
THE COMBINATORIAL GEOMETRY OF SINGULARITIESAND ARNOLD'S SERIES E, Z, QEGBERT BRIESKORN, ANNA PRATOUSSEVITCH, AND FRANK ROTHENH�AUSLERTo Vladimir Igorevi
h ArnoldWith a�e
tion and admirationEtenim 
um multae �gurae solidae, quae varias super�
ieshabeant, 
ogitatione �ngi possint, imprimis tamenrespi
iendae sunt eae quae ordinatae esse videntur.Pappus of Alexandria, Colle
tion v. 2, ed. Hults
h 353, 7{9Abstra
t. We 
onsider dis
rete subgroups � of the simply 
onne
ted Liegroup fSU(1; 1) of �nite level. This Lie group has the stru
ture of a 3-dimen-sional Lorentz manifold 
oming from the Killing form. � a
ts on fSU(1; 1) byleft translations. We want to des
ribe the Lorentz spa
e form �nfSU(1; 1) by
onstru
ting a fundamental domain F for �. We want F to be a polyhedronwith totally geodesi
 fa
es. We 
onstru
t su
h F for all � satisfying the fol-lowing 
ondition: The image �� of � in PSU(1; 1) has a �xed point u in theunit disk of order larger than the level of �. The 
onstru
tion depends on �and �u.For 
o-
ompa
t � the Lorentz spa
e form �nfSU(1; 1) is the link of a quasi-homogeneous Gorenstein singularity. The quasi-homogeneous singularities ofArnold's series E, Z, Q are of this type. We 
ompute the fundamental domainsfor the 
orresponding group. They are represented by polyhedra in Lorentz3-spa
e shown on tables 1{13. Ea
h series exhibits a regular 
hara
teristi
pattern of its 
ombinatorial geometry related to 
lassi
al uniform polyhedra.1. Introdu
tion1.1 Between 1972 and 1976 Vladimir Igorevi
h Arnold published a very impor-tant series of arti
les on the 
lassi�
ation of singularities of fun
tions. The seriesbegan with a beautiful paper in Funk
ional~ny� analiz i ego prilo�eni� en-titled Normal forms of fun
tions near degenerate 
riti
al points, the Weyl groupsof Ak; Dk; Ek and Lagrangian singularities, [1℄. In this paper Arnold introdu
edthe notion of a simple singularity. A simple singularity is one whi
h does not havemoduli. It has a normal form not involving any 
ontinuous parameters. The mainresult of the paper was the 
lassi�
ation of all simple singularities of fun
tions. TheDate: August 7, 2002.2000 Mathemati
s Subje
t Classi�
ation. Primary 53C50; Se
ondary 14J17, 20H10, 30F35,30F60,32G15, 32S25, 51M20, 52B10.Key words and phrases. Lorentz spa
e form, polyhedral fundamental domain, quasihomoge-neous singularity, Arnold singularity series.This resear
h was partially supported by the Graduiertenkolleg Mathematik in Bonn, �nan
edby DFG. 1



2 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLER
lassi�
ation was given in the form of a 
omplete list of normal forms as follows:Ak : f = �xk+11 � x22 +Q; k > 1;Dk : f = x21x2 � xk�12 +Q; k > 4;E6 : f = x31 � x42 +Q;E7 : f = x31 + x1x32 +Q;E8 : f = x31 + x52 +Q:where Q is a standard nondegenerate quadrati
 form in the remaining variablesx3; : : : ; xn. These are real normal forms. In the 
omplex analyti
 
ase one 
anignore the signs, so that there is just one normal form for ea
h type Ak , Dk, Ek.At the time when Arnold published this list of normal forms for the simple sin-gularities whi
h he had just introdu
ed in 1972, these forms, or at least some ofthem, were exa
tly 100 years old. They �rst o

ur in a paper by H. A. S
hwarzwhi
h appeared in 1872 in Crelles Journal [82℄. The title was: Ueber diejenigenF�alle, in wel
hen die Gaussis
he hypergeometris
he Reihe eine algebrais
he Fun
-tion ihres vierten Elementes darstellt. The problem indi
ated in the title and solvedby S
hwarz goes ba
k to Riemann. In a manus
ript about minimal surfa
es writ-ten around 1860 and published in 1867 after Riemann's death, Riemann not onlypointed to the relevan
e of the problem, but also indi
ated how to solve the analyti
problem by means of geometry, [77℄, p. 296. The quotient s = y1=y2 of two linearlyindependent solutions of a hypergeometri
 di�erential equation de�nes a multival-ued map from the Riemann sphere to the Riemann sphere. The upper half-planeis mapped to a spheri
al triangle. Its angles are �(1� 
), �(a+ b� 
) and �(a� b),where a, b and 
 are the parameters of the hypergeometri
 di�erential equation.The lower half-plane is mapped to a re
e
ted triangle, and the whole range of thefun
tion s is 
overed by the triangles obtained by iterated re
e
tions, whi
h arepermuted by the monodromy group of the di�erential equation.The fun
tion s is algebrai
 if and only if this 
overing is �nite. The interesting
ases where this o

