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Abstract. The main result of this paper is a construction of fundamental
domains for certain group actions on Lorentz manifolds of constant curvature.

We consider the simply connected Lie group G̃ = fSU(1, 1). The Killing form on

the Lie group G̃ gives rise to a biinvariant Lorentz metric of constant curvature.
We consider a discrete subgroup Γ1 and a cyclic discrete subgroup Γ2 in G̃
which satisfy certain conditions. We describe the Lorentz space form Γ1\G̃/Γ2

by constructing a fundamental domain for the action of Γ1×Γ2 on G̃ by (g, h)·
x = gxh−1. This fundamental domain is a polyhedron in the Lorentz manifold
G̃ with totally geodesic faces. For a co-compact subgroup the corresponding
fundamental domain is compact. The class of subgroups for which we construct
fundamental domains corresponds to an interesting class of singularities. In
particular the bi-quotients of the form Γ1\G̃/Γ2 are diffeomorphic to the links
of quasi-homogeneous Q-Gorenstein surface singularities.

1. Introduction

In the context of Riemannian manifolds, there are standard constructions for
fundamental domains, for example Dirichlet regions. However, in the context of
semi-Riemannian manifolds, such constractions are rare. The main result of this
paper is a construction of fundamental domains for certain group actions on Lorentz
manifolds of constant curvature.

We consider the universal cover G̃ of the group G of orientation-preserving isome-
tries of the hyperbolic plane. The Killing form on the Lie group G̃ gives rise to
a biinvariant Lorentz metric of constant curvature. We consider a discrete sub-
group Γ1 and a discrete cyclic subgroup Γ2 in G̃ which satisfy the conditions (∗)
specified below. In this paper we describe a construction of fundamental domains

for the action of Γ1×Γ2 on S̃U(1, 1) by (g, h)·x = gxh−1. The resulting fundamental

domain is a polyhedron in the Lorentz manifold G̃ with totally geodesic faces. For
a co-compact subgroup the corresponding fundamental domain is compact. The
precise formulation of these results is contained in Theorems A and B.

The study of discrete subgroups of finite level is motivated by some deep connec-
tions between these subgroups and quasi-homogeneous isolated singularities of com-
plex surfaces studied by J. Milnor, I. Dolgachev, and W. Neumann [Mil75, Dol83,
Neu77, Neu83]. The class of subgroups for which we construct fundamental domains
corresponds to an interesting class of singularities. There is a 1-1-correspondence

Date: June 22, 2010.
2000 Mathematics Subject Classification. Primary 53C50; Secondary 14J17, 32S25, 51M20,

52B10.
Key words and phrases. Lorentz space form, polyhedral fundamental domain, quasihomoge-

neous singularity.

1



2 ANNA PRATOUSSEVITCH

between the subgroups from this class and quasi-homogeneous Q-Gorenstein surface
singularities. In particular the bi-quotients of the form Γ1\G̃/Γ2 are diffeomorphic
to the links of quasi-homogeneous Q-Gorenstein surface singularities. For a more
detailed treatment of this connection see [Pra06] and [BPR03], §1–2.

The construction described in [Pra01], [BPR03], [Pra07] can be understood as
a special case of the construction described in this paper when the subgroup Γ2 is
trivial.

A bi-quotient of the form Γ1\G̃/Γ2 is a standard Lorentz space form. The stan-
dard Lorentz space forms were studied by R.S. Kulkarni and F. Raymond [KR85].
Examples of non-standard Lorentz space forms were found by W. Goldman [Gol85],

É. Ghys [Ghy87], and recently by F. Salein [Sal00]. The survey [BZ04] of Th. Bar-
bot and A. Zeghib and the paper [Fra05] of Ch. Frances are good references for
the reader interested in group actions on Lorentz manifolds. The results of this
paper suggest that the description of Lorentz space forms by means of fundamental
domains could be extended to include non-standard Lorentz space forms.

Let us specify the conditions that we want to impose on the subgroups Γ1

and Γ2. We consider the universal cover of the group G = PSU(1, 1) of orien-
tation-preserving isometries of the hyperbolic plane. Here our model of the hy-
perbolic plane is the unit disc D in C. The kernel of the universal covering map

S̃U(1, 1) → PSU(1, 1) is the centre Z of the group S̃U(1, 1), an infinite cyclic group.
Therefore, for each natural number k there is a unique connected k-fold covering
of PSU(1, 1). For k = 2 this is the group

SU(1, 1) =

{(
w z
z̄ w̄

) ∣∣ (w, z) ∈ C
2, |w|2 − |z|2 = 1

}
.

The level of a discrete subgroup Γ ⊂ S̃U(1, 1) is the index of Γ ∩ Z as a subgroup
of Z.

