ON THE LINK SPACE OF A (Q-GORENSTEIN
QUASI-HOMOGENEOUS SURFACE SINGULARITY

ANNA PRATOUSSEVITCH

ABSTRACT. In this paper we prove the following theorem: Let M be the
link space of a quasi-homogeneous hyperbolic Q-Gorenstein surface singular-
ity. Then M is dlffeomorphlc to a coset space Fl\G/Fg, where G is the 3-
dimensional Lie group PSL(2 R), while I'; and T's are discrete subgroups of
G, I'; is co- compact and Iy is cyclic. Conversely, if M is diffeomorphic to
a coset space as above, then M is diffeomorphic to the link space of a quasi-
homogeneous hyperbolic Q-Gorenstein singularity. We also prove the following
characterisation of quasi-homogeneous (-Gorenstein surface singularities: A
quasi-homogeneous surface singularity is Q-Gorenstein of index r if and only
if for the corresponding automorphy factor (U,T", L) some tensor power of the
complex line bundle L is I'-equivariantly isomorphic to some tensor power of
the tangent bundle of the Riemannian surface U.

1. INTRODUCTION

Graded affine coordinate rings of quasi-homogeneous surface singularities can be
identified with graded rings of generalised automorphic forms. The description in
terms of automorphy factors was found in 1975-77 by Dolgachev, Milnor, Neumann
and Pinkham [Dol75, Dol77, Mil75, Neu77, Pin77].

For some special classes of quasi-homogeneous surface singularities as Gorenstein
and Q-Gorenstein singularities one can obtain more precise descriptions of the
corresponding automorphy factors.

In Theorem 3 we obtain a characterisation of hyperbolic and spherical QQ-Gorenstein
quasi-homogeneous surface singularities in terms of their automorphy factors. This
characterisation leads to a description of their links as quotients of certain 3-
dimensional Lie groups by discrete subgroups. More precisely, we prove the fol-
lowing statement

Theorem 1. The link space of a hyperbolic Q-Gorenstein quasi-homogeneous sur-
face singularity of level m and index r is diffeomorphic to a biquotient

[\G/Ts,
where G is the universal cover PSL(2, R) of the 3-dimensional Lie group PSL(2, R),
while I‘l and Fz are discrete subgroups of level m in G F1 is co-compact, and the
image of Ty in PSL(2,R) is a cyclic subgroup of order r. Conversely, any biquotient

as above is diffeomorphic to the link space of a quasi-homogeneous hyperbolic Q-
Gorenstein singularity.
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2 A. PRATOUSSEVITCH

These statements are generalisations of the results of Dolgachev [Dol83] on
Gorenstein quasi-homogeneous surface singularities. The Gorenstein quasi-homogeneous
surface singularities correspond to the case of a trivial group I's.

Similar statements are also true in the case of Euclidean automorphy factors
and corresponding singularities. This case was already discussed by Dolgachev
in [Dol83]. The Euclidean Q-Gorenstein quasi-homogeneous surface singularities
are rational singularities, which are quotients of Gorenstein Euclidean singularities
by actions of finite groups.

The description of the link space of a hyperbolic Gorenstein quasi-homogeneous
surface singularity as a quotient of the Lie group ffé/L(2,]R) by the action of a
discrete subgroup was the motivation for the study in [Pra03], [BPRO3] of a certain
construction of fundamental domains for such actions. This construction leads to
interesting results on the combinatorial geometry of the link spaces of Gorenstein
quasi-homogeneous surface singularities.

We expect that our construction of fundamental domains can be generalised in
order to study the combinatorial geometry of the link spaces of Q-Gorenstein quasi-
homogeneous surface singularities. We shall discuss the combinatorial geometry of
the link spaces in the Q-Gorenstein case in an ongoing paper.

The paper is organised as follows: In section 2 we explain the description of quasi-
homogeneous surface singularities via automorphy factors. In section 3 we define
Q-Gorenstein quasi-homogeneous surface singularities and introduce our character-
isation of the corresponding automorphy factors (Theorem 3). Then in section 4
we prove some technical results needed to prove this characterisation. After that
we prove Theorem 3 in section 5. Finally we prove Theorem 1 in section 6.