urs are those where the triangles are bounded by symmetryplanes of a regular polyhedron ins
ribed in the sphere. We 
onsider the 
ase wherethey are fundamental triangles for the full symmetry group. So they are spheri
altriangles with angles �=p, �=q, �=r, where (p; q; r) equals (2; 3; 3), (2; 3; 4) and(2; 3; 5) for the tetrahedron, o
tahedron and i
osahedron respe
tively.The inverse map from the triangle to the half-plane is des
ribed by a rationalfun
tion of s invariant under the triangle group of orientation preserving symme-tries. There are three natural relative invariants of this group, namely the polynomi-als whose zeroes are the orbit of a vertex of the triangle. In 
ase of the i
osahedron,these are absolute invariants. In view of their degree, S
hwarz denotes them by'12, '20 and '30. There is a basi
 relation between these three invariants, writtenby S
hwarz in the following form:['20(s)℄3 � 43 � 33 � ['12(s)℄5 = ['30(s)℄2:This is essentially the equation of the E8-singularity of Arnold's list for the 
ase ofthree variables, and we see that from the very beginning there was a 
lose relationbetween these singularities and the symmetry of regular polyhedra.1.2 In the next years, the subje
t was 
arried on by Felix Klein in a series of arti
lesand in his famous book Vorlesungen �uber das Ikosaeder, whi
h appeared in 1884.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 3There is a very ni
e new edition of this book with an introdu
tion and 
ommentariesby Peter Slodowy [51℄. Klein 
onsidered not only the symmetry groups of theregular polyhedra, but also the 
orresponding binary polyhedral groups obtained bypassing from PSU(2) to its universal 
over SU(2). The �nite subgroups of SU(2) arethe 
y
li
 groups, the binary dihedral groups and the binary tetrahedral, o
tahedraland i
osahedral groups T, O and I. In Chapter III, x 1 of his book Klein determinedthe polynomials in two variables invariant under these groups. He found that forany of these groups �, the ring of invariant polynomials C [u; v℄� is of the formC [x; y; z℄=(f). The polynomial f des
ribing the basi
 relation between the threegenerators x, y, z is exa
tly one of Arnold's list, or it is easily transformed intoone of Arnold's normal forms for n = 3. The 
orresponden
e is as follows: 
y
li
groups 
orrespond to Ak , binary dihedral groups to Dk, and binary tetrahedral,o
tahedral and i
osahedral groups T, O, I to E6, E7, E8.Klein's result was redis
overed around 1960 as a result of an ex
hange of ideasbetween Friedri
h Hirzebru
h and Patri
k DuVal, see [28℄. In geometri
 terms itmeans that the aÆne algebrai
 surfa
e des
ribed by the equation f(x; y; z) = 0 isthe quotient surfa
e C 2=�.1.3 Therefore, the link of the singular point of this surfa
e has the stru
ture of the3-dimensional spheri
al spa
e form �n SU(2) = �nS3, where we identify SU(2) withthe group S3 of unit quaternions. It is natural to des
ribe these spheri
al spa
eforms by means of a fundamental domain for � a
ting on S3 by left translations.This has been done by Seifert and Threlfall in a paper [87℄ on 3-dimensional spher-i
al spa
e forms published in two parts in 1930 and 1932. Perhaps the simplestway of stating their result would be to say that the Diri
hlet 
ell of the unit ele-ment of � � S3 is a fundamental domain for �. It is a spheri
al polyhedron withtotally geodesi
 fa
es whi
h Seifert and Threlfall determine expli
itly for ea
h ofthe groups �. However, this way of stating the result does not suggest how to passfrom the spheri
al geometry of SU(2) to the Lorentz geometry of SU(1; 1), and italso does not do justi
e to the beautiful 
lassi
al geometry of the spheri
al 
ase.Re
all that in the years 1850{1852 Ludwig S
hl�a
i wrote a most remarkabletreatise entitled Theorie der vielfa
hen Kontinuit�at whi
h, alas, was published onlysix years after his death in 1901, [81℄. In se
tion 17 of that treatise S
hl�a
i 
lassi�edthe 4-dimensional regular 
onvex polytopes. There are six of them. Their S
hl�a
isymbols are: (3; 3; 3); (3; 3; 4); (4; 3; 3);(3; 4; 3); (3; 3; 5); (5; 3; 3):The �rst three of them are the analogues of the tetrahedron, o
tahedron and 
ube,whi
h exist in every dimension. The other three are parti
ular for dimension 4.Two of them, (3; 3; 5) and (5; 3; 3) may be seen as analogues of the i
osahedron anddode
ahedron. Their maximal fa
es are as follows: (3; 3; 5) has 600 tetrahedra, and(5; 3; 3) has 120 dode
ahedra. They are dual to ea
h other.For (3; 4; 3) and (3; 3; 5) the verti
es 
an be taken to be the elements of one ofthe �nite groups � � S3. The polytope (3; 4; 3) has vertex set T, and (3; 3; 5) hasvertex set I. The dual 
ir
ums
ribed polytopes of type (3; 4; 3) and (5; 3; 3) have Tand I as sets of 
entres of their o
tahedral and dode
ahedral fa
es. Thus it is 
learthat by 
entral proje
tion onto S3 we get a tiling of S3 by Diri
hlet 
ells whi
h arespheri
al o
tahedra or dode
ahedra.



4 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERIn order to deal with the binary o
tahedral groupO we have to 
onsider not onlyregular, but also semi-regular polytopes, in the same way as Greek mathemati
ianslike Pappus of Alexandria admitted not only Platoni
, but also Ar
himedian solids.Their generalization to higher dimensions may be de�ned as follows. A 
onvexpolytope is uniform, if it satis�es the following two 
onditions:(a) The symmetry group a
ts transitively on the set of verti
es.(b) All fa
ets are uniform.To start the indu
tion, one has to say what (b) means for the lowest dimensions:a 
onvex polygon is uniform if it is regular. Some authors 
all uniform polytopessynonymously Ar
himedian. In dimension 3 the uniform 
onvex polytopes are the5 Platoni
 solids, the 13 Ar
himedian solids and the regular prisms and anti-prismsadded to this list by Johannes Kepler in his wonderful book Harmoni
e mundi[49℄, p. 73. In dimensions larger than 4, there is no 
omplete 
lassi�
ation. Indimension 4 the uniform 
onvex polytopes were enumerated by J. H. Conway in jointwork with M. T. J. Guy [20℄. Most of them 
an be obtained by applying Wytho�'s
onstru
tion to the 4-dimensional re
e
tion groups as des
ribed by H. S. M. Coxeter[21℄, [22℄. In parti
ular, this applies to the 
onvex polytope with verti
es O. It isobtained by mutual trun
ation from the two 24-
ells of type (3; 4; 3) whose verti
esare the two 
osets of T in O. Here are the Wytho� 
onstru
tions for the threeAr
himedian solids with vertex sets T, O and I:......................................................................................................................................................................................................................� � � �4
T (3; 4; 3);......................................................................................................................................................................................................................� � � �4
 
O t1;2(3; 4; 3);......................................................................................................................................................................................................................� � � �5
I (3; 3; 5):The maximal fa
es of t1;2(3; 4; 3) are Ar
himedian polyhedra obtained from a 
ube,trun
ated by an o
tahedron. Their fa
es are regular o
tagons and triangles. Thethree Ar
himedian polyhedra belonging to I, O and T, i.e. to E8, E7, E6 areshown in the left 
olumn of Table 1. The other �gures of that table indi
ate whatwe intend to show in this paper.We intend to show that the tilings of the spheri
al spa
e SU(2) 
oming from thethree Ar
himedian polytopes des
ribed above are at the root of three in�nite seriesof tilings of the Lorentz manifold fSU(1; 1) related to Arnold's series E, Z, Q.1.4 The idea to try something of this kind o

urred to one of us many years ago.In 1974 the beautiful results of Arnold and his students were to be presented atthe ICM in Van
ouver, [4℄. Sin
e Arnold was not allowed to travel for politi
alreasons, the task of presenting his work fell to E. Brieskorn. Sin
e that time,Arnold's dis
overies have been a sour
e of inspiration for him and his students and
oworkers as well as many other mathemati
ians.Let us very brie
y re
all some of the results presented in Van
ouver. For details,we have to refer to the series of three arti
les in Uspehi matematiqeskih nauk[3℄, [5℄, [6℄, whi
h also show the ri
h mathemati
al 
ontext in whi
h this work hasevolved. Some part of the history pre
eding Arnold's work, espe
ially the establish-ment of the relation between the simple singularities and the simple 
omplex Liegroups of type Ak, Dk, E6, E7, E8 has been des
ribed in [18℄. For further reading



