′
g̃, β

′
g̃, γ1, . . . , γn−1, δ1, . . . , δn−1).

Assume that

αi = α′
i and βi = β′

i for i = 1, . . . , g̃,

γ1, . . . , γk ∈ {0,m/2}, γk+1 = · · · = γn−1 = 0,

γ1 + · · · + γk ≡ 1 − gmodm.

Then there exists a real m-Arf function σ on (P, τ) with values V on the gener-
ating set B. For this m-Arf function we have σ(cn) = 0.

3) The number of real m-Arf functions on (P, τ) is mg for k = 0 and mg · 2k−1 for
k > 1.

4) The Arf invariant δ ∈ {0, 1} of a real m-Arf function σ on (P, τ) is given by

δ ≡
n−1
∑

i=1

(1 − σ(ci))(1 − σ(di))mod 2.

5) Consider γ1, . . . , γn−1 as above. Let

Σ =

n−1
∑

i=1

(1 − γi)(1 − δi).

Out of mn−1 possible choices for (δ1, . . . , δn−1) ∈ (Z/mZ)n−1 there are mn−1/2
which give Σ ≡ 0 mod 2 and mn−1/2 which give Σ ≡ 1 mod2.

6) The number of even and odd real m-Arf functions on (P, τ) respectively is equal
to mg/2 for k = 0 and mg · 2k−2 for k > 1.

Theorem 2.8. Let ε = 1 and let m be even. Recall that in this case n = k and the
contours c1, . . . , ck correspond to ovals.

1) Let σ be a real m-Arf function on (P, τ). Then

σ(ai) = σ(a′i) and σ(bi) = σ(b′i) for i = 1, . . . , g̃,

σ(c1), . . . , σ(ck) ∈ {0,m/2},
σ(c1) + · · · + σ(ck) ≡ 1 − gmodm,

g ≡ 1 mod(m/2).

2) Assume that g ≡ 1 mod(m/2). Let the set of values V in (Z/mZ)4g̃+2k−2 be

(α1, β1, . . . , αg̃, βg̃, α
′
1, β

′
1, . . . , α

′
g̃, β

′
g̃, γ1, . . . , γk−1, δ1, . . . , δk−1).
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Assume that

αi = α′
i and βi = β′

i for i = 1, . . . , g̃,

γ1, . . . , γk−1 ∈ {0,m/2}.
Then there exists a real m-Arf function σ on (P, τ) with

σ(ai) = α1, σ(bi) = βi, σ(a′i) = α′
i, σ(b′i) = β′

i, σ(ci) = γi, σ(di) = δi.

For this m-Arf function we have σ(ck) ≡ (1 − g) − γ1 − · · · − γk−1 modm.
3) The number of real m-Arf functions on (P, τ) is mg · 2k−1.
4) The Arf invariant δ ∈ {0, 1} of a real m-Arf function σ on (P, τ) is given by

δ ≡
n−1
∑

i=1

(1 − σ(ci))(1 − σ(di))mod 2.

5) Consider γ1, . . . , γk−1 as above. Let

Σ =
k−1
∑

i=1

(1 − γi)(1 − δi).

In the case m ≡ 2 mod4, γ1 = · · · = γk−1 = m/2, any choice of (δ1, . . . , δk−1) ∈
(Z/mZ)k−1 gives Σ ≡ 0 mod 2. In all other cases, out of mk−1 possible choices
for (δ1, . . . , δk−1) ∈ (Z/mZ)k−1 there are mk−1/2 which give Σ ≡ 0 mod2 and
mk−1/2 which give Σ ≡ 1 mod2.

6) In the case m ≡ 0 mod4 the number of even and odd real m-Arf functions on
(P, τ) respectively is

mg · 2k−2.

In the case m ≡ 2 mod4 the numbers of even and odd real m-Arf functions on
(P, τ) respectively are

mg · 2k−1 + 1

2
and mg · 2k−1 − 1

2
.

Theorem 2.9. Let m be odd.

1) Let σ be a real m-Arf function on (P, τ). Then

σ(ai) = σ(a′i) and σ(bi) = σ(b′i) for i = 1, . . . , g̃,

σ(c1) = · · · = σ(cn) = 0,

g ≡ 1 modm.

2) Assume that g ≡ 1 modm. Let the set of values V in (Z/mZ)4g̃+2n−2 be

(α1, β1, . . . , αg̃, βg̃, α
′
1, β

′
1, . . . , α

′
g̃, β

′
g̃, γ1, . . . , γn−1, δ1, . . . , δn−1).

Assume that

αi = α′
i and βi = β′

i for i = 1, . . . , g̃,

γ1 = · · · = γn−1 = 0.

Then there exists a real m-Arf function σ on (P, τ) with

σ(ai) = α1, σ(bi) = βi, σ(a′i) = α′
i, σ(b′i) = β′

i, σ(ci) = γi, σ(di) = δi.

For this Arf function we have σ(cn) = 0.
3) The number of real m-Arf functions on (P, τ) is mg.
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3. Topological Types of Arf Functions on Klein Surfaces

3.1. Topological Invariants.

Definition 3.1. Let (P, τ) be a non-separating Klein surface of type (g, k, 0). Let
m be even. The topological type of a real m-Arf function σ on (P, τ) is a tuple
(g, δ, k0, k1), where g is the genus of P , δ is the m-Arf invariant of σ and kj is the
number of ovals of (P, τ) with value of σ equal to j ·m/2.