Notation: In this paper we use Ry for {z € R | xz > 0}. We denote by L* the
associated C*-bundle of a complex line bundle L, while LV is the dual bundle of L.

I am grateful to Egbert Brieskorn, Vicente Cortes, Claus Hertling, Shihoko Ishii,
Walter Neumann, and Jacob Stix for helpful discussions related to this work. I
would like to thank the referee of an earlier version of this paper for useful remarks.

2. AUTOMORPHY FACTORS

In this section we recall the results of Dolgachev, Milnor, Neumann and Pinkham
[Dol75, Dol77, Mil75, Neu77, Pin77] on the graded affine coordinate rings, which
correspond to quasi-homogeneous surface singularities.

Definition. A (negative unramified) automorphy factor (U,T',L) is a complex line
bundle L over a simply connected Riemann surface U together with a discrete co-
compact subgroup I' C Aut(U) acting compatibly on U and on the line bundle L,
such that the following two conditions are satisfied:

1) The action of T is free on L*, the complement of the zero-section in L.
2) Let I'" < T be a normal subgroup of finite index, which acts freely on U, and let
L — C be the complex line bundle L = L/T’ over the compact Riemann surface
C = U/T". Then L is a negative line bundle.
A simply connected Riemann surface U can be CP', C, or H, the real hyper-
bolic plane. We call the corresponding automorphy factor and the corresponding
singularity spherical, Fuclidean, resp. hyperbolic.
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Remark. There always exists a normal freely acting subgroup of I' of finite index.
In the hyperbolic case the existence follows from the theorem of Fox-Bundgaard-
Nielsen. If the second assumption in the last definition holds for some normal freely
acting subgroup of finite index, then it holds for any such subgroup.

The simplest examples of such a complex line bundle with group action are the
cotangent bundle of the complex projective line U = CP! and the tangent bundle
of the hyperbolic plane U = H equipped with the canonical action of a subgroup
' C Aut(U).

Let (U,T,L) be a negative unramified automorphy factor. Since the bundle
L = L/T" is negative, one can contract the zero section of L to get a complex
surface with one isolated singularity corresponding to the zero section. There is
a canonical action of the group I'/T" on this surface. The quotient is a complex
surface X (U,T', L) with an isolated singular point o, which depends only on the
automorphy factor (U,T', L).

The following theorem summarises the results of Dolgachev, Milnor, Neumann,
and Pinkham:

Theorem 2. The surface X (U,T', L) associated to a negative unramified automor-
phy factor (U,T, L) is a quasi-homogeneous affine algebraic surface with a normal
isolated singularity. Its affine coordinate ring is the graded C-algebra of generalised
C-invariant automorphic forms
A=pH WU, L™
m2=0

All normal isolated quasi-homogeneous surface singularities (X, z) are obtained in
this way, and the automorphy factors with (X (U,T, L), 0) isomorphic to (X, x) are
uniquely determined by (X, x) up to isomorphism.

3. Q-GORENSTEIN QUASI-HOMOGENEOUS SURFACE SINGULARITIES

In this section we recall the definition of Q-Gorenstein singularities and the char-
acterisation of the corresponding automorphy factors.

A normal isolated singularity of dimension n is Gorenstein if and only if there is
a nowhere vanishing n-form on a punctured neighbourhood of the singular point.
For example all isolated singularities of complete intersections are Gorenstein.

A natural generalisation of Gorenstein singularities are the Q-Gorenstein singu-
larities (compare [Rei87, Ish87, Ish00]). A normal isolated singularity of dimension
at least 2 is Q-Gorenstein if there is a natural number r such that the divisor r-Kx
is defined on a punctured neighbourhood of the singular point by a function. Here
K x is the canonical divisor of X. The smallest such number r is called the indez
of the singularity. A normal isolated surface singularity is Gorenstein if and only if
it is Q-Gorenstein of index 1.