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 5on this subje
t, we refer to the literature quoted in Peter Slodowy's foreword tothe new edition of the le
tures on the i
osahedron and to [19℄. We also refer toArnold's arti
le in Inventiones [7℄ and to the two books [8℄, [10℄.Arnold 
lassi�ed singularities of fun
tions up to right equivalen
e, and termssu
h as number of moduli , 0-modular or 1-modular refer to 
lasses in this sense.Arnold found that the 
lassi�
ation of singularities with a small number of moduliis \ni
e". This applies in parti
ular to the 0-modular and 1-modular singularities,where several possible aspe
ts 
ontribute to the impression that we understandthese 
lasses of singularities. One of these aspe
ts is the arithmeti
 of the quadrati
form of the Milnor �bres asso
iated to these singularities. The Milnor �bration of a
omplex hypersurfa
e singularity is an important part of the di�erential topology ofsu
h singularities. It was introdu
ed by John Milnor in 1966 and published in [55℄in the 
ourse of developments des
ribed in [18℄. Another aspe
t refers to waysof generating or 
onstru
ting the singularities. It turned out that all the 0- and1-modular singularities whi
h Arnold found by analyzing the de�ning polynomialforms have 
onstru
tions involving dis
rete groups of transformations of 
omplex
urves and surfa
es. It is this relation to beautiful 
lassi
al mathemati
s whi
hArnold must have had in mind when, after des
ribing the relation between Platoni
solids, simple Lie groups and simple singularities, he wrote in [4℄:As we will see now, the 
lassi�
ation of more and 
omplex singularitiesprovides new wonderful 
oin
iden
es, where Lobat
hevski triangles and au-tomorphi
 forms take part.Arnold's 
lassi�
ation of 0- and 1-modular singularities is summarized in the fol-lowing theorem.Theorem.(1) The 0-modular singularities are the simple singularities Ak, k > 1 and Dk,k > 4 and E6, E7, E8.(2) The 1-modular singularities are (up to stable equivalen
e) those listed below:(a) The simply ellipti
 singularities ~E6, ~E7, ~E8.(b) The 
usp singularities Tp;q;r, 1=p+ 1=q + 1=r < 1.(
) The fourteen ex
eptional one parameter families E12, E13, E14, Z11,Z12, Z13, Q10, Q11,Q12, S11, S12, W12, W13, U12.Arnold des
ribes these singularities by normal forms of the 
orresponding fun
tions.The normal forms of the 0-modular singularities and of the 1-modular singularitiesof type (a) are quasi-homogeneous. Those of type (b) are not quasi-homogeneous.The normal forms of type (
) are semi-quasihomogeneous. They are forms f =g+ah, where g is quasi-homogeneous of a 
ertain integral weight d, h is a monomialof weight d+ 2 and a is a real or 
omplex parameter. Thus ea
h of the 14 families
ontains exa
tly one quasi-homogeneous singularity, the one with a = 0.Note that for some singularities we use symbols di�erent from those originallyintrodu
ed by Arnold. For the simply ellipti
 ones we use the symbols ~E6, ~E7, ~E8introdu
ed 1974 by K. Saito in [80℄. Arnold's symbols are T3;3;3, T2;4;4, T2;3;6 orP8, X9, J10. Our ex
eptional E12, E13, E14 were originally denoted by K12, K13,K14, but in 1975 Arnold adopted himself the new notation E12, E13, E14. Forthe singularities whi
h Arnold denotes by Jk;0 we shall use Ek;0, be
ause our workshows that they �t into the E-series in the same way as Zk;0 �ts into the Z-seriesand Qk;0 into the Q-series.



6 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERThe distin
tion between the various 
ases in the theorem above is re
e
ted byproperties of the quadrati
 form on the se
ond homology group of the Milnor �breof the 
orresponding 
omplex surfa
e singularity. Let � be the rank of the latti
e,i.e. the Milnor number. One has � = �+ + �� + �0, where �0 is the rank of theradi
al and �+ the rank of a maximal positive de�nite sublatti
e. The result ofwork of several authors as summarized by Arnold is as follows.Theorem. Complex surfa
es of embedding dimension 3 with �+ + �0 6 2 are
lassi�ed as follows.(1) Those with (�+; �0) = (0; 0) are the simple singularities.(2a) Those with (�+; �0) = (0; 2) are the simply ellipti
 singularities.(2b) Those with (�+; �0) = (1; 1) are the 
usps Tp;q;r.(2
) Those with (�+; �0) = (2; 0) and number of moduli equal to 1 are the 14ex
eptional 1-modular singularities.G. N. Tjurina and V. I. Arnold 
alled these singularities in 
ase (1) ellipti
, in
ase (2a) paraboli
 and in 
ase (2b) hyperboli
.1.5 The signature (�+; ��; �0) des
ribes only the real quadrati
 form. A
tuallymu
h more 
an be said about the Milnor latti
es of these singularities. A. M. Ga-brielov has des
ribed distinguished bases of vanishing 
y
les for these singularities[40℄, [41℄. They may be 
hara
terized by a triple of integers whi
h Arnold 
alledGabrielov numbers. From the arithmeti
 point of view, a very thorough inves-tigation of these latti
es was 
arried out by one of us in [17℄, supplemented byB. Stoppok [85℄. This was 
losely related to a des
ription of the base spa
e of thesemi-universal unfolding of ex
eptional 1-modular singularities in terms of arith-meti
 quotients of bounded symmetri
 domains [16℄.These investigations gave us reasons to fo
us on a parti
ular part of the deforma-tion hierar
hy of 1-modular singularities, whi
h was 
alled \boundary layer" in [16℄.Today we see this as a layer of transition from spheri
al to Lorentz geometry. If weadd the ellipti
 singularities, we get the following pattern of 12 singularities:E12 Z11 Q10 ex
eptional layer,T2;3;7 T2;4;5 T3;3;4 hyperboli
 layer,~E8 ~E7 ~E6 paraboli
 layer,E8 E7 E6 ellipti
 layer.The singularities of the three unimodular layers may be 
hara
terized as follows:(a) Every non-simple singularity deforms into a singularity of theparaboli
 layer.(b) Every non-simple non-paraboli
 singularity deforms into a sin-gularity of the hyperboli
 layer.(
) Every non-simple, non-paraboli
, non-hyperboli
 singularitydeforms into a singularity of the ex
eptional layer.The deformation relations of singularities above the boundary layer are very 
om-pli
ated, also with respe
t to singularities in the boundary layer and below [12℄,[13℄, [15℄, [42℄. But within the boundary layer the situation is simple: the onlydeformation relations are those of going downward in the verti
al 
olumns. Wetake this as an indi
ation that these three \stems" with \roots" in E8, E7, E6 and
ontinuation by Arnold's series E, Z, Q are very parti
ular obje
ts whi
h deservespe
ial attention.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 71.6 In 1973, Arnold had published the 
lassi�
ation of unimodal 
riti
al points offun
tions [2℄. Some of his normal forms for the ex
eptional 1-modular singularitieshave a long history. The form for E12 o