Real m-Arf functions with even m on separating Klein surfaces have additional
topological invariants:

Definition 3.2. Let (P, τ) be a separating Klein surface of type (g, k, 1). Let P1

and P2 be the connected components of P\P τ . Let m be even. Let σ be an m-Arf
function on (P, τ). We say that two ovals c1 and c2 are similar with respect to σ,
c1 ∼ c2, if σ(ℓ∪ (τℓ)−1) is odd, where ℓ is a simple path in P1 connecting c1 and c2.

From Definition 2.2 it is clear that if σ : π0
1(P ) → Z/mZ is a real m-Arf function

on (P, τ) and m is even, then (σmod 2) : π0
1(P ) → Z/2Z is a real 2-Arf function

on (P, τ). Note that two ovals are similar with respect to the m-Arf function σ if
and only if they are similar with respect to the 2-Arf function (σmod 2), hence we
obtain using [Nat04], Theorem 3.3:

Proposition 3.1. Similarity of ovals is well-defined. Similarity is an equivalence
relation on the set of all ovals with at most two equivalence classes.

Definition 3.3. Let (P, τ) be a separating Klein surface of type (g, k, 1). Let P1

and P2 be the connected components of P\P τ . Let m be even. Let us choose one
similarity class of ovals. The topological type of a real m-Arf function σ on (P, τ)
is a tuple

(g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1),

where g is the genus of P , δ̃ is the m-Arf invariant of σ|P1
, k0

j is the number of ovals

in the chosen similarity class with value of σ equal to j ·m/2 and k1
j = kj − k0

j is
the number of ovals in the other similarity class with value of σ equal to j ·m/2.
(The invariants kij are defined up to the swap kij ↔ k1−i

j .)

Definition 3.4. Let (P, τ) be a Klein surface of type (g, k, ε). Let m be odd. The
topological type of a real m-Arf function σ on (P, τ) is a tuple (g, k), where g is the
genus of P and k is the number of ovals of (P, τ).

Proposition 3.2. If there exists a real m-Arf function of topological type t on a
Klein surface of type (g, k, ε), g > 2, then t satisfies the following conditions:

1) Case ε = 0, m ≡ 0 mod2, t = (g, δ, k0, k1): k1 ·m/2 ≡ 1 − gmodm.

2) Case ε = 1, m ≡ 0 mod2, t = (g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1): Let kj = k0

j + k1
j , j = 0, 1.

(a) If g > k + 1 and m ≡ 0 mod4 then δ̃ = 0.

(b) If g > k + 1 and k0 6= 0 then δ̃ = 0.

(c) If g = k + 1 and m ≡ 0 mod4 then δ̃ = 1.

(d) If g = k + 1 and k0 6= 0 then δ̃ = 1.

(e) If g = k + 1, m ≡ 2 mod4 and k0 = 0 then δ̃ ∈ {1, 2}.
(f) k1 ·m/2 ≡ 1 − gmodm.

3) Case m ≡ 1 mod2, t = (g, k): g ≡ 1 modm.
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Proof. Let (P, τ) be a Klein surface of type (g, k, ε), g > 2. Let σ be a real m-Arf
function of topological type t on (P, τ). Let c1, . . . , ck be the ovals of (P, τ).

1) Case ε = 0, m ≡ 0 mod 2, t = (g, δ, k0, k1): By definition of kj , the tuple
(σ(c1), . . . , σ(ck)) is a permutation of zero repeated k0 times and m/2 repeated
k1 times, hence

σ(c1) + · · · + σ(ck) ≡ k1 ·m/2 modm.

On the other hand, according to Theorem 2.7,

σ(c1) + · · · + σ(ck) ≡ 1 − gmodm.

Hence

k1 ·m/2 ≡ 1 − gmodm.

2) Case ε = 1, m ≡ 0 mod 2, t = (g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1): Let P1 and P2 be the con-

nected components of P\P τ . Each of these components is a surface of genus
g̃ = (g + 1 − k)/2 with k holes. If σ is a real m-Arf function of topological

type (g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1) on (P, τ), then σ|P1

is an m-Arf function on a surface
of genus g̃ with k holes with values on the holes equal to zero repeated k0 times
and m/2 repeated k1 times. Theorem 2.2 implies that

• If g̃ > 1 and σ(ci) ≡ 0 mod 2 for some i then δ̃ = 0: Note that g̃ > 1 if and
only if g > k+1. If m ≡ 0 mod 4 then all σ(ci) are even since both 0 and m/2

are even, therefore δ̃ = 0. If k0 6= 0 then σ(ci) = 0 for some i, hence σ(ci) is

even for some i, therefore δ̃ = 0. However, if m ≡ 2 mod 4 and k0 = 0 then all
σ(ci) = m/2 are odd, hence no conclusion can be made about δ̃. Thus we can
rewrite the condition as follows: If g > k + 1 and (m ≡ 0 mod 4 or k0 6= 0)

then δ̃ = 0.
• If g̃ = 1 then δ̃ is a divisor of gcd(m,σ(c1)+1, . . . , σ(ck)+1): Note that g̃ = 1

if and only if g = k+1. If k0 6= 0 then σ(ci) = 0 for some i, hence δ̃ is a divisor

of gcd(m, 1, . . . ), therefore δ̃ = 1. If k0 = 0 then σ(ci) = m/2 for all i, hence δ̃
is a divisor of gcd