In section 5 we prove the following characterisation of Q-Gorenstein quasi-homo-
geneous surface singularities in terms of the corresponding automorphy factors:

Theorem 3. A quasi-homogeneous surface singularity is Q-Gorenstein of index r if
and only if for the corresponding automorphy factor (U,T', L) there is an integer m
(called the level or the exponent of the automorphy factor) without common divisors
with r and a I'-invariant isomorphism L™ = TY;.
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Let (U,T, L) be a negative unramified automorphy factor of level mn and index r,
which corresponds to a Q-Gorenstein singularity. The isomorphism L™ = T},
induces an isomorphism L™ =2 T¢. The bundle L is negative. A simple computation
with Chern numbers shows that the possible values of the exponent are m = —1 or
m = —2 for U = CP", whereas m =0 for U = C and m € N for U = H.

4. THE ASSOCIATED BUNDLE OF THE QUOTIENT BUNDLE

Let (U,T', L) be a spherical or hyperbolic negative unramified automorphy factor.
As in the definition let I < T be a normal subgroup of I' acting freely on U, and
let p : L — C be the complex line bundle with total space L = L/I" and base
C = U/T'. In this section we consider the associated C*-bundle of the bundle
p, i.e. plz. : L* — C. For ease of notation we set W := L* and q := p|w.
We first present some technical lemmas, which will be used later to determine
Q2T (W) = (Q2(W))®r.

Lemma 4. The following Oc¢-algebras are isomorphic
2.(0w) = @ 0c(L™).
mEZL

Lemma 5. We have Q*(W) 22 ¢*(Q},).

Lemma 6. If the bundle L is non-trivial and the sheaf Q> (W) is trivial, then there
exists up to complex multiples only one nowhere vanishing section in Q7 (W).

We postpone the proofs of these lemmas until the end of this section and discuss
first the main result of the section, the description of (I'/T")-invariant sections in

Q2 (W).

Proposition 7. The sheaf Q%" (W) is trivial if and only if there exists an integer m
and an isomorphism L™ = T¢.

Assume that Q>" (W) is trivial and let m be the integer such that L™ = TF..
Then the global nowhere vanishing sections in Q" (W) are (I'/T")-invariant if and
only if the isomorphism L™ = T}, is (I'/T")-equivariant.

Proof. 1) We first prove that Q*"(W) = Oy implies L™ = T}, for some m € Z.
Assume that Q27" (W) =2 Oy . This implies on the one hand using lemma 4 that

@ (227 (W)) = ¢.(Ow) = €D Oc (LY.

i€z
On the other hand we have using lemma 5
(" (W) 2 ¢.((¢"(2))®").-
Now we obtain for Q5" := (QL)%"
¢ ((¢*(20)®") = ¢:(¢" ("),
because ¢* is compatible with tensor products. The projection formula implies

2.(¢" (")) = 0.(Ow ®oy ¢ (Q5")) = ¢.(Ow) @0, Q.
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Finally using lemma 4 again we obtain
(@7 (W) = . (Ow) ®oc O
( @ Oc(L™)) @0, "

mEZL

P oc(L™ 1.