urs already in 1878 in Klein's paper �Uberdie Transformationen siebenter Ordnung der elliptis
hen Funktionen [50℄ p. 652.The equation for E13 o

urs in Vorlesungen �uber die Theorie der automorphenFun
tionen by Fri
ke and Klein, [38℄, volume II, p. 652 and is related to the simplegroup of order 360, [36℄. The equation for E14 was found in 1880 by Klein's studentW. Dy
k in his dissertation, [30℄, [29℄.The normal form of Arnold for the quasi-homogeneous singularity E12 in threevariables is x3 + y7 + z2:Mathemati
al obje
ts related to this form were important as examples pre
eding thedevelopment of a general theory of automorphi
 fun
tions by Klein and Poin
ar�e.The same obje
ts have been the starting point of the work of I. V. Dolga
hev towhi
h Arnold was referring when he spoke about the wonderful 
oin
iden
es withLobat
hevsky triangles and automorphi
 fun
tions.We 
onsider PSU(1; 1) as group of automorphisms of the unit disk D . In this 3-dimensional Lie group, we 
onsider dis
rete 
o-
ompa
t subgroups �. In parti
ular,we 
onsider triangle groups �(p; q; r) belonging to hyperboli
 triangles with angles�p ; �q and �r ; where 1p + 1q + 1r < 1:The smallest triangle is the one with (p; q; r) = (2; 3; 7). In � = �(2; 3; 7) thereis a unique largest normal subgroup �0. For a suitable representation of � as anarithmeti
 group, the group �0 
an be des
ribed as a 
ertain 
ongruen
e subgroup.The quotient �=�0 is the simple group G168 of order 168. This is the se
ond smallestsimple group of 
omposite order. It 
omes next after the i
osahedral group G60.There are isomorphisms G60 �= PSL(2; F 5) and G168 �= PSL(2; F 7). The analogybetween these two 
ases has been noted by Klein.The group �0 a
ts on D without �xed points. It has a fundamental domain whi
his a regular hyperboli
 14-gon 
onsisting of 2 � 168 hyperboli
 triangles with angles�=2, �=3, �=7. This is the Haupt�gur of Felix Klein [50℄, p. 126. The surfa
e �0nDis a Riemann surfa
e of genus g = 3 with an automorphism group of the maximalpossible order 84(g � 1).The surfa
e X = �0nD is non-hyperellipti
 of genus g > 2. Therefore it has a
anoni
al embedding X � C Pg�1 into the proje
tive spa
e whi
h belongs to thespa
e C g dual to the spa
e of holomorphi
 1-forms. This 
anoni
al 
urve in C P2is the Klein quarti
 given by the homogeneous equationx30x1 + x31x2 + x32x0 = 0:The �nite group G168 a
ts linearly on the spa
e of holomorphi
 1-forms. Thereforeit a
ts on C 3 and on C P2 leaving invariant X � C P2 and the 
one CX � C 3.Cal
ulations of invariants by Klein and Gordan imply:�C [x0; x1; x2℄=(x30x1 + x31x2 + x32x0)�G168 �= C [x; y; z℄Æ(x3 + y7 + z2):This algebrai
 result 
an be interpreted geometri
ally as follows: The aÆne alge-brai
 surfa
e de�ned by the equationx3 + y7 + z2 = 0



8 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERis the quotient of the 
one CX over the 
anoni
al 
urveX by the groupG168 = �=�0.This was generalized in 1974 by I. V. Dolga
hev [23℄. Dolga
hev introdu
ed thenotion of a quotient-
oni
al singularity. Let X � C Pn�1 be a smooth proje
tivelynormal 
urve. This means that the 
one CX � C n over C is a normal aÆne surfa
ewith an isolated singular point. Let G � GL(n; C ) be a �nite group leaving CXinvariant. The singularity of the quotient surfa
e CX=G 
orresponding to the vertexof the 
one is 
alled a quotient-
oni
al singularity. If X � C Pg�1 is a 
anoni
al
urve and G a subgroup of Aut(X), the resulting quotient 
oni
al singularity is
alled 
anoni
al of type (X;G).For any hyperboli
 triangle group � one 
an �nd normal subgroups �0 a
tingfreely on D , Menni
ke [54℄. Dolga
hev proved that the 
anoni
al quotient 
oni
alsingularity of type (�0nD;�=�0) depends only on �. So there is a unique 
anoni
altriangle singularity for ea
h hyperboli
 triangle group �. Dolga
hev 
hara
terizedthese triangle singularities by their resolution graph. He proved the following the-orem.Theorem. There are exa
tly 14 
anoni
al triangle singularities whi
h 
an be em-bedded in C 3. They are the 
omplex surfa
e singularities 
orresponding to the 141-modular ex
eptional quasi-homogeneous normal forms of Arnold.We note in passing that most of these triangles o

ur in the work of Fri
ke andKlein when they des
ribe arithmeti
 triangle groups. A 
omplete enumeration ofall arithmeti
 triangle groups was given by K. Takeu
hi [86℄.1.7 The results whi
h we are going to present in this paper are to be seen withinthe 
ontext des
ribed in this introdu
tion.In se
tion 2 we re
all work of Dolga
hev des
ribing the links of all Gorensteinquasi-homogeneous surfa
e singularities as quotients �nG of a 3-dimensional simply
onne
ted Lie groupG by a dis
rete 
o-
ompa
t subgroup. The groupsG that o