(

m, m2 + 1
)

. For m ≡ 0 mod 4 we have gcd
(

m, m2 + 1
)

= 1,

hence δ̃ = 1. For m ≡ 2 mod4 we have gcd
(

m, m2 + 1
)

= 2, hence δ̃ ∈ {1, 2}.
Therefore we can rewrite the condition as follows: If g = k + 1 and (m ≡
0 mod4 or k0 6= 0) then δ̃ = 1. If g = k + 1, m ≡ 2 mod4 and k0 = 0 then

δ̃ ∈ {1, 2}.
• σ(c1)+· · ·+σ(ck) ≡ (2−2g̃)−kmodm: Note that σ(c1)+· · ·+σ(ck) = k1 ·m/2

and (2 − 2g̃) − k = 1 − g. Hence we can rewrite the condition as follows:
k1 ·m/2 ≡ 1 − gmodm. (This condition also follows from Theorem 2.8.)

3) Case m ≡ 1 mod 2, t = (g, k): Theorem 2.9 implies g ≡ 1 modm.

�

Proposition 3.3. Let (P, τ) be a Klein surface of type (g, k, 1), g > 2, and let m

be even. Let σ be an m-Arf function of type (g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1) on (P, τ). Then the

Arf invariant δ ∈ {0, 1} of σ is given by

δ ≡ k0
0 ≡ k1

0 mod 2 if m ≡ 2 mod4,

δ ≡ k0
0 + k0

1 ≡ k1
0 + k1

1 mod 2 if m ≡ 0 mod4.
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Proof. Let σ be anm-Arf function of type (g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1) on (P, τ). Let c1, . . . , ck

be the ovals and

B = (a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, . . . , ck−1, d1, . . . , dk−1)

be a symmetric generating set of π1(P ). Let γi = σ(ci) for i = 1, . . . , k and
δi = σ(di) for i = 1, . . . , k − 1. We can assume without loss of generality that
the oval ck is in the chosen similarity class (see Definition 3.2). Let δk = 1. For
α, β ∈ {0, 1} let Aβα be the subsets of {1, . . . , k} given by

Aβα = {i
∣

∣ γi = α ·m/2, δi ≡ 1 − βmod 2}.

Then k ∈ A0
0 ∪ A0

1. Note that |Aβα| = kβα. According to Theorem 2.8, the Arf
invariant δ of σ is given by

δ ≡
k−1
∑

i=1

(1 − γi)(1 − δi)mod 2.

If m ≡ 2 mod 4, then

k−1
∑

i=1

(1 − γi)(1 − δi) ≡ |A1
0 ∩ {1, . . . , k − 1}| ≡ |A1

0| ≡ k1
0 mod 2.

In this case m/2 is odd, hence condition k1 ·m/2 ≡ 1 − gmodm can be reduced
modulo 2 to k1 ≡ 1 − gmod 2. On the other hand Theorem 2.4 implies that
k ≡ g + 1 mod2. Hence

k0 = k − k1 ≡ (g + 1) − (1 − g) ≡ 0 mod2,

i.e.

k1
0 = k0 − k0

0 ≡ k0
0 mod 2.

If m ≡ 0 mod 4, then

k−1
∑

i=1

(1 − γi)(1 − δi) ≡ |(A1
0 ∪A1

1) ∩ {1, . . . , k − 1}| ≡ |A1
0 ∪A1

1| ≡ k1
0 + k1

1 mod 2.

In this case m/2 is even, hence condition k1 ·m/2 ≡ 1 − gmodm can be reduced
modulo 2 to 0 ≡ 1 − gmod 2. On the other hand Theorem 2.4 implies that k ≡
g + 1 mod2. Hence k is even, i.e.

k1
0 + k1

1 = k − (k0
0 + k0

1) ≡ k0
0 + k0

1 mod 2.

�

3.2. Canonical Symmetric Generating Sets.

Definition 3.5. Let (P, τ) be a Klein surface of type (g, k, ε), g > 2. Let

(a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, . . . , cn−1, d1, . . . , dn−1)

be a symmetric generating set of π1(P ). Let σ be a real m-Arf function σ of
topological type t on (P, τ). Let

αi = σ(ai), βi = σ(bi), α
′
i = σ(a′i), β

′
i = σ(b′i), γi = σ(ci), δi = σ(di).

The symmetric generating set B of π1(P ) is canonical for the m-Arf function σ if
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• Case ε = 0, m ≡ 0 mod2, t = (g, δ, k0, k1):

(α1, β1, . . . , αg̃, βg̃) = (α′
1, β

′
1, . . . , α

′
g̃, β

′
g̃) = (0, 1, 1, . . . , 1) if g̃ > 2,

(α1, β1) = (α′
1, β

′
1) = (1, 0) if g̃ = 1,

γ1 = · · · = γk0 = 0, γk0+1 = · · · = γk = m/2, γk+1 = · · · = γn−1 = 0,

δ1 = · · · = δn−1 = 1 − δ.