Condition (*): We consider a discrete subgroup Γ1 and a discrete cyclic sub-

group Γ2 in S̃U(1, 1) of finite level k. We suppose that the images Γ1 and Γ2 of Γ1

resp. Γ2 in PSU(1, 1) have a joint fixed point in D, i.e. there is a point u in D which
is fixed by a nontrivial element of Γ1 and by a nontrivial element of Γ2. For i = 1, 2,
let pi be the smallest order of a non-trivial element in Γi that has u as a fixed point.
Let p = lcm(p1, p2) be the least common multiple of p1 and p2. Furthermore we
assume that p > k. (Our construction depends on the choice of the fixed point
u ∈ D.)

The paper is organized as follows: We start in Section 2 with some general

remarks on the Lie groups SU(1, 1) and S̃U(1, 1) and their embeddings in the 4-
dimensional pseudo-Euclidean space resp. in a certain R+-bundle, the universal
cover of a positive cone in that pseudo-Riemannian space. We describe in section 3
some elements of the construction, such as affine half-spaces and their substitutes
in the R+-bundle. We also define prismatic sets Qx, certain finite intersections
of half-spaces, and study their properties. After that we are prepared to state in
section 4 our main results, Theorems A and B, and to prove them. In section 5 we
describe our explicit computations of fundamental domains for particular pairs of
discrete subgroups and give pictures of these fundamental domains.
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2. Preliminaries

We consider the 4-dimensional pseudo-Euclidean space E2,2 of signature (2, 2). We
think of E2,2 as the real vector space C

2 ∼= R
4 with the symmetric bilinear form

〈(z1, w1), (z2, w2)〉 = Re(z1z̄2 − w1w̄2).

In the pseudo-Euclidean space E2,2 we consider the quadric

G =
{
a ∈ E2,2

∣∣ 〈a, a〉 = −1
}

=
{
(z, w) ∈ E2,2

∣∣ |z|2 − |w|2 = −1
}

.

For a fixed z ∈ C the intersection

{w ∈ C
∣∣ (z, w) ∈ G} = {w ∈ C

∣∣ |w|2 = |z|2 + 1}
is the circle of radius

√
|z|2 + 1 > 1. It holds |w| > 1 for any (z, w) ∈ G. The bilin-

ear form on E2,2 induces a Lorentz metric of signature (2, 1) on G. The quadric G
is a model of the pseudo-hyperbolic space.

Furthermore we consider the cone over G

L = R+ · G = {λ · a
∣∣ λ > 0, a ∈ G}.

The cone L can be described as

L =
{
a ∈ E2,2

∣∣ 〈a, a〉 < 0
}

=
{
(z, w) ∈ E2,2

∣∣ |z| < |w|
}

.

For a fixed z ∈ C the intersection

{w ∈ C
∣∣ (z, w) ∈ L} = {w ∈ C

∣∣ |w| > |z|}
is the complement of the disc of radius |z|. It holds w 6= 0 for any (z, w) ∈ L. The
bilinear form on E2,2 induces a pseudo-Riemannian metric of signature (2, 2) on L.

We may think of L as a R+-bundle over G with radial projection θ : L → G as
bundle map. The map L → D defined by (z, w) 7→ z/w is a principal C

∗-bundle,

where the action of λ ∈ C
∗ is defined by λ · (z, w) = (λ−1z, λ−1w). Let π : G̃ → G

be the universal covering. Henceforth we identify the Lie group SU(1, 1) with G
via (

w z
z̄ w̄

)
7→ (z, w̄),

and S̃U(1, 1) with G̃. The biinvariant metrics on G and G̃ are proportional to the

Killing forms. We denote the pull-back L̃ → G̃ of the R+-bundle θ : L → G under

the covering map π : G̃ → G also by θ. The following diagram commutes

L̃
π−−−−→ L

θ

y
yθ

G̃
π−−−−→ G

G resp. G̃ is canonically embedded in L resp. L̃ and therefore there exist canonical
trivializations L ∼= G× R+ resp. L̃ ∼= G̃×R+. The covering L̃ inherits canonically
a pseudo-Riemannian metric from L.
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We now give a brief description of the full isometry group of G̃ (compare sections

2.1–2.3 in [KR85]). The product G̃ × G̃ acts on G̃ via

(g, h) · x = gxh−1

by Lorentz isometries since the metric is biinvariant. The identity component
Isom0(G̃) of the isometry group is isomorphic to (G̃ × G̃)/∆Z , where

∆Z = {(z, z)
∣∣ z ∈ Z}

and Z is the centre of G̃. The full isometry group of G̃ has four components
corresponding to time- and/or space-reversals. Let ε be the geodesic symmetry at
the identity given by g 7→ g−1 and η the lift of the conjugation by the matrix ( 0 1

1 0 )
in G fixing the identity. Then ε preserves the space-orientation and reverses the
time-orientation, while η reverses both the space- and time-orientation. Moreover,
the group Isom+(G̃) = 〈Isom0(G̃), η〉 is the full group of orientation-preserving
isometries and

Isom(G̃) = 〈Isom0(G̃), η, ε〉 ∼= Isom0(G̃)⋊(〈η〉 × 〈ε〉)

is the full isometry group of G̃.