urare SU(2), fSU(1; 1) and the Heisenberg group. We des
ribe the groups � � fSU(1; 1)
orresponding to Arnold's singularities Ek, Zk, Qk and E3;0, Z1;0, Q2;0.In se
tion 3 we 
onsider more generally dis
rete subgroups � � fSU(1; 1) of�nite level. The level is the index of � \ Z in the 
entre Z of fSU(1; 1). Dis
rete
o-
ompa
t subgroups are of �nite level by a general result of Andr�e Weil [92℄on dis
rete 
o-
ompa
t subgroups of 
onne
ted semi-simple Lie groups without
ompa
t 
omponents. We des
ribe a 
onstru
tion of fundamental domains for alldis
rete subgroups of �nite level with a �xed point in D of order larger than thelevel. This fundamental domain is a polyhedron in the Lorentz manifold fSU(1; 1)with totally geodesi
 fa
es. It is modeled on a polyhedron in Lorentz 3-spa
e.In se
tion 4 these fundamental domains are determined expli
itely for the in�niteseries Ek, Zk, Qk.Se
tion 5 is devoted to the des
ription of fundamental domains for E3;0, Z1;0,Q2;0. Although these 
ases have been analyzed 
ompletely, we 
annot present alldetails in this exposition.Se
tion 6 des
ribes fundamental domains for the subgroups � of the Heisenberggroup 
orresponding to ~E6, ~E7, ~E8.The results are illustrated by tables 1{13. Tables 5{8 
orrespond to se
tion 4,tables 9{12 to se
tion 5 and table 13 to se
tion 6. Tables 1{4 o�er a synopsis of thedi�erent 
ases. They reveal a 
oherent 
ombinatorial pattern for ea
h of Arnold'sseries E, Z, Q united with the three stems of the boundary layer. In parti
ular



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 9table 1 shows the transition from the 
lassi
al ellipti
 layer to the ex
eptional layervia the paraboli
 layer. The tables show that the polyhedra in Lorentz 3-spa
ewhi
h we 
onstru
t are true analogues of the three 
lassi
al uniform polyhedra inEu
lidean 3-spa
e whi
h belong to the binary groups T, O, I of the tetrahedron,o
tahedron and i
osahedron.1.8 The work presented in this paper has evolved during a period of more than 12years. It began with the thesis of Thomas Fis
her [35℄. Fis
her found the beautiful
onstru
tion of fundamental domains for 
anoni
al quotient-
oni
 singularities and
al
ulated the �rst three 
ases E12, Z11, Q10. His work was 
arried on by A. K�ass,U. Neus
h�afer, F. Rothenh�ausler and S. S
heidt [48℄. Up to now their joint paperwith L. Balke [11℄ published in Topology has been the only publi
ation on this kindof work whi
h has appeared in a journal. Further progress was made in [74℄ by these
ond author. At last, the �nal 
onstru
tion presented in se
tion 3 was found byA. Pratoussevit
h [75℄. The analysis of Ek , Zk, Qk in se
tion 4 is also her work.The analysis of E3;0, Z1;0, Q2;0 in se
tion 5 is the work of F. Rothenh�ausler [78℄.The observations on ~E6, ~E7, ~E8 are due to E. Brieskorn and were made many yearsago in dis
ussions with Thomas Fis
her.We wish to thank Ludwig Balke and Claus Hertling for dis
ussions with themon our work in progress. We would like to thank Ilya Dogolazky for his help inprodu
ing the �gures. We also thank the referee for pointing out that any latti
e ina semi-simple Lie group without 
ompa
t fa
tors interse
ts its 
enter in a subgroupof �nite index.2. Link spa
es of quasi-homogeneous singularities2.1 Let R be the ring C [x1; : : : ; xn℄ of polynomials in n variables with 
omplex
oeÆ
ients. Let q = (q1; : : : ; qn) be a system of n positive integers, 
alled weights.Then R is a positively graded C -algebra Rq if we de�ne xi to be homogeneous ofdegree qi. A monomial xi11 � � �xinn has degree d = i1q1 + � � �+ inqn. The monomialsof degree d form a basis for the ve
tor spa
e Rd of homogeneous polynomials ofdegree d. This terminology is used in 
ommutative algebra. When we deal withsingularities, we have to 
onsider many di�erent systems of weights. We shall then
all su
h polynomials quasi-homogeneous or weighted homogeneous of degree d withweights (q1; : : : ; qn).An ideal I � Rq is homogeneous if it is generated by homogeneous elements. AnaÆne algebrai
 variety V � C n is quasi-homogeneous with weights (q1; : : : ; qn) if itsde�ning ideal I in Rq is homogeneous. Its aÆne 
oordinate ring Rq=I is a �nitelygenerated positively graded C -algebra.To a system of weights we asso
iate a C �-a
tion on C n:t(z1; : : : ; zn) := (tq1z; : : : ; tqnzn):A variety V � C n is invariant with respe
t to this a
tion i� the de�ning ideal inRq is homogeneous. There is a 
ontravariant equivalen
e between 
omplex aÆnealgebrai
 varieties with good C �-a
tion and �nitely generated positively gradedC -algebras.Let (X; x) be a 
omplex analyti
 singularity, i.e. the germ of a 
omplex spa
eX at a point x. We 
all (X; x) quasi-homogeneous if there is an isomorphism(X; x) �= (V; 0), where V � C n is an aÆne variety whi
h is quasi-homogeneous forsome system of weights and 0 2 C n is the origin. There may be several possible
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quasi-homogeneoussingularities

algebrai
geometry
di�erentialgeometry

topology ofmanifoldsSeifert�brespa
es
automorphi
formsLie groupsand dis
retesubgroups