• Case ε = 1, m ≡ 0 mod2, t = (g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1):

(α1, β1, . . . , αg̃, βg̃) = (α′
1, β

′
1, . . . , α

′
g̃, β

′
g̃) = (0, 1 − δ̃, 1, . . . , 1) if g̃ > 2;

(α1, β1) = (α′
1, β

′
1) = (δ̃, 0) if g̃ = 1;

γ1 = · · · = γk0 = 0, γk0+1 = · · · = γk−1 = m/2;

The oval ck is in the chosen similarity class;

δ1 = · · · = δk1
0

= 0, δk1
0
+1 = · · · = δk0 = 1,

δk0+1 = · · · = δk0+k1
1

= 0, δk0+k1
1
+1 = · · · = δk−1 = 1 if k1 > 1;

δ1 = · · · = δk1
0

= 0, δk1
0
+1 = · · · = δk−1 = 1 if k1 = 0.

• Case m ≡ 1 mod2, t = (g, k):

(α1, β1, . . . , αg̃, βg̃) = (α′
1, β

′
1, . . . , α

′
g̃, β

′
g̃) = (0, 1, 1, . . . , 1) if g̃ > 2,

(α1, β1) = (α′
1, β

′
1) = (1, 0) if g̃ = 1,

γ1 = · · · = γn−1 = 0,

δ1 = · · · = δn−1 = 0.

Lemma 3.4. Let (P, τ) be a Klein surface of type (g, k, ε), g > 2. Let the geometric
genus of (P, τ) be positive, i.e. k 6 g − 1 if ε = 1 and k 6 g − 2 if ε = 0. In the
case ε = 1 let n = k. In the case ε = 0 we choose n ∈ {k + 1, . . . , g − 1} such
that n ≡ g− 1 mod2. (The assumption that the geometric genus is positive implies
k + 1 6 g − 1, hence {k + 1, . . . , g − 1} 6= ∅.) Let c1, . . . , cn be invariant contours
as in Theorem 2.5, then bridges d1, . . . , dn−1 as in Theorem 2.5 can be chosen in
such a way that

(i) If m is odd, then σ(di) = 0 for i = 1, . . . , n− 1.
(ii) If m is even and (P, τ) is separating, then σ(di) ∈ {0, 1} for i = 1, . . . , n− 1.
(iii) If m is even and (P, τ) is non-separating, then σ(d1) = · · · = σ(dn−1) ∈ {0, 1}.
Proof. Let P1 and P2 be the connected components of the complement of the con-
tours c1, . . . , cn in P . Each of these components is a surface of genus g̃ = (g+1−n)/2
with n holes. The assumption n 6 g − 1 implies g̃ > 1.

• Consider the real 2-Arf function (σmod 2) : π0
1(P ) → Z/2Z. If m is even and

(P, τ) is non-separating, then, according to Lemma 11.2 in [Nat04], we can choose
the bridges d1, . . . , dn−1 in such a way that

(σmod 2)(d1) = · · · = (σmod 2)(dn−1).

This means for the original m-Arf function σ that

σ(d1) ≡ · · · ≡ σ(dn−1)mod 2.

• Let Q1 be the compact surface of genus g̃ with one hole obtained from P1 after
removing all bridges d1, . . . , dn−1. Let δ̃ be the Arf invariant of σ|Q1

. In the case
g̃ > 2, Lemma 5.1 in [NP09] implies that we can choose a standard generating
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set (a1, b1, . . . , ag̃, bg̃, c̃) of π1(Q1) in such a way that σ(a1) = 0. In the case
g̃ = 1, Lemma 5.2 in [NP09] implies that we can choose a standard generating
set (a1, b1, c̃) of π1(Q1) in such a way that σ(b1) = 0. Thus for g̃ > 1 there always
exists a non-trivial contour a in P1 with σ(a) = 0, which does not intersect any
of the bridges d1, . . . , dn−1. If we replace di by (τa)−1dia, then

σ((τa)−1dia) = σ((τa)−1) + σ(di) + σ(a) − 2.

Taking into account the fact that σ(a) = 0 we obtain

σ((τa)−1dia) = σ(di) − 2.

Repeating this operation we can obtain σ(di) = 0 for odd m and σ(di) ∈ {0, 1}
for even m.

• Note that the property σ(d1) ≡ · · · ≡ σ(dn−1)mod 2 (if m is even and (P, τ) is
non-separating) is preserved during this process, hence σ(d1) = · · · = σ(dn−1) at
the end of the process.

�

Proposition 3.5. Let (P, τ) be a Klein surface of positive geometric genus. For
any real m-Arf function on (P, τ) there exists a canonical symmetric generating set
of π1(P ).

Proof. Let (g, k, ε) be the topological type of the Klein surface (P, τ). Let σ be a real
m-Arf function on (P, τ). Let c1, . . . , cn be invariant contours as in Theorem 2.5.