meZ

1%

1%

Comparing both equations for ¢.(2>"(W)) we obtain

P oc(Li) = P Oc(L™ 0 T5"),

€L mEZ

hence

OC(Em ® Tc_vr) = Oc(io) = O¢
for some m € Z. This implies L™ = T,.
We now assume that L = T%, i.e. m = 1. The Riemann surface U is then the
real hyperbolic plane H. We study the tangent bundle T of the hyperbolic
surface C' = H/T'. We define a 2-form on (T¢)* in local coordinates by n =
% -(dzAdt). Using the fact that any change of coordinates is of the form (z,¢) —
(p(2),¢'(2) - t) we can verify that this local definition gives rise to a global
nowhere vanishing 2-form on (T¢)*, and that this 2-form is invariant under an
action of g € I' if and only if the action is given by (z,t) — (g(2),4'(2) - t),
i.e. the action coincides with the canonical action of g on T¢x. The 2-form on
(Tc)* induces a nowhere vanishing section n in Q%" ((T%)*), which is invariant
under an action of g € T if and only if the action is given in local coordinates
by (z,t) — (g(z),(¢'(2))" - t), i-e. the action coincides with the canonical action
of g on T%. Hence if the isomorphism L = T}, is (I'/T")-equivariant, there exists
a (T'/I')-invariant nowhere vanishing section in Q2" (W).
We now assume that L 2 T;" & (T¥)", i.e. m = —1. The Riemann surface U
is then the complex projective line CP*. We study the cotangent bundle Y
of the surface C = CP'/I". We define a 2-form on (T7)¥)* in local coordinates
by n = dz A dt. Using the fact that any change of coordinates is of the form
(z,t) = (p(2), #Z) -t) we can verify that this local definition gives rise to a global
nowhere vanishing 2-form on (7¥)*. We continue in the proof as for m = 1 and
obtain a nowhere vanishing section 1 in Q%" ((T;")*), which is invariant under
an action of g € T if and only if the action coincides with the canonical action
of g on (TY)". Hence if the isomorphism L & T;" is (I'/T')-equivariant, there
exists a (I'/I")-invariant nowhere vanishing section in Q%7 (W).
As the next step of the proof we consider the case L™ = T, with m # 0. Let n be
the nowhere vanishing section in Q27 ((TZ")*), i.e. in Q> ((LI™)*), constructed
in subsections 2 and 3. We consider the covering 7 : L — L™. The pull-back
7*(n) of the section n under the covering 7 is a nowhere vanishing section in
Q%r(L*) = Q*7(W). If the isomorphism L™ = TY, is (I'/T")-equivariant, the
induced section in Q%7 (W) is (I'/T")-invariant.
We now assume that Q%7 (W) is trivial and that there exists a nowhere vanishing
section w in Q%" (W), which is (I'/T”)-invariant. Then in particular there exists
an integer m such that L™ = T7.. Let n be the nowhere vanishing section in
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027 ((T£")*) constructed before. By lemma 6 the sections w and 7 are complex

multiples of each other, hence the isomorphism L™ = T, is (I'/I")-equivariant.
(|

Now it remains to show the technical lemmas, which we have used in the proof of
lemma 7. We first prove lemma 4:

Proof. We have to prove that the following O¢-algebras are isomorphic

0. (Ow) = @ Oc (™).

mEZL

Let us consider a local trivialisation ¢ : L]y — V x C of the complex line bundle L
over an open affine subset V' C C. This trivialisation induces trivialisations ¢ :
Wy — V x C* of the C*-bundle W — C and ¢®™ : L™|y — V x C®™ of the
complex line bundle L™ = L®™ — . Then we obtain

0(Ow)(V) = (prow)«(Ow) (V) = 0w (V x C7)
= OvXc*(V X (C*) = Oc(V) K¢ Oc*((c*)
= Oc(V) @c Clt,t '] = @ Oc(V) -t

mEZL

This implies that any section of ¢.(Ow) can be locally uniquely represented as a
finite sum of the form Y f,, - t7™ with f,,, € Oc(V). Using the induced local
trivialisations of W and L®™ over V together with the identifications C®™ =~ C
and C®(-1) ~ Hom(C,C) = C we can construct a bijection between sections in L™
over V and functions in O¢ (V). We obtain a family of isomorphisms

(@ (Ow)(V) = ®imezOc(V) -t7™")y,

which does not depend on the chosen trivialisations, is compatible with the re-
striction maps and hence induces an isomorphism of Oc¢-algebras g«(Ow) and
OmezOc (L™). O

Now we prove lemma 5:

Proof. We have to prove that Q*(W) = ¢*(Q2L,). To this end we consider the sheaf
of relative forms Q%,Vl - This sheaf is trivial and generated by a relative form given

in local coordinates by %. The following short exact sequence of locally free sheaves
of ranks 1, 2, and 1

0= ¢* () = Qy = Qe =0
implies
A% (Qy) 2 A (g™ (20)) @ A Q) =™ (). O

Finally we prove lemma 6:

Proof. We have to prove that if the bundle L is non-trivial and the sheaf Q7 (W)
is trivial, then the nowhere vanishing section in Q27 (W) is unique up to complex
multiples. Consider two nowhere vanishing sections in Q%7 (W). There quotient is a
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nowhere vanishing regular function. It remains to prove that all nowhere vanishing
regular functions on W are constant. Using lemma 4 we obtain

Ow (W) = 4.(0w)(C) = P Oc(L™)(C).