The universal covering π : L̃ → L of

L =
{
(z, w) ∈ E2,2

∣∣ |z| < |w|
}

can also be described as

L̃ = {(z, α, r) ∈ C × R × R+

∣∣ |z| < r},
π(z, α, r) = (z, reiα).

We call the number α ∈ R the argument of the element (z, α, r) ∈ L̃.

The restriction of the covering map π : L̃ → L gives the description of the
universal covering π : G̃ → G of

G =
{
(z, w) ∈ E2,2

∣∣ |z|2 − |w|2 = −1
}

as

G̃ = {(z, α, r) ∈ C × R × R+

∣∣ |z|2 = r2 − 1},
π(z, α, r) = (z, reiα).

For (z, α, r) ∈ G̃ the positive real number r can be computed from z and α, hence

we can also identify G̃ with C × R via (z, α, r) 7→ (z, α).

The map θ : L̃ → G̃ can be described as

θ(z, α, r) =
(
λ−1z, α, λ−1r

)
with λ =

√
r2 − |z|2.
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3. The Elements of the Construction

For g ∈ G̃ let Eg resp. Ig be the connected component of π−1(Ēḡ) resp. π−1(Īḡ)
containing g, where ḡ := π(g) is the image of g in G,

Ēḡ := {a ∈ L
∣∣ 〈g, a〉 = −1} = TḡG ∩ L

is the intersection of the affine tangent space TḡG on G in the point ḡ with L and

Īḡ := {a ∈ L
∣∣ 〈g, a〉 6 −1} = T−

ḡ G ∩ L

is the intersection the half-space T−
ḡ G of C

2 bounded by Ēḡ and not containing 0

with L. Ēḡ and Īḡ are simply connected and even contractible, hence their pre-
images under the covering map π consist of infinitely many connected components,
one of them containing g.

The three-dimensional submanifold Eg subdivides L̃ in two connected compo-
nents, the closure of one of them is Ig, and we denote the closure of the other by Hg.
The boundary of Ig, resp. Hg, is equal to Eg.

As an example, for the unit elements e = (0, 0, 1) in G̃ and ē = π(e) = (0, 1)
in G, we have

Īē = {(z, w) ∈ C
2

∣∣ Re(w) > 1, |z| < |w|},
the boundary Ēē of Īē is a one-sheeted hyperboloid of revolution. The pre-image
of Īē is

π−1(Īē) = {(z, α, r) ∈ C × R × R+

∣∣ r · cosα > 1, |z| < r}.
The connected components of π−1(Īē) resp. π−1(Ēē) containing e are

Ie =

{
(z, α, r) ∈ C × R × R+

∣∣ |α| <
π

2
, r >

1

cosα
, |z| < r

}

and

Ee =

{
(z, α, r) ∈ C × R × R+

∣∣ |α| <
π

2
, r =

1

cosα
, |z| < r

}
.

The subsets Eg resp. Ig have the analogous properties because Eg = g · Ee and
Ig = g · Ie.

We make use of the following construction (compare [Mil75]). Given a base-
point x ∈ D and a real number t, let ρx(t) ∈ PSU(1, 1) denote the rotation through
angle t about the point x. Thus we obtain a homomorphism ρx : R → PSU(1, 1),

which clearly lifts to the unique homomorphism rx : R → S̃U(1, 1) into the universal
covering group. Since ρx(2π) = IdD , it follows that the lifted element rx(2π) belongs

to the central subgroup Z of S̃U(1, 1). Note that this element rx(2π) ∈ Z depends
continuously on x, and therefore is independent of the choice of x. We easily
compute r0(2t) = (0,−t, 1) and hence rx(2π) = r0(2π) = (0,−π, 1) for all x ∈ D.
Moreover we obtain

r0(2t) · (z, α, r) = (zeit, α − t, r),

(z, α, r) · r0(2t) = (ze−it, α − t, r),

(z, α, r) · r0(−2t) = (zeit, α + t, r).
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Let Γ1 and Γ2 be discrete subgroups of finite level k in S̃U(1, 1). For i = 1, 2, let
Γi be the image of Γi in PSU(1, 1). We assume the existence of a joint fixed point
u ∈ D of Γ1 and Γ2.

For i = 1, 2, the isotropy group (Γi)u of u in Γi is a finite cyclic group generated
by ρu(2π/pi), where pi = |(Γi)u|. The isotropy group (Γi)u of u in Γi is an infinite
cyclic group generated by di := ru(2ϑi), where ϑi = πk

pi

. We can assume without

loss of generality that u = 0 ∈ D. Under this assumption it follows

di = r0(2ϑi) = (0,−ϑi, 1) and di · (z, α, r) =
(
zeiϑi , α − ϑi, r

)
.

Now let us start with the construction of fundamental domains for the action of Γ1×
Γ2 on G̃. For a point x in the orbit Γ1(u) let T (x) be

T (x) = {(g1, g2) ∈ Γ1 × Γ2

∣∣ g1(u) = x}.
Let

Qx =
⋂

(g1,g2)∈T (x)

Hg1g2
.