• If m ≡ 0 mod 2 then σ(ck+1) = · · · = σ(cn) = 0.
• If m ≡ 0 mod2 then σ(c1), . . . , σ(ck) ∈ {0,m/2}. We can reorder the ovals
c1, . . . , ck in such a way that

σ(c1) = · · · = σ(ck0) = 0, σ(ck0+1) = · · · = σ(ck) = m/2,

where k0 is the numbers of ovals of (P, τ) with the value of σ equal to 0.
• If m ≡ 1 mod 2 then σ(c1) = · · · = σ(cn) = 0.
• We can choose bridges d1, . . . , dn−1 with values σ(di) as described in Lemma 3.4

since the assumptions of the Lemma are satisfied.
• If ε = 1 and m ≡ 0 mod2, we can change the order of c1, . . . , ck0 and ck0+1, . . . , ck

to obtain the required values δ1, . . . , δk−1.
• If ε = 0 and m ≡ 0 mod 2, there exists ξ ∈ {0, 1} such that

σ(d1) = · · · = σ(dn−1) = ξ.

According to Theorem 2.3 the Arf invariant of σ is

δ ≡
n−1
∑

i=1

(1 − σ(ci))(1 − σ(di))mod 2.
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Using σ(di) = ξ we obtain

δ ≡
n−1
∑

i=1

(1 − σ(ci))(1 − σ(di))

≡ (1 − ξ) ·
n−1
∑

i=1

(1 − σ(ci))

≡ (1 − ξ) ·
(

(n− 1) −
n−1
∑

i=1

σ(ci)

)

≡ (1 − ξ) ·
(

(n− 1) − k1 ·
m

2

)

mod 2.

Recall that k1 ·m/2 ≡ 1−gmodm by Proposition 3.2 and n ≡ g−1 mod2, hence

(n− 1) − k1 ·
m

2
≡ (g − 2) − (1 − g) ≡ 2g − 3 ≡ 1 mod2

and

δ ≡ (1 − ξ) ·
(

(n− 1) − k1 ·
m

2

)

≡ 1 − ξmod 2.

Therefore
σ(d1) = · · · = σ(dn−1) = ξ = 1 − δ.

• For g̃ > 2, Lemma 5.1 in [NP09] implies that we can choose a standard generating
set (a1, b1, . . . , ag̃, bg̃, c1, . . . , cn) of π1(P1) in such a way that

(σ(a1), σ(b1), . . . , σ(ag̃), σ(bg̃)) = (0, 1 − δ̃, 1, . . . , 1),

where δ̃ is the Arf invariant of σ|P1
. Moreover, if m is odd then δ̃ = 0. If m is

even and ε = 0 then there are contours around holes in P1 such that the values
of σ on these contours are even, namely σ(ck+1) = · · · = σ(cn) = 0, hence δ̃ = 0.

• If g̃ = 1, Lemma 5.2 in [NP09] implies that we can choose a standard generating
set (a1, b1, c1, . . . , cn) of π1(P1) in such a way that

(σ(a1), σ(b1)) = (δ̃, 0),

where δ̃ = gcd(m,σ(a1), σ(b1), σ(c1)+1, . . . , σ(cn)+1) is the Arf invariant of σ|P1
.

If m is odd then σ(c1) = · · · = σ(cn) = 0, hence δ̃ = 1. If ε = 0 then σ(ck+1) =

· · · = σ(cn) = 0, hence δ̃ = 1.

�

Proposition 3.6. For any Klein surface (P, τ) and any symmetric generating set B
of π1(P ) and any tuple t that satisfies the conditions of Proposition 3.2 there exists
a real m-Arf function of topological type t on (P, τ) for which B is canonical.

Proof. Let V = (αi, βi, α
′
i, β

′
i, γi, δi) satisfy the conditions in Definition 3.5.

• Case ε = 0, m ≡ 0 mod2, t = (g, δ, k0, k1): We have γ1 = · · · = γk0 = 0,
γk0+1 = · · · = γk0+k1 = m/2, hence

γ1 + · · · + γk = k1 ·m/2.
The tuple t satisfies the conditions of Proposition 3.2, hence

k1 ·m/2 ≡ 1 − gmodm.

Therefore
γ1 + · · · + γk ≡ 1 − gmodm.
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Other conditions of Proposition 2.7 are clearly satisfied. Hence there exists a real
m-Arf function σ on P with the values V on B. Let δ′ be the Arf invariant of σ,
then

δ′ ≡
n−1
∑

i=1

(1 − γi)(1 − δi) ≡
n−1
∑

i=1

(1 − γi)(1 − (1 − δ))

≡ δ ·
n−1
∑

i=1

(1 − γi) ≡ δ ·
(

(n− 1) −
n−1
∑

i=1

γi

)

≡ δ ·
(

(n− 1) − k1 ·
m

2

)

mod 2.

Recall that k1 ·m/2 ≡ 1 − gmodm and n ≡ g − 1 mod2, hence

(n− 1) − k1 ·
m

2
≡ (g − 2) − (1 − g) ≡ 2g − 3 ≡ 1 mod2

and

δ′ ≡ δ ·
(

(n− 1) − k1 ·
m

2

)

≡ δmod 2.

Hence σ is a real m-Arf function on P of type t and B is canonical for σ.
• Case ε = 1, m ≡ 0 mod2, t = (g, δ̃, k0

0 , k
0
1 , k

1
0 , k

1
1): The tuple t satisfies the

conditions of Proposition 3.2, hence

1 − g ≡ k1 ·
m

2
modm

and therefore

1 − g ≡ 0 mod
m

2
.