..................................... ............................................................................................................... ..........................................................................................................................................................................................................................
..................................... .....................................
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..........................................................................................................................................................................................................................Figure 1: Quasi-homogeneous singularities in mathemati
ssystems of weights. However, the following result about uniqueness was proved bySaito [79℄. Let (X; x) be an isolated quasi-homogeneous hypersurfa
e singularityand (X; x) �= (V; 0), where (V; 0) is an aÆne hypersurfa
e de�ned by a quasi-homogeneous polynomial of degree d with weights q1; : : : ; qn. The weights 
an be
hosen so that (qi; d) = 1 and 2qi 6 d. Then up to permutations the weights areuniquely determined.2.2 Quasi-homogeneous singularities are interesting obje
ts. Two-dimensional qua-sihomogeneous singularities are even more interesting, be
ause they are at the 
en-tre of a net of relations between di�erent �elds of mathemati
s, as shown by �gure 1.We 
annot explain all relations between these �elds, but we want to mention thosewhi
h pla
e our work in its proper 
ontext.The relations between automorphi
 forms, algebrai
 geometry and the theory ofinvariants existed from the beginning of the theory of automorphi
 fun
tions andare obvious in the writings of Fri
ke and Klein, [37℄, [38℄, [52℄.The relation between algebrai
 geometry and the topology of manifolds whi
h wehave in mind is also very old. It goes ba
k to the turn of the 
entury around 1900.The relation is established as follows. Let V � C n be an m-dimensional 
omplexalgebrai
 variety with an isolated singularity at the origin. Let B2n" be the 2n-ballof radius " with 
entre 0. The boundary of the ball is a (2n � 1)-sphere S2n�1" .Consider the interse
tionsV" = V \B2n" and M" = V \ S2n�1" :For " suÆ
iently small M" is a 
ompa
t oriented di�erentiable manifold of dimen-sion 2m � 1 smoothly embedded in S2n�1" . The di�eomorphism type of the pair(S2n�1" ;M2m�1" ), " small, depends only on the singularity (V; 0). Moreover, there isa homeomorphism between the pair (B"; V") and the pair (B"; CM"), where CM"is the 
one over M" with vertex 0. When V is analyti
ally irredu
ible at 0, M"is 
onne
ted. Otherwise, it will have several 
omponents whi
h may be linked.Therefore, the boundary M" of the neighbourhood V" of 0 is also 
alled the link ofthe singularity (V; 0).
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omplex dimension 1 and 2 these 
onstru
tions go ba
k toW. Wirtinger, P. Heegard and H. Tietze and are 
losely related to the early historyof knot theory, M. Epple [34℄, 
hapter 8. Around 1960 work of D. Mumford [63℄ andF. Hirzebru
h [47℄ showed that there is a 
lose link between singularities of 
om-plex surfa
es and the topology of 3-manifolds established by the link 
onstru
tion.Further developments des
ribed in [18℄ led to interesting relations between links ofhigher dimensional quasi-homogeneous singularities and di�erential topology [14℄,[47℄, [55℄, [44℄. For example 
onsider the link M2n�3 of the quasi-homogeneousaÆne hypersurfa
e singularity given by the E8-equationx31 + x52 + x23 + � � �+ x2n = 0:The 
urve M1 � S3 is the (3; 5)-torus knot. M3 � S5 is the link of the i
osahedralsingularity. So M3 is the spheri
al dode
ahedral spa
e obtained from a spheri
aldode
ahedron by identifying opposite fa
es by a s
rew motion with angle �=5, andsoM3 
an be identi�ed with the famous Poin
ar�e homology sphere, [91℄. For n = 4,the link spa
e M5 is a knotted 5-sphere in S7. Finally, the link spa
e M7 in S9is the exoti
 7-sphere of Milnor, whi
h Hirzebru
h 
onstru
ted as boundary of an8-manifold obtained by glueing 8 
opies of the tangent dis
 bundle of S4 a

ordingto the Coxeter-Dynkin diagram E8.The results mentioned above led to investigations on the topology of quasi-homogeneous singularities su
h as [44℄, [57℄, [56℄, [65℄, [68℄, [88℄. At the same time,together with other developments, they led to the �rst systemati
 treatment ofquasi-homogeneous surfa
e singularities as obje
ts of algebrai
 geometry by P. Orlikand Ph. Wagrei
h [72℄, [71℄.2.3 The links of quasi-homogeneous singularities 
arry additional stru
tures. Onestru
ture is obvious. When M is the link of an isolated singularity of a quasi-homogeneous variety V with good C � a
tion, this a
tion indu
es an a
tion ofS1 � C � on M . A 
losely related stru
ture is the orbit de
omposition of M as-so
iated to the a
tion of S1. This is a �bration of M by 
ir
les whi
h may haveex
eptional �bres, if the a
tion of S1 has nontrivial isotropy groups. Su
h �brationsare 
alled Seifert �bre spa
es, sin
e they were �rst studied in 1933 by H. Seifert as anadditional stru
ture on 3-manifolds [83℄. Sin
e then this extra stru
ture was used asa 
ondition whi
h makes the topology of 3-manifolds more a

essible. Around 1967investigations on the topology of Seifert �bre spa
es su
h as [70℄ and 
losely relatedwork on S1-a
tions on 3-manifolds su
h as [69℄ merged with the new results quotedabove and led to systemati
 investigations on quasi-homogeneous singularities.2.4 Two-dimensional quasi-homogeneous singularities are parti
ular be
ause the
orresponding graded aÆne 
oordinate rings 
an be identi�ed with graded rings ofgeneralized automorphi
 forms. This was found in 1975{1977 by Dolga
hev, Milnor,Neumann and Pinkham, [24℄, [25℄, [56℄, [65℄, [73℄. Let us re
all their results.De�nition. A negative unrami�ed automorphy fa
tor (U;L; ��) is a 
omplex linebundle L on the simply 
onne
ted Riemann surfa
e U , U = C P1 or C or D , togetherwith a dis
rete 
o-
ompa
t subgroup �� � Aut(U) a
ting 
ompatibly on U and theline bundle L, su
h that the following two 
onditions are satis�ed:(i) The a
tion of �� is free on L0, the 
omplement of the zero-se
tion of L.