As an example, for x = u we have that

T (u) = (Γ1)u × Γ2 = {(dm1

1 , dm2

2 )
∣∣ m1, m2 ∈ Z} = 〈(d1, e), (e, d2)〉.

The generator (d1, e) acts on G̃ by left multiplication

d1 · (z, α, r) = (zeiϑ1 , α − ϑ1, r).

The generator (e, d2) acts on G̃ by right multiplication

(z, α, r) · d−1
2 = (zeiϑ2 , α + ϑ2, r).

Let p = lcm(p1, p2) be the least common multiple of p1 and p2. Let

d = ru(2πk/p) = ru(2ϑ), where ϑ =
πk

p
.

The element d acts on G̃ by left multiplication

d · (z, α, r) = (zeiϑ, α − ϑ, r)

and it acts on the (α, r)-half-plane by the translation mapping

τ(α, r) = (α − ϑ, r).

An important assumption for the following construction is

p > k.

In terms of the element d the assumption p > k means that the argument ϑ of d is
less then π.

We have

Qu =
⋂

(g1,g2)∈T (u)

Hg1g2
=

⋂

m1,m2∈Z

Hd
m1

1
d

m2

2

=
⋂

m∈Z

Hdm ,

since 〈d1, d2〉 = 〈d〉.
What does the set

Qu =
⋂

m∈Z

Hdm



THE COMBINATORIAL GEOMETRY OF Q-GORENSTEIN SINGULARITIES 7

− 3
2ϑ −ϑ − 1

2ϑ 0 1
2ϑ ϑ 3

2ϑ α

r

Xu

∂Xu

∂Xe

.....................

.................
..

.....................

...................

Figure 1: The image Xu of Qu in the (α, r)-half-plane

look like? The image of the set He under the projection (z, α, r) 7→ (α, r) is

Xe = {(α, r) ∈ R × R+

∣∣ r · cosα 6 1 or |α| > π/2}.
The images of the sets Hdm = dm ·He under the projection (z, α, r) 7→ (α, r) are the
translates τm(Xe) of the set Xe. The manifold Qu is a disc bundle over its image
Xu =

⋂
m∈Z τm(Xe) in the (α, r)-plane. The shaded area in figure 1 is Xu. (The

real line is not part of Xu.) The subsets Qx are images of the subset Qu under the
action of the group Γ1 × Γ2. For any x ∈ Γ1(u) there is an element g ∈ Γ1 such
that g(x) = u. Then Qx = g · Qu.

The manifolds gQu play a central role in our construction. We want to explain
the geometric nature of these objects. We have described Qu as a disc bundle over
the set Xu in the (α, r)-half-plane R×R+. We may describe Qu ⊂ L̃ ⊂ C×R×R+

as

Qu = (C × Xu) ∩ L̃.

We think of Xu as a universal covering of a punctured plane polygon. Consider the
following diagram of covering maps

R × R+ −−−−→

π
′

C∗

−
−
−
−
−
−
→π

−
−
−
−
→

π
′′

C
∗

where π(α, r) = reiα, π′(α, r) = r1/keiα/k and π′′(z) = zk. We now consider the
curve π(∂Xu). It is easy to see that this is a regular star polygon

{
2p
k

}
when k is

odd and a regular star polygon
{

p
k

}
when k is even, whereby a star polygon

{
n
m

}
,

with n and m positive integers, is a figure formed by connecting with straight lines
every m-th point out of n regularly spaced points lying on a circle (see H.S.M. Cox-
eter [Cox69], §2.8, pp. 36–38).

Remark: k = 2, p1 = 5, p2 = 3, p = 15:
{

15
2

}
star polygon.

Therefore the curve π′(∂Xu) is a curvilinear 2p-gon covering the star polygon once
or twice. Let P ′ ⊂ C and P = Pu ⊂ C be the plane areas bounded by the
curvilinear polygon π′(∂Xu) and by the star polygon π(Xu). The images of Xu
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are the punctured plane polygons π′(Xu) = P ′ \ {0} and π(Xu) = P \ {0}. We
think of the product C × P ′ as a 4-dimensional 2p-gonal prism. C × Xu is the
universal covering of the pierced prism C × (P ′ \ {0}). The product C × P ⊂ C2

might be considered as a 4-dimensional “star prism”. Its axis C × {0} does not

meet L ⊂ C × C∗. Therefore the universal covering π : L̃ → L maps Qu to the
intersection of L with the star prism:

π(Qu) = L ∩ (C × Pu).

In the following lemma we prove some properties of the sets Qx. We first give
some definitions. Let s : G̃ → R+ be a section in the bundle L̃ ∼= G̃ × R+. We call
the set

{(a, λ) ∈ G̃ × R+

∣∣ λ = s(a)}
the graph of s and the set

{(a, λ) ∈ G̃ × R+

∣∣ λ 6 s(a)}
the subgraph of s.