Other conditions of Proposition 2.8 are clearly satisfied. Hence there exists a
real m-Arf function σ on P with the values V on B. Let δ̃′ be the Arf invariant
of σ|P1

. The m-Arf function σ is real, hence according to Proposition 3.2, we
have
• If g > k + 1 and m ≡ 0 mod 4 then δ̃′ = 0.
• If g > k + 1 and k0 6= 0 then δ̃′ = 0.
• If g = k + 1 and m ≡ 0 mod 4 then δ̃′ = 1.
• If g = k + 1 and k0 6= 0 then δ̃′ = 1.
• If g = k + 1, m ≡ 2 mod4 and k0 = 0 then δ̃′ ∈ {1, 2}.
On the other hand t = (g, δ̃, k0

0 , k
0
1 , k

1
0 , k

1
1) satisfies the conditions of Proposi-

tion 3.2, hence
• If g > k + 1 and m ≡ 0 mod 4 then δ̃ = 0.
• If g > k + 1 and k0 6= 0 then δ̃ = 0.
• If g = k + 1 and m ≡ 0 mod 4 then δ̃ = 1.
• If g = k + 1 and k0 6= 0 then δ̃ = 1.
• If g = k + 1, m ≡ 2 mod4 and k0 = 0 then δ̃ ∈ {1, 2}.
Hence if m ≡ 0 mod4 or k0 6= 0 we have δ̃′ = δ̃. It remains to consider the case
m ≡ 2 mod4, k0 = 0. In the case g > k + 1, m ≡ 2 mod 4, k0 = 0, we have
g̃ > 2 and the values of the Arf function σ|P1

on the boundary contours σ(ci)
are all equal to m/2 and hence odd. Then, according to Theorem 2.3, the Arf

invariant δ̃′ is given by

δ̃′ ≡
g̃
∑

i=1

(1 − αi)(1 − βi)mod 2.
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We have (α1, β1, . . . , αg̃, βg̃) = (0, 1 − δ̃, 1, . . . , 1), hence

δ̃′ ≡
g̃
∑

i=1

(1 − αi)(1 − βi) ≡ 1 · δ̃ + 0 + · · · + 0 ≡ δ̃mod2

and therefore δ̃′ = δ̃. In the case g = k + 1, m ≡ 2 mod 4, k0 = 0, we have g̃ = 1
and the values of the Arf function σ|P1

on the boundary contours σ(ci) are all

equal to m/2. Then, according to Theorem 2.3, the Arf invariant δ̃′ ∈ {1, 2} is
given by

δ̃′ = gcd
(

m,α1, β1,
m

2
+ 1
)

.

We have (α1, β1) = (δ̃, 0), hence gcd(α1, β1) = δ̃ ∈ {1, 2}. For m ≡ 2 mod4 we
have gcd

(

m, m2 + 1
)

= 2. Therefore

δ̃′ = gcd
(

m,α1, β1,
m

2
+ 1
)

= gcd(δ̃, 2) = δ̃.

Hence σ is a real m-Arf function on P of type t and B is canonical for σ.
• Case m ≡ 1 mod2, t = (g, k): The tuple t satisfies the conditions of Proposi-

tion 3.2, hence g ≡ 1 modm. Other conditions of Proposition 2.9 are clearly
satisfied. Hence there exists a real m-Arf function σ on P with the values V
on B. The topological type of σ is t and B is canonical for σ.

�

Proposition 3.7. The conditions in Proposition 3.2 are necessary and sufficient
for a tuple to be a topological type of a real m-Arf function.

Proof. Proposition 3.2 shows that the conditions are necessary. Proposition 3.6
shows that the conditions are sufficient as we constructed an m-Arf function of
type t for any tuple t that satisfies the conditions. �

Definition 3.6. m-Arf functions σ1 and σ2 on a Klein surface (P, τ) are topologi-
cally equivalent if there exists a homeomorphism ϕ : P → P such that ϕ ◦ τ = τ ◦ϕ
and σ1 = σ2 ◦ ϕ∗ for the induced automorphism ϕ∗ of π1(P ).

Proposition 3.8. Let (P, τ) be a Klein surface of positive geometric genus. Two
m-Arf functions on (P, τ) are topologically equivalent if and only if they have the
same topological type.

Proof. Let (g, k, ε) be the topological type of the Klein surface (P, τ). Proposi-
tion 3.5 shows that for any real m-Arf function σ of topological type t we can
choose a symmetric generating set B (the canonical generating set for σ) with the
values of σ on B determined completely by t. Hence any two real m-Arf functions
of topological type t are topologically equivalent. �

4. Moduli Spaces

4.1. Moduli Spaces of Klein Surfaces. We will use the results on the moduli
spaces of real Fuchsian groups and of Klein surfaces described in [Nat75, Nat78]:
We consider hyperbolic Klein surfaces, i.e. we assume that the genus is g > 2. Let
Mg,k,ε be the moduli space of Klein surfaces of topological type (g, k, ε). Let Γg,n
be the group generated by the elements

v = {a1, b1, . . . , ag, bg, c1, . . . , cn}
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with a single defining relation
g
∏

i=1

[ai, bi]

n
∏

i=1

ci = 1.