12 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLER(ii) Let ��0 / �� be a normal subgroup of �nite index whi
h a
ts freely on U , andlet L0 ! Y be the 
omplex line bundle L0 = ��0nL over the 
ompa
t Riemannsurfa
e Y = ��0nU . Then L0 is a negative line bundle.Sin
e L0 is negative, one 
an 
ontra
t the zero-se
tion of L0 and get a 
omplexsurfa
e with an isolated singularity 
orresponding to the zero-se
tion. There isa 
anoni
al a
tion of the �nite group ��=��0 on this surfa
e. The quotient is a
omplex surfa
e X(L; ��) with an isolated singular point 0, whi
h depends only onthe automorphy fa
tor (U;L; ��).Theorem. The surfa
e X(L; ��) asso
iated to a negative unrami�ed automorphyfa
tor (U;L; ��) is a quasi-homogeneous aÆne algebrai
 surfa
e with a normal iso-lated singularity. Its aÆne 
oordinate ring is the graded C -algebra of generalized��-invariant automorphi
 formsA = Mm>0H0(U;L�m)��:All normal isolated quasi-homogeneous surfa
e singularities (X; x) are obtained inthis way, and the automorphy fa
tors with (X(L; ��); 0) isomorphi
 to (X; x) areuniquely determined by (X; x) up to isomorphism.2.5 In a sense it is an abuse of language to 
all an element of H0(U;L�m)�� a gen-eralized automorphi
 form. It is an automorphi
 form of integral weight m inthe 
lassi
al sense when U = D and L = TD , the tangent bundle of D , on whi
h�� � Aut(D ) a
ts in the 
anoni
al way. As a generalization whi
h is 
loser to the
lassi
al 
ase one may introdu
e automorphi
 forms with fra
tional weight. Thiswas done by Milnor in [56℄. An elegant way of de�ning su
h forms is the followingde�nition of Dolga
hev [27℄.De�nition. A Gorenstein automorphy fa
tor is an unrami�ed negative automor-phy fa
tor (U;L; ��) su
h that there is an integer k and an isomorphism of ��-bundlesLk and TU , where TU is the tangent bundle of U . Moreover, for U = C the group�� must be 
ontained in the translation subgroup of Aut(C ). The integer k is 
alledthe exponent or the level of the automorphy fa
tor.Possible values of the exponent are k = �1 or �2 for U = C P1, whereas k = 0 forU = C and k > 0 for U = D .The name Gorenstein for these automorphy fa
tors was 
hosen be
ause of theirrelation with Gorenstein singularities. A Gorenstein singularity is a singularitywhose lo
al ring is a Gorenstein lo
al ring. We shall not give the de�nitions of thisnotion 
oming from 
ommutative algebra. Instead, we give the de�nition used byDolga
hev. An isolated singularity of dimension n is a Gorenstein singularity if itslo
al ring is a Cohen-Ma
aulay ring and if there is a nowhere vanishing holomorphi
n-form on a pun
tured neighbourhood of x. All isolated singularities of 
ompleteinterse
tions are Gorenstein singularities. In parti
ular, the theory applies to thesurfa
es in C 3 whi
h we are going to study. In [27℄ Dolga
hev proved the followingtheorem obtained independently by W. Neumann (see also [26℄).Theorem. The quasi-homogeneous surfa
e singularity (X(L; ��); 0) asso
iated toa negative unrami�ed automorphy fa
tor (U;L; ��) is a Gorenstein singularity i�(U;L; ��) is a Gorenstein automorphy fa
tor.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 132.6 The next problem is to determine the Gorenstein automorphy fa
tors for agiven ��, if they exist. The following proposition proved in [74℄ is an answer for �� �Aut(D ).Theorem. Let �� � PSU(1; 1) be a dis
rete 
o-
ompa
t subgroup with signature(g;�1; : : : ; �r). Let b = 2(g � 1) + r. There exists a Gorenstein automorphy fa
tor(D ; L; ��) of level k > 0 i� k satis�es the following divisibility 
onditions:(i) (k; �i) = 1 for all i = 1; : : : ; r;(ii) k divides [�1; : : : ; �r℄ � (b� rXi=1 ��1i ).If these 
onditions are satis�ed, there exist exa
tly k2g Gorenstein automorphy fa
-tors for ��. In parti
ular, there is a unique one if g = 0.2.7 The aÆne 
oordinate ring of a quasi-homogeneous aÆne algebrai
 surfa
e hastwo alternative des
riptions. On one hand it is a graded C -algebra R=I , where R isa polynomial ring and I an ideal generated by quasi-homogeneous polynomials with
ertain degrees for a given system of weights (q1; : : : ; qn). On the other hand, it is agraded C -algebra of automorphi
 forms for a 
ertain dis
rete group �� with a 
ertainsignature (g;�1; : : : ; �r). Comparison of these two des
riptions leads to relationsbetween the two sets of data. Su
h arguments were used by Ph. Wagrei
h andother authors to des
ribe and 
lassify 
ertain algebras of automorphi
 forms withfew generators, [84℄, [89℄, [90℄. Re
ently K. M�ohring has used similar arguments andK. Saito's paper [79℄ for proving a theorem whi
h allows to 
al
ulate the signatureand the level of the Gorenstein automorphy fa
tors from the weights and degreefor all isolated quasi-homogeneous surfa
e singularities of embedding dimension 3.Theorem. Let V � C 3 be a quasi-homogeneous aÆne surfa
e with an isolated sin-gularity. Let (q1; q2; q3) be the weights and d the degree of a polynomial de�ning V .Let k be the level and (g;�1; : : : ; �r) be the signature of the Gorenstein automorphyfa
tor asso
iated to V . These data are related as follows.(1) k = d� q1 � q2 � q3,(2) f�1; : : : ; �rg is 
ontained in the union of the two disjoint sets fqi j qi - dg andf(qi; qj) 6= 1 j i < jg. The �s in the �rst set o

ur with multipli
ity one. The�s in the se
ond set o

ur with multipli
ity mij , where mij + 1 is the numberof solutions of the equation xqi + yqj = d by nonnegative integers x, y.(3) The genus g is determined by the relationq1q2q3 � �2g � 2 + r � rXi=1 ��1i � = k � d:Remark. Put "i = 0 if qi j d and "i = 1 otherwise. Then M�ohring proves:mij = (d� "iqj � "jqi)Æ[qi; qj ℄:2.8 Using his theorem quoted in 2.7 M�ohring has 
al
ulated the exponents andsignatures of the automorphy fa
tors for all quasi-homogeneous polynomials in threevariables in the well-known 
lasses I{VII. In parti
ular, table 19 in [58℄ gives thesedata for Arnold's series E, Z, Q, W , S, U . The results for E, Z, Q are as follows.Theorem. The Gorenstein automorphy fa
tors (U;L; ��) for the series E, Z, Qare of hyperboli
 type, i.e. U = D and �� � PSU(1; 1). Let k be the exponent and(g;�1; : : : ; �r) the signature of ��. These data are given in the following two tables.



14 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERIn the �rst table the signature is given by (�1; �2; �3), sin
e r = 3 and g = 0 forall En, Zn, Qn. Type n mod 4 k (�1; �2; �3)0 (n� 10)=2 (2; 3; k + 6)En 2 (n� 10)=4 (3; 3; k + 3)1; 3 (n� 10)=3 (2; 4; k + 4)3 (n� 9)=2 (2; 3; 2k + 6)Zn 1 (n� 9)=4 (3; 3; 2k + 3)0; 2 (n� 9)=3 (2; 4; 2k + 4)2 (n� 8)=2 (2; 3; 3k + 6)Qn 0 (n� 8)=4 (3; 3; 3k + 3)1; 3 (n� 8)=3 (2; 4; 3k + 4)Type n mod 2 k (g;�1; : : : ; �r)En;0 1 n� 2 (0; 2; 2; 2; n)0 (n� 2)=2 (1;n=2)Zn;0 1 n (0; 2; 2; 2; 2(n+ 1))0 n=2 (1;n+ 1)Qn;0 0 n� 1 (0; 2; 2; 2; 3n� 1)1 (n� 1)=2 (1; (3n� 1)=2)The groups whi
h belong to En, Zn, Qn are triangle groups �(�1; �2; �3). They willbe investigated in se
tion 4. The groups for E3;0, Z1;0 and Q2;0 are the \quadranglegroups" �(2; 2; 2; p), where p = 3; 4; 5. They will be the subje
t of se
tion 5.2.9 Dolga
hev's paper [27℄ shows how to pass from Gorenstein automorphy fa
tors(U;L; ��) to quotients ~�nG of 3-dimensional Lie groups G by dis
rete 
o-
ompa
tsubgroups ~�. This is done 
ase by 
ase for U = C P1, C and D . We re
all thearguments for the 
ase U = D .(1) The universal 
overing group fSU(1; 1) of PSU(1; 1) has an in�nite 
y
li