Lemma 1. For a point x ∈ D in the orbit Γ1(u) of the point u under the action of
the group Γ1 the following holds:

(i) For any point (z, w) ∈ π(Qx)

|w| − |z| 6 |w − x̄z| 6 f(|x|),
where

f(t) :=

√
1 − t2

cos ϑ
2

.

(ii) The set Qx is a subgraph of a section in the bundle L̃ ∼= G̃ × R+, while its
boundary is the graph of this section.

Proof. Our proof is in two steps. We first check the properties of Qx in the case
x = u. In this case the properties follow from the explicit description of the set Qu.
Then we use the fact that for any x ∈ Γ1(u) there is an element g ∈ Γ1 such that
Qu = g · Qx to prove the properties of Qx for x 6= u.

Let us first describe explicitly the image Xu of the set Qu in the (α, r)-plane
R×R+. The set Xu is the shaded area in figure 1. It is a subgraph of a function R →
R+. Let us denote this function by ϕ. We now describe the function ϕ explicitly.
The function ϕ is periodic with period ϑ, hence it is sufficient to describe ϕ on
[−ϑ/2, ϑ/2]. For α ∈ [−ϑ/2, ϑ/2] it holds

ϕ(α) =
1

cosα
.

For any α ∈ R it holds

ϕ(α) 6
1

cos ϑ
2

(with equality for α = (2k + 1)ϑ/2, k ∈ Z).

Now let us verify the first assertion of the lemma. The inequality

|w| − |z| 6 |w − x̄z|
follows from |z| < |w| and |x| < 1. It remains to prove the second inequality.
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Let us verify the first assertion of the lemma in the case x = u. (Recall that we
assumed u = 0.) For x = u = 0 the second inequality in the first part of the lemma
reduces to

|w| 6
1

cos ϑ
2

for any point (z, w) ∈ π(Qu). Let us consider a point (z, w) ∈ π(Qu) and its
preimage (z, α, r) ∈ Qu. By definition of the map π it holds w = reiα. For the
point (z, α, r) ∈ Qu it holds (α, r) ∈ Xu. The set Xu is the subgraph of the
function ϕ, hence

r 6 ϕ(α) 6
1

cos ϑ
2

for any point (α, r) ∈ Xu. Hence

|w| = r 6
1

cos ϑ
2

.

Let us verify the first assertion of the lemma for any x. Let us consider a point
x ∈ Γ1(u) and an element g ∈ Γ1 such that g(x) = u. Let (a, b) ∈ G be the image
of the element g under π. The element (a, b) ∈ G corresponds to the matrix

(
b̄ a
ā b

)
∈ SU(1, 1)

and acts on D by

(a, b) · x =
b̄x + a

āx + b
.

The property (a, b) · x = u = 0 implies a = −b̄x. From (a, b) ∈ G we conclude

−1 = |a|2 − |b|2 = | − b̄x|2 − |b|2 = −|b|2 · (1 − |x|2)
and hence

|b| =
1√

1 − |x|2
.

Let us consider (z, w) ∈ π(Qx) and (z′, w′) = g · (z, w) ∈ π(Qu). On the one hand
(z′, w′) ∈ π(Qu) implies

|w′| 6
1

cos ϑ
2

.

On the other hand

|w′| = |āz + bw| = | − bx̄z + bw| =
1√

1 − |x|2
· |w − x̄z|.

Hence

|w − x̄z| 6

√
1 − |x|2
cos ϑ

2

.

Let us verify the second assertion of the lemma in the case x = u. For the set Qu

we can describe the corresponding section su : G̃ → R+ explicitly as

su(z, α, r) =
ϕ(α)

r
.
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Let us verify the second assertion of the lemma for any x. Let us consider a
point x ∈ Γ(u) and an element g ∈ Γ such that Qu = g · Qx. Then the section

sx : G̃ → R+ is given by
sx(a) = su(g · a). �

Lemma 2. The family (Qx)x∈Γ1(u) is locally finite in the sense that any point of

L̃ has a neighbourhood intersecting only finitely many prisms Qx.

Proof. We prove that the family (π(Qx))x∈Γ1(u) is locally finite (in L). This fact
implies the local finiteness of the family (Qx)x∈Γ(u), since if a subset U of L has

an empty intersection with π(Qx) then the intersection of the pre-image π−1(U)
with Qx is empty too. By lemma 1(i) for any point x ∈ Γ1(u) and any point
(z, w) ∈ π(Qx) the difference |w| − |z| is bounded from above by f(|x|). The
values f(t) tend to zero as t tends to 1. Choosing a point (z0, w0) ∈ L and a positive
number ε < |w0| − |z0|, the neighbourhood U := {(w, z) ∈ L

∣∣ |w| − |z| > ε} of the
point (z0, w0) can intersect π(Qx) only for |x| sufficiently small (so that f(|x|) > ε).
But the group Γ1 is discrete, so there are only finitely many points x in Γ(u) with
norm |x| under a given bound. This finishes the proof. �

Remark. This property of Qx allows us to deal with P = ∪Qx in a similar way as
with a finite union of polytopes.