Let Aut+(H) be the group of all orientation-preserving isometries of H. The Fricke

space T̃g,n is the set of all monomorphisms ψ : Γg,n → Aut+(H) such that

{ψ(a1), ψ(b1), . . . , ψ(ag), ψ(bg), ψ(c1), . . . , ψ(cn)}
is a generating set of a Fuchsian group of signature (g, n). The Fricke space T̃g,n
is homeomorphic to R6g−3+3n. The group Aut+(H) acts on T̃g,n by conjugation.

The Teichmüller space is Tg,n = T̃g,n/Aut+(H).

Theorem 4.1. Let (g, k, ε) be a topological type of a Klein surface. In the case
ε = 1 let n = k. In the case ε = 0 we choose n ∈ {k + 1, . . . , g + 1} such that
n ≡ g+ 1 mod2. Let g̃ = (g+ 1−n)/2. The moduli space Mg,k,ε of Klein surfaces
of topological type (g, k, ε) is the quotient of the Teichmüller space Tg̃,n by a discrete

group of autohomeomorphisms Modg,k,ε. The space Tg̃,n is homeomorphic to R3g−3.

Theorem 4.2. The moduli space of Klein surfaces of genus g decomposes into
connected components Mg,k,ε. Each connected component is homeomorphic to a

quotient of R3g−3 by a discrete group action.

4.2. Moduli Spaces of Higher Spin Bundles on Klein Surfaces.

Theorem 4.3. Let (g, k, ε) be a topological type of a Klein surface. Assume that
the geometric genus of such Klein surfaces is positive, i.e. k 6 g − 2 if ε = 0 and
k 6 g − 1 if ε = 1. Let t be a tuple that satisfies the conditions of Proposition 3.2.
The space S(t) of all m-spin bundles of type t on a Klein surface of type (g, k, ε) is
connected and diffeomorphic to

R
3g−3/Modt,

where Modt is a discrete group of diffeomorphisms.

Proof. In the case ε = 1 let n = k. In the case ε = 0 we choose n ∈ {k+1, . . . , g−1}
such that n ≡ g − 1 mod 2. Let g̃ = (g + 1 − n)/2. By definition, to any ψ ∈ T̃g̃,n
corresponds a generating set

V = {ψ(a1), ψ(b1), . . . , ψ(ag̃), ψ(bg̃), ψ(c1), . . . , ψ(cn)}
of a Fuchsian group of signature (g̃, n). The generating set V together with

{ψ(c1), . . . , ψ(ck), ψ̃(ck+1), . . . , ψ̃(cn)}
generates a real Fuchsian group Γψ. On the Klein surface (P, τ) = [Γψ], we consider
the corresponding symmetric generating set

Bψ = (a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, . . . , cn−1, d1, . . . , dn−1).

Proposition 3.6 implies that there exists a real m-Arf function σ = σψ of type t for
which Bψ is canonical. According to Theorem 2.6, an m-spin bundle Ω(ψ) ∈ S(t)
is associated with this Arf function. The correspondence ψ 7→ Ω(ψ) induces a map
Ω : Tg̃,n → S(t). Let us prove that Ω(Tg̃,n) = S(t). Indeed, by Theorem 4.1, the
map

Ψ = Φ ◦ Ω : Tg̃,n → S(t) → Mg,k,ε,
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where Φ is the natural projection, satisfies the condition

Ψ(Tg̃,n) = Mg,k,ε.

The fibre of the map Ψ is represented by the group Modg,k,ε of all self-homeomor-
phisms of the Klein surface (P, τ). By Proposition 3.8, this group acts transitively
on the set of all real Arf functions of type t and hence, by Theorem 2.6, transitively
on the fibres Φ−1((P, τ)). Thus

Ω(Tg̃,n) = S(t) = Tg̃,n/Modt, where Modt ⊂ Modg,k,ε

According to Theorem 4.1, the space Tg̃,n is diffeomorphic to R3g−3. �

4.3. Branching Indices of Moduli Spaces.

Theorem 4.4. Let (g, k, ε) be a topological type of a Klein surface. Assume that
the geometric genus of such Klein surfaces is positive, i.e. k 6 g − 2 if ε = 0 and
k 6 g − 1 if ε = 1. Let t be a tuple that satisfies the conditions of Proposition 3.2.
The space S(t) of all real m-spin bundles of type t on a Klein surface of type (g, k, ε)
is an N(t)-fold covering of Mg,k,ε, where N(t) is the number of real m-Arf functions
on (P, τ) of topological type t. The number N(t) is equal to

1) Case ε = 0, m ≡ 0 mod2, t = (g, δ, k0, k1):

N(t) =

(

k

k1

)

· m
g

2
.

2) Case ε = 1, m ≡ 0 mod2, t = (g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1): Let

M =

(

k

k0

)

·
(

k0

k0
0

)

·
(

k1

k0
1

)

.

• Case g > k + 1, (m ≡ 0 mod4 or k0 6= 0):

N(t) = 21−k ·mg ·M for δ̃ = 0 and N(t) = 0 for δ̃ = 1.

• Case g > k + 1, m ≡ 2 mod4, k0 = 0:

N(t) =
(

2−k + 2−
g+k+1

2

)

·mg ·M for δ̃ = 0,

N(t) =
(

2−k − 2−
g+k+1

2

)

·mg ·M for δ̃ = 1.