meZ

Nowhere vanishing functions on W correspond to nowhere vanishing sections in L™.
A non-homogeneous section in L™ can not be nowhere vanishing. A homogeneous
nowhere vanishing section in L™ exists if and only if L™ is trivial. But the bundle
L is negative, hence L™ is trivial if and only if m = 0. O

5. AUTOMORPHY FACTORS OF Q-GORENSTEIN QUASI-HOMOGENEOUS SURFACE
SINGULARITIES

In this section we use the results of section 4 to prove Theorem 3:

Theorem. A quasi-homogeneous surface singularity is Q-Gorenstein of indez r if
and only if for the corresponding automorphy factor (U,T', L) there is an integer m
(called the level or the exponent of the automorphy factor) without common divisors
with r and a I'-equivariant isomorphism L™ = T{;.

Proof. We first assume that for some positive integer r and integer m there is a I'-
equivariant isomorphism L™ = T;. This isomorphism induces a (I'/T")-equivariant
isomorphism L™ = T%,. Then according to proposition 7 there exist global nowhere
vanishing (I'/I")-invariant sections in Q%" (W). Such a section induces a nowhere
vanishing section in Q7(W/(I'/T")) = Q*7(X*), hence the corresponding singu-
larity (X (U,T, L), 0) is Q-Gorenstein.

Now let us assume that singularity (X,«) with automorphy factor (U,T', L) is
Q-Gorenstein of index r, i.e. there exist nowhere vanishing sections in Q%" (X*) =
Q2" (W/(T/T")). We consider the singularity (X,Z), which corresponds to the
automorphy factor (U,I',L). For this singularity we have X = X/(T'/T"). The
pull-back of a nowhere vanishing section in Q27 (X*) along the unramified covering
X* — X* is a nowhere vanishing (I'/I")-invariant section in Q%7 (X*), hence the
singularity (X, Z) is also Q-Gorenstein of index 7.

A nowhere vanishing (I'/I”)-invariant section in Q%7(X*) induces a nowhere
vanishing (I'/I")-invariant section in Q%7 (W) = Q2?7 (L*). Then proposition 7
implies the existence of an (I'/I")-equivariant isomorphism L™ = T(, for some
integer m, i.e. the induced action of (I'/T") on L™ 22 T, coincides with the canonical
action of (I'/T') on T}. Hence the action of I' on L™ = T}, also coincides with
the canonical action of I' on 77}, i.e. there exists a I'-equivariant isomorphism
L™ =Ty O

Remark. Theorem 3 also follows from the following result of K. Watanabe [Wat81],
appearing in the context of the theory of commutative rings: Let R = R(X, D) be
a normal graded ring, which is presented by the Pinkham-Demazure method. Then
the canonical module Kp of R is Q-Cartier of index r, if and only if, there exists a
rational function ¢ on X such that r(K + D') — mD = divx(¢) for some integer m
and r is the minimum of such 7. In our case, X = C' =U/T" and 7 : U — C'is the
Galois cover associated to the automorphy factor, and the result is translated to the
relation on U as equivariant isomorphism 77" 2 L™. Our proofs of Proposition 7
and Theorem 3 give a more direct description of the automorphy factors in question.
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6. FrRoM HYPERBOLIC AUTOMORPHY FACTORS TO BIQUOTIENTS
In this section we prove Theorem 1:

Theorem. The link space of a hyperbolic Q-Gorenstein quasi-homogeneous surface
singularity of level m and index r is diffeomorphic to a quotient
f‘1\é/f‘27

where G is the universal cover P/_S/L(2, R) of the 3-dimensional Lie group PSL(2,R),
while I'y and Ty are discrete subgroups of level m in G, 't is co-compact, and the
image of 'y in PSL(2,R) is a cyclic subgroup of order r. Conversely, any biquotient
as above is diffeomorphic to the link space of a quasi-homogeneous hyperbolic Q-
Gorenstein singularity.

Before we explain the proof of this theorem, we give a description of the Lie
group G = PSL(2,R) and its coverings.
As topological space PSL(2, R) is homeomorphic to the solid torus S* x C. The

fundamental group of the solid torus G is infinite cyclic. Therefore, for each natural
number m there is a unique connected m-fold covering

G = GJ(m - Z(@))
of G, where Z(G’) is the central subgroup of G. For m = 2 this is the group
G2 = SL(2,R).
We use the following description of the covering groups G,, of G = PSL(2,R),

which fixes a group structure. Let Hol(H, C*) be the set of all holomorphic functions
H— C*.