Lemma 3. The family (Eg ∩ Qg(u))g∈Γ1
is locally finite.

Proof. This is immediate from the local finiteness of the family (Qx)x∈Γ1(u) plus
the easy observation that the family (Eg ∩ Qg(u))g∈(Γ1)u

is locally finite. �

We consider in L̃ the four-dimensional polytope

P :=
⋃

x∈Γ1(u)

Qx =
⋃

x∈Γ1(u)

⋂

g∈T (x)

Hg.

Lemma 4. The projection ∂P → G̃ is a Γ1 × Γ2-equivariant homeomorphism.

Proof. From lemma 1(ii) we know that the set Qx is a subgraph of a section in the

bundle L̃ ∼= G̃×R+. A union of a locally finite family of subgraphs of sections in L̃ is

again a subgraph of a section in L̃. To see this, let us first consider the following toy
version of this statement: A union of subgraphs of functions f1, . . . , fk : R → R+

is again a subgraph of a function f : R → R+, where f = max(f1, . . . , fk). This is
clear in the toy case and generalizes to the case of a locally finite family of subgraphs
of sections in L̃. Thus the polyhedron P = ∪Qx is a subgraph of a section in the
bundle L̃ ∼= G̃ × R+ as a union of a locally finite family of subgraphs. But for

a subgraph of a section in the bundle L̃ it is clear that the bundle map L̃ → G̃
induces a homeomorphism from its boundary (equal to the graph of the section)

onto G̃. This homeomorphism is Γ1 × Γ2-equivariant since the projection L̃ → G̃
is Γ1 × Γ2-equivariant. �

4. The Main Results

Now we can state the main result

Theorem A. The boundary of P is invariant with respect to the action of Γ1×Γ2.
The subset

Fg = Cl∂P (Int(∂Hg ∩ ∂P ))
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is a fundamental domain for the action of Γ1 × Γ2 on ∂P . The family

(Fg1g2
)g1∈Γ1,g2∈Γ2

is locally finite in ∂P . The projection L̃ → G̃ induces a Γ1 × Γ2-equivariant home-
omorphism

∂P → G̃.

The image Fg of Fg under the projection is a fundamental domain for the action

of Γ1 ×Γ2 on G̃. The family (Fg1g2
)g1∈Γ1,g2∈Γ2

is locally finite. For every elements
g1, h1 ∈ Γ1, g2, h2 ∈ Γ2 with g1g2 6= h1h2 the intersection Fg1g2

∩ Fh1h2
lies in a

totally geodesic submanifold of G̃.

Remark. In this section all closures are taken in ∂P . We use the shorthand Cl
instead of Cl∂P .

Lemma 5. Let X be a topological space. Let A and B be closed subsets of X. Then

(i) IntCl IntA = IntA,
(ii) IntA ∩ Cl IntB 6= ∅ ⇒ Int(A ∩ B) 6= ∅.

Lemma 6.

IntFg = Int(Eg ∩ ∂P ) and Cl IntFg = Fg.

Proof. The assertions follow from Lemma 5(i) with A = Eg ∩ ∂P . �

Proof. To prove that Fg is a fundamental domain we have to prove two properties.
The first property is that the images of Fg have no common inner points, i.e.
the intersection Int(Fg) ∩ Fh is empty if g 6= h. The second property is that
Cl(∪g∈Γ IntFg) = ∂P , i.e. roughly speaking the images of Fg cover the whole
space ∂P .

Let us first prove that the intersection Int(Fg)∩Fh is empty if g 6= h. Suppose on
the contrary that there are elements g, h ∈ Γ such that g 6= h and Int(Fg)∩Fh 6= ∅.
Let us consider the closed subsets A = Eg ∩ ∂P and B = Eh ∩ ∂P . By Lemma 6
it holds Int(Fg) = IntA, hence the assumption Int(Fg) ∩ Fh 6= ∅ can be rewritten
as IntA ∩ Cl IntB 6= ∅. From Lemma 5(ii) it follows that Int(A ∩ B) 6= ∅. This
means that the set Int(Eg ∩ Eh ∩ ∂P ) is not empty. But since the totally geodesic
submanifolds Eg and Eh intersect transversally, the intersection Eg ∩ Eh has no
inner points in ∂P .

Since Fg ⊂ Eg ∩ Qg(u) lemma 3 implies that the family (Fg)g∈Γ is locally finite

in ∂P . Lemma 4 says that the projection ∂P → G̃ is a Γ-equivariant homeomor-
phism.