• Case g = k + 1, (m ≡ 0 mod4 or k0 6= 0):

N(t) = 2−(k−1) ·mk+1 ·M for δ̃ = 1 and N(t) = 0 for δ̃ = 2.

• Case g = k + 1, m ≡ 2 mod4, k0 = 0:

N(t) = 3 · 2−(k+1) ·mk+1 ·M for δ̃ = 1,

N(t) = 2−(k+1) ·mk+1 ·M for δ̃ = 2.

3) Case m ≡ 1 mod2, t = (g, k):

N(t) = mg.

Proof. According to Theorem 4.3, S(t) ∼= Tg̃,n/Modt, where Modt ⊂ Modg,k,ε,
hence S(t) is a branched covering of Mg,k,ε = Tg̃,n/Modg,k,ε and the branching
index is equal to the index of the subgroup Modt in Modg,k,ε, i.e. is equal to the
number N(t) of real m-Arf functions on (P, τ) of topological type t. Let

B = (a1, b1, . . . , ag̃, bg̃, a
′
1, b

′
1, . . . , a

′
g̃, b

′
g̃, c1, d1, . . . , cn−1, dn−1)



22 SERGEY NATANZON AND ANNA PRATOUSSEVITCH

be a symmetric generating set of π1(P ). Let V = (αi, βi, α
′
i, β

′
i, γi, δi) denote the

set of values of an m-Arf function on B.

1) Case ε = 0, m ≡ 0 mod 2, t = (g, δ, k0, k1): There are
(

k
k1

)

ways to choose the

values γi. There are m2g̃ ways to choose αi = α′
i and βi = β′

i. According to
Theorem 2.7, out of mn−1 ways to choose δ1, . . . , δn−1 there are mn−1/2 which
give Σ ≡ 0 mod2 and mn−1/2 which give Σ ≡ 1 mod 2. Thus the number of real
m-Arf functions of type (g, δ, k0, k1) is

(

k

k1

)

·m2g̃ · m
n−1

2
=

(

k

k1

)

· m
2g̃+n−1

2
=

(

k

k1

)

· m
g

2
.

2) Case ε = 1, m ≡ 0 mod 2, t = (g, δ̃, k0
0 , k

0
1 , k

1
0 , k

1
1): There are M =

(

k
k0

)

·
(

k0
k0
0

)

·
(

k1
k0
1

)

ways to choose the values γi. Furthermore having fixed the parity of δi, there
are (m/2)k−1 ways to choose the values of δi. Hence the number of such real
m-Arf functions on P is equal to

m2g̃ ·
(m

2

)k−1

·M =
m2g̃+k−1

2k−1
·M = mg · 21−k ·M.

• In the case g > k + 1, m ≡ 2 mod4, k0 = 0, the resulting invariant δ̃ is given
by

δ̃ ≡
g̃
∑

i=1

(1 − αi)(1 − βi)mod 2.

It can be shown by induction that out of m2g̃ ways to choose the values αi,
βi we get the Arf invariant δ̃ = 0 in 2g̃−1(2g̃ + 1)(m/2)2g̃ cases and δ̃ = 1 in

2g̃−1(2g̃ − 1)(m/2)2g̃ cases. Hence the number N(t) with δ̃ equal to 0 and 1
respectively is

2g̃−1(2g̃ ± 1)
(m

2

)2g̃ (m

2

)k−1

·M.

We simplify

2g̃−1(2g̃ ± 1)
(m

2

)2g̃ (m

2

)k−1

= (22g̃−1 ± 2g̃−1)
(m

2

)2g̃+k−1

=
(

2g−k ± 2
g−k−1

2

)(m

2

)g

=
(

2g−k ± 2
g−k−1

2

)

2−g ·mg

=
(

2−k ± 2
−g−k−1

2

)

mg =
(

2−k ± 2−
g+k+1

2

)

mg

to obtain N(t) as stated.
• In the case g > k+ 1, (m ≡ 0 mod 4 or k0 6= 0), the Arf invariant of all m-Arf

functions we construct is δ̃ = 0, hence N(t) is as stated.
• In the case g = k + 1, m ≡ 2 mod4, k0 = 0, the Arf invariant of the resulting
m-Arf function is given by

δ̃ = gcd
(

m,α1, β1,
m

2
+ 1
)

.

Note that for m ≡ 2 mod4 we have gcd(m,m/2 + 1) = 2, hence δ̃ = 2 if α1

and β1 are both even and δ̃ = 1 otherwise. Out of m2 ways to choose the
values α1, β1 we get δ̃ = 1 in 3m2/4 cases and δ̃ = 2 in m2/4 cases. Hence

the number N(t) with δ̃ equal to 1 and 2 respectively is

2 ± 1

4
·m2

(m

2

)k−1

·M = (2 ± 1) ·
(m

2

)k+1

·M.
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• In the case g = k+ 1, (m ≡ 0 mod 4 or k0 6= 0), the Arf invariant of all m-Arf

functions we construct is δ̃ = 1, hence N(t) is as stated.
3) Case m ≡ 1 mod 2, t = (g, k): The statement follows from Theorem 2.9.

�
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