Proposition 8. The m-fold covering group G, of G can be described as
{(9,6) € G x Hol(H,C") | 6"™(z) = ¢'(2) for all z € H}
with multiplication
(92,02) - (91,61) = (92 91, (620 g1) - 61).

Remark. This description of G,, and the description of G that we give later are
inspired by the notion of automorphic differential forms of fractional degree, intro-
duced by J. Milnor in [Mil75]. For a more detailed discussion of this fact see [LV80],
section 1.8.

We now explain the connection between automorphy factors in question and lifts
of Fuchsian groups into the finite coverings of G.

Definition. A [ift of the Fuchsian group I into G,, is a subgroup I'* of G,,, such
that the restriction of the covering map G,, — G to I'* is an isomorphism between
' and T'.

Proposition 9. There is a 1-1-correspondence between hyperbolic Q-Gorenstein
automorphy factors (H,T'y H x C) of level m and index r and the lifts of T into G, .

Proof. On the one hand using the description of the covering G,, from Proposi-
tion 10 we see that there is a 1-1-correspondence between lifts of I' into G, and
families {d,}4er of holomorphic functions d, : H — C* such that for any g € T’

o =g
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and for any g1,¢92 € I’
Ogs-g1 = (692 ogi) - Og: -
Let D be the set of all such families (dg).
On the other hand there is a 1-1-correspondence between hyperbolic Q-Gorenstein
automorphy factors (H,T', H x C) of level m and index r and and families {e,}ger
of holomorphic functions e, : H — C* such that for any g € T’

and for any g1,g2 € I’
€g2-91 = (692 °gi)- €gi -
Let £ be the set of all such families (eg)ger-
It remains to establish a 1-1-correspondence between the sets D and £. This
correspondence is defined as follows: Let us assign to a family (J,) € D the family
(eg) given by e, := d7. One checks easily that (e,) € €.

If the images (e4), (é4) € & of (d4),(d4) € D coincide then on the one hand

on the other hand

"% _d
dg _6;n_g’_

But the integers m and r are relatively prime, hence there exists only one complex
number £ with the property £¢™ = £" = 1, namely £ = 1. Hence for any g € I’

1

)

mo"|te !

i.e. the families (J,) and (J,) coincide. So we have shown that the mapping D — &
is injective.

Now let us consider a family (e,) € £. It holds ¢g'(z) ¢ R+ U {0} for all z € H,
hence there exist functions p, : H — R, and ¢, : H — (0,1) such that ¢’ =
pg - €xp(2migp,). The chain rule implies

Pgo-gr = (Pgz © 91) = Pygu
and
Pgorgr — Pg2 © g1 — Py, € L.
The function e, is then of the form

Ty + kg
m

ey = pgﬁ - exp <2m' :

for some function k, : H — Z. The function k, is continuous and hence constant.
The integers m and r are relatively prime, hence there is an integer n, such that
r-ng = kg mod m. Let us define a family (d,) by setting

a1
5, = pf - exp (m . M) _
m
We now prove that the family (d,) is in D. The first property
3" = pg - exp (2mi - (pg +ny)) = pg - exp (2mi - pg) = ¢
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is satisfied. The second property
692'91 = (692 ogl) ) 691

is equivalent to
1

1 1
pgwé'gl = (p92 ogl) " Pgi

3=

and
(9092'91 — Pg2 © g1 — 9091) + (n!]2'!]1 —MNgy, 091 — n!h) = 0 mod m.
The first of these equations follows from
Pg2-91 = (pgz ogl) *Pgy-
To prove the second equations we observe that
€g2-g1 = (egz ° gl) =
implies that m is a divisor of the integer
T (Pgargr — Pgz © 91 — Pg1) + (Kgogy — kg, 0 g1 — ky,).
Because of r - ngy = k;, mod m also the integer

T ((‘sz~g1 —®g 091 — Pg1) + (Ngogy — Mgy 0 g1 — ”91))
is divisible by m. Since m and r are relatively prime, the number m must be a
divisor of the integer
(‘pgz-m —Pg2°91 — 9091) + (n!]2'91 —Ngy, %01 — n!h)'
So the family (dy) is in D. The image of the family (d,) under the map D — £ is
- . . - . k
57 = pfF - exp (m . %) — oF - exp (m . %) e,
So we have proved that the mapping D — & is surjective. O
Now we explain the connection between lifts of Fuchsian groups into the finite
coverings of G and discrete subgroup of finite index in G.