Now let us prove the property Cl(∪g∈Γ IntFg) = ∂P . Since

Cl
( ⋃

g∈Γ

IntFg

)
⊃

⋃

g∈Γ

Cl IntFg =
⋃

g∈Γ

Fg

(where the last equality holds by Lemma 6), it suffices to prove that ∪g∈ΓFg = ∂P .
Consider a ∈ ∂P . From the definition of P and local finiteness (according to
Lemma 3) of the family (Eg ∩ Qg(u))g∈Γ it follows that in some neighbourhood
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of the point a only finitely many elements of Γ are relevant, i.e. there exists a
neighbourhood U of the point a in L̃ and elements g1, . . . , gn ∈ Γ such that

∂P ∩ U =

n⋃

i=1

(Egi
∩ ∂P ∩ U).

We may assume without loss of generality that the map π|U : U → π(U) is a
homeomorphism. The image of P ∩U under this homeomorphism is an intersection
of an open subset of L with a finite union of finite intersections of half-spaces Hg

with the property a ∈ ∂Hg. Suppose that a 6∈ Cl Int(Egi
∩ ∂P ) = Fgi

for all
i ∈ {1, . . . , n}. This is only possible if for each i ∈ {1, . . . , n} the set Egi

∩ ∂P ∩ U

is contained in a 2-dimensional submanifold of L̃. Thus ∂P ∩U is contained in the
union of finitely many 2-dimensional submanifolds. On the other hand it follows
from lemma 4 that ∂P is homeomorphic to a 3-dimensional manifold G̃. This
contradiction implies that a ∈ Fg for some g ∈ Γ. �

Lemma 7. The boundary ∂P of P = ∪x∈Γ(u)Qx can be described as follows

∂P = ∂
( ⋃

x∈Γ(u)

Qx

)
=

( ⋃

x∈Γ(u)

∂Qx

)
\
( ⋃

x∈Γ(u)

IntQx

)
.

This means that a point p is in the boundary of P if and only if p is not an interior
point of any Qx with x ∈ Γ(u) and p is a boundary point of Qx for some x ∈ Γ(u).

Proof. From lemma 1(ii) we know that the set Qx is a subgraph of a section sx in

the bundle L̃ ∼= G̃ × R+

Qx = {(a, λ) ∈ G̃ × R+

∣∣ λ 6 sx(a)}.
The set P = ∪Qx is the subgraph of the section sP = max sx. (In this proof
max means maxx∈Γ(u), ∪ means ∪x∈Γ(u), ∃x means ∃x ∈ Γ(u) and so on.) This
property would be obvious for a finite union of subgraphs. Using local finiteness
(according to Lemma 2) we prove that this property also holds for P . But for a
subgraph

X = {(a, λ) ∈ G̃ × R+

∣∣ λ 6 s(a)}
of a section s in the bundle L̃ it is clear that (a, λ) ∈ ∂X if and only if λ = s(a).
Hence

(a, λ) ∈ ∂P ⇐⇒ λ = sP (a).

By definition of sP

λ = sP (a) ⇐⇒ (∃x λ = sx(a)) and (∀x λ > sx(a)).

On the other hand

(a, λ) ∈ ∪ ∂Qx ⇐⇒ ∃x λ = sx(a),

(a, λ) 6∈ ∪ IntQx ⇐⇒ ∀x λ > sx(a).

�

Lemma 8. IntFe ⊂ ∂Qu.

Proof. By Lemma 6 it holds IntFe = Int(Ee ∩ ∂P ). Suppose that there is a point
a ∈ IntFe = Int(Ee ∩ ∂P ) such that a 6∈ ∂Qu. Since a ∈ ∂P and a 6∈ ∂Qu

there exists x ∈ Γ(u)\{u} such that a ∈ ∂Qx. Then any neighbourhood of a

intersects Ee ∩ IntQx ⊂ Ee\∂P . The projection θ : L̃ → G̃ is continuous and the
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restriction θ|∂P : ∂P → G̃ is a homeomorphism, therefore any neighbourhood of a
intersects ((θ|∂P )−1◦θ)(Ee\∂P )) ⊂ ∂P\Ee. This implies a 6∈ Int(Ee∩∂P ) = IntFe.
Contradiction. �

Proposition 9.

Fe = Cl Int


(Ee ∩ ∂Qu) − (

⋃

x∈Γ(u)\{u}

IntQx)


 .

Proof. Let F̂ := (Ee∩∂Qu)−(∪x∈Γ(u)\{u} IntQx). We claim that Fe and F̂ coincide

up to the boundary, i.e. IntFe = Int F̂ . To prove this we show the inclusions
IntFe ⊂ Int F̂ and Int F̂ ⊂ IntFe. We first prove that IntFe ⊂ Int F̂ . To that
end we show that IntFe ⊂ F̂ . Then Int IntFe ⊂ Int F̂ and IntFe = Int IntFe

imply IntFe ⊂ Int F̂ . To see that IntFe is contained in F̂ we have to show (by

definition of F̂ ) that IntFe is contained in Ee, in ∂Qu, and does not intersect IntQx

for all x ∈ Γ(u)\{u}. By definition of Fe it holds IntFe ⊂ Ee. By Lemma 8 it
holds IntFe ⊂ ∂Qu. Finally for any x ∈ Γ(u)\{u} it holds Fe ∩ IntQx = ∅

because of the fact that Fe is contained in ∂P , and ∂P ∩ IntQx = ∅ by Lemma 7.
This implies IntFe ⊂ F̂ and therefore IntFe ⊂ Int F̂ . We now have to prove the
inclusion Int F̂ ⊂ IntFe. From the definition of F̂ it follows that F̂ ⊂ Ee. Moreover
F̂ ⊂ ∂Qu ⊂ (∪x∈Γ(u)∂Qx) and F̂∩(∪x∈Γ(u)\{u} IntQx) = ∅ imply by Lemma 7 that