We use the following description of the covering groups G of G = PSL(2,R),
which fixes a group structure. Let Hol(H, C) be the set of all holomorphic functions
H — C.

Proposition 10. The universal covering group G of G can be described as
{(9,6) € G x Hol(H,C) | eod =g},
where e(w) = exp(2wiw). The multiplication is given by
(92,02) - (91,01) = (92 - 91,02 0 g1 + b1).
The covering map G — G, is given by
(9,0) = (g,e(8/m)).

Remark. The center of the group G is infinite cyclic and is equal to the preimage
of the unit element in G:

Z(G)={(g,0) € G | g =1d, ¢ is an integer constant}.

Definition. The level of a discrete subgroup I' C G is the index of I'N Z(G) as a

subgroup of Z(G).
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The following fact is well known (see for example section 4 in [KR85]):

Proposition 11. There is a one-to-one correspondence between discrete co-compact
subgroups of level m in G and liftings of discrete co-compact subgroups in PSL(2,R)
into the m-fold covering of PSL(2,R). The correspondence is given by mapping a
subgroup in G into its image under the covering map G — Gp.

We now prove Theorem 1.

Proof. Let (X, ) be a hyperbolic Q-Gorenstein quasi-homogeneous surface singu-
larity of level m and index r and let (H,TI';, L) be the corresponding automorphy
factor. Let us consider a trivialisation L ~ H x C of the bundle L. Combining the
results of Propositions 9 and 11 we see that there is a discrete co-compact subgroup
f‘1 of level m in G such that the action of the group I'; can be described as

g-(2,t) = (9(2),e(6(z)r/m) - t),
where § : H —>~(C is a holomorphic function such that (g,d) is an element of~ L.
This action of I'; can be obtained as a restriction of the action of the group G on
L via
(9,0) - (2, 1) = (9(2),e(8(z)r/m) - 1).
It is easy to check, that this is an action of G. The unit subbundle of L can be
identified with the subbundle
S={(z,t) e HxC | [t = (Im(2))"}.

The bundle S is invariant under G: For (z',t') = (g,6)-(z,t) = (9(z), e(6(z)r/m)-t)
we have

L~ e (- D) = ketstenr = e = (H2) - QuCIr,

[t]™ m Imz

The stabiliser of a point (zp,t) € S is

. ~ T

[y 1= Stabg((20,t0) = {(9,0) € G | g(z0) =20, 8(2) - = € Z}.
We now determine the level of the subgroup I':

[N Z(G) ={(g,9) € Z(G) | 0 is an integer constant divisible by m}
=m-Z(Q).
The map (g,0) »—>~(g, 8) - (i,1) defines a I';-equivariant diffeomorphism G/T'y — S.
Here I'; acts on G by left multiplication. We obtain the following commutative
diagram
G/ly —— L*/Ry =S

! !

fl\é/fz e X*/]R+ =M
Hence we have
M =T1\G/Ts.

Conversely, let T'; and I', be discrete subgroups of level m in G, let Ty be co-
compact, and let the image of I's in PSL(2,R) be a cyclic subgroup of order r.



12

A. PRATOUSSEVITCH

Then I, = I'/(T1 N Z(G)) is a discrete co-compact subgroup of PSL(2,R). We
can define an automorphy factor (H,T';, H x C) by setting

g-(2,1) = (9(2),e(0(z)r/m) - 1),

where 6 : H — C is a holomorphic function such that (g,d) is an element of L.
From the first part of the proof we know that the link of the corresponding quasi-
homogeneous Q-Gorenstein surface singularity is diffeomorphic to I'; \G/T's. |
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