F̂ ⊂ ∂P . Now from F̂ ⊂ Ee∩∂P it follows that Int F̂ ⊂ Int(Ee∩∂P ) = IntFe, where
the last equality holds by Lemma 6. We now have proved both inclusions, i.e. we
know that Int F̂ = IntFe. From this it follows that Cl Int F̂ = Cl IntFe = Fe. �

Lemma 10. If Γ is co-compact, then Fg is compact.

Proof. Consider a sequence ak in IntFg. Let ϕ be the composition of the projection

maps ∂P → G̃ and G̃ → G̃/Γ. Since the quotient G̃/Γ is compact we may assume

without loss of generality that the sequence ϕ(ak) tends to a limit ā ∈ G̃/Γ. Since ϕ
is surjective there exists a pre-image a ∈ ∂P of ā under ϕ. Hence there is a
sequence hk in Γ such that the sequence hkak tends to a. Since the family (Fg)g∈Γ

is locally finite there exists a neighbourhood U of a that intersects only finitely many
fundamental domains Fg. Therefore the set {hk|k ∈ N} is finite. After choosing a
subsequence we may assume that the sequence hk is constant, say hk = h. Then
the sequence hak tends to a, hence the sequence ak tends to h−1a. This implies
h−1a ∈ Fg. �

Theorem B. If Γ is co-compact then Fg is a compact polyhedron, i.e. a finite
union of finite compact intersections of half-spaces Ia.

Proof. The family (Qx)x∈Γ(u) is locally finite and the fundamental domain Fe is
compact by lemma 10. From this it follows that there is a finite subset E ⊂ Γ(u)
such that Fe ∩ Qx = ∅ for all x ∈ Γ(u)\E. By proposition 8 this implies the
assertion. �

5. Examples

We have computed the fundamental domains explicitly for those infinite series
of pairs of discrete subgroups which correspond via the construction described
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in [Pra06] to certain series of Q-Gorenstein quasi-homogeneous surface singulari-

ties. In particular the quotient of S̃U(1, 1) by one of the corresponding group action
is diffeomorphic to the link of the corresponding quasi-homogeneous singularity.

A discrete co-compact subgroup Γ of level k in S̃U(1, 1) such that the im-
age in PSU(1, 1) is a triangle group with signature (α1, α2, α3) will be denoted
by Γ(α1, α2, α3)

k.

The following figures show some of the explicitly computed fundamental do-
mains.

Some explanations are required to make the figures of fundamental domains
comprehensible. The image π(Fe) of the fundamental domain Fe is a compact
polyhedron in su(1, 1) with flat faces. The Lie algebra su(1, 1) is a 3-dimensional flat
Lorentz space of signature (n+, n−) = (2, 1). Such a polyhedron has a distinguished
rotational axis of symmetry. The direction of this axis is negative definite, and the
orthogonal complement is positive definite. Changing the sign of the pseudo-metric
in the direction of the rotational axis transforms Lorentz space into a well-defined
Euclidean space. The image π(Fe) of the fundamental domain is then transformed
into a polyhedron in Euclidean space with dihedral symmetry. Figures 2, 4 and 6
show the Euclidean polyhedra obtained in this way in the cases Γ(5, 3, 3)2 × (C3)

2,
Γ(7, 3, 3)2 × (C3)

2 and Γ(9, 3, 3)2 × (C3)
2. The direction of the rotational axis is

vertical. The top and bottom faces are removed.

The polyhedra in figures 2, 4 and 6 are all scaled by the same factor to illustrate
the proportions between different fundamental domains.

Figures 3, 5, 7, 8 illustrate the identification schemes for the cases Γ(5, 3, 3)2 ×
(C3)

2, Γ(7, 3, 3)2× (C3)
2 and Γ(9, 3, 3)2× (C3)

2. The face identification is equivari-
ant with respect to the dihedral symmetry of the polyhedron. The faces labeled
with the same letter and shaded in the same way are identified. Numbers on the
edges of shaded faces indicate the identified flags (face, edge, vertex).
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Figure 6: Fundamental domain for Γ(9, 3, 3)2 × (C3)
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Figure 7: Identification scheme for Γ(9, 3, 3)2 × (C3)
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Figure 8: Identification scheme for Γ(9, 3, 3)2 × (C3)
2