entre Z. For ea
h natural number k there is a unique 
y
li
 
overingGk ! G1 of G1 = PSU(1; 1) de�ned by Gk = fSU(1; 1)=kZ.(2) For any 
omplex line bundle and any natural number k there is a 
anoni
alrami�ed 
overing map L! Lk de�ned by v 7! v
� � �
v. The restri
tion tothe 
omplements of the 0-se
tions is a 
y
li
 unrami�ed 
overingL0 ! Lk0 ofdegree k. Let Lk have a hermitian metri
. Then there is a hermitian metri
on L, su
h that we get an unrami�ed 
overing map for the 
orrespondingunit 
ir
le bundles: SL �! SLk:(3) The group G1 = Aut(D ) a
ts 
anoni
ally on the 
ir
le bundle STD of unittangent ve
tors in the tangent bundle TD . The a
tion is simply transitive.Choosing a basepoint v0 2 TD ;0 we get a G1-invariant bije
tion G1 !STD , where G1 a
ts on itself by left translations. This is an S1-bundleisomorphism, whereG1 is �bred by the 
osets of the isotropy group of 0 2 D .



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 15(4) Now let (D ; L; ��) be a Gorenstein automorphy fa
tor of level k. Then thereis a ��-equivariant bundle isomorphism Lk �= TD . This indu
es a hermitianmetri
 on Lk and a ��-equivariant isomorphism of S1-bundles STD �= SLk.Altogether we get a ��-invariant isomorphism of S1-bundles ' : G1 ! SLk.This 
an be lifted to the k-fold 
y
li
 
overings:Gk ����! SL����! ����!G1 ����!' SLkThe bije
tion  is determined up to multipli
ation with a root of unity. Sowe get a well de�ned a
tion of �� on Gk 
overing the a
tion of �� on G1 by lefttranslation. The ��-orbit of the unit element in Gk is a dis
rete 
o-
ompa
tsubgroup ~� of Gk. The 
overing map ~�! �� is an isomorphism identifyingthe a
tions of ~� and �� on Gk, where ~� a
ts by left multipli
ation. We 
all~� a lifting of ��.This leads to the following theorem proved by Dolga
hev in [27℄ (see also the relatedearlier results of J. Milnor [56℄, W. Neumann [65℄, [66℄, and F. Raymond andA. T. Vasqez [76℄ quoted by Dolga
hev).Theorem. To every Gorenstein automorphy fa
tor (D ; L; ��) of level k 
orrespondsa lifting ~� � Gk of �� � G1. The link of the Gorenstein quasi-homogeneous surfa
esingularity (X(L; ��); 0) identi�es with ~�nGk. Conversely every lifting ~� � Gkof �� � G1 gives rise to a Gorenstein automorphy fa
tor (D ; L; ��) of level k.The dis
rete groups ~� � Gk obtained as liftings of dis
rete 
o-
ompa
t groups in G1are those dis
rete 
o-
ompa
t subgroups of Gk whi
h do not interse
t the 
entreof Gk. We may also des
ribe them as follows. Let � � fSU(1; 1) be a dis
rete
o-
ompa
t subgroup of level k. The image ~� of � in Gk is a lifting of the image ��of � in G1. Therefore we may rephrase the results quoted above as follows.Corollary. The links of quasi-homogeneous Gorenstein surfa
e singularities of hy-perboli
 type identify with quotient spa
es �nfSU(1; 1), where � is a dis
rete 
o-
ompa
t subgroup in the simply 
onne
ted 3-dimensional Lie group fSU(1; 1).By \hyperboli
 type" we mean that the singularity 
omes from an automorphyfa
tor (D ; L; ��) for the hyperboli
 plane D .2.10 In view of the results quoted above it is interesting to dis
uss the relationsbetween quasi-homogeneous singularities and di�erential geometry. The links ofquasi-homogeneous surfa
e singularities may be given di�erent kinds of geometri
stru
tures.One stru
ture that always exists on links of isolated singularities is the CR-stru
-ture obtained immediately from the 
onstru
tion of the link. This CR-stru
turedetermines the 
omplex analyti
 singularity. 3-dimensional 
ompa
t lo
ally homo-geneous nondegenerate CR-manifolds (i.e. CR-spa
e forms) have been 
lassi�edby F. Ehlers, J. S
herk and W. D. Neumann [33℄. They also 
lassi�ed the normal
omplex surfa
e singularities whose link is a CR-spa
e form: Dolga
hev's quasi-homogeneous Gorenstein singularities, 
usp singularities, and quotients of them byinvolutions.



16 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERAnother possibility is to ask for a geometri
 stru
ture on the link of a surfa
e sin-gularity in the sense that it should 
arry a lo
ally homogeneous Riemannian metri
.This leads to the well-known 8 geometries of Thurston. W. Neumann has dis
ussedthe question whi
h of these geometri
 stru
tures o

ur on links of surfa
e singu-larities [67℄. In parti
ular he proved the following theorem. We 
onsider a 
losedorientable 3-manifoldM endowed with a geometri
 stru
ture whi
h admits a Seifert�bration with negative Euler number, and we ex
lude lens spa
es. Then there is aone-to-one 
orresponden
e between isometry 
lasses of su
h stru
tures on M andbiholomorphi
 equivalen
e 
lasses of quasi-homogeneous surfa
e singularities withlink homeomorphi
 to M .For Gorenstein quasi-homogeneous singularities there is a third possibility. In thehyperboli
 
ase their links identify with quotients �nfSU(1; 1), and so they areLorentz spa
e forms. Here we do not restri
t the notion of spa
e form to Rie-mannian spa
e forms. A spa
e form is any 
omplete pseudo-Riemannian manifoldwith 
onstant 
urvature. The group fSU(1; 1) has a Lorentz metri
 of 
onstant
urvature 
oming from the Killing form. So the links of quasi-homogeneous Goren-stein surfa
e singularities are 
losed 3-dimensional Lorentz spa
e forms. Closed3-dimensional Lorentz spa
e forms have been 
hara
terized by R. S. Kulkarni andF. Raymond [53℄. Su
h spa
e forms are orientable Seifert �bre spa
es with hyper-boli
 base and nonzero Euler number. Of 
ourse, the relation with Seifert �brationsis very important. However, we want to plead for another perspe
tive whi
h hasa long tradition in the 
ase of spheri
al and hyperboli
 spa
e forms, but has notbeen explored in the realm of Lorentz spa
e forms. We propose to represent su
hspa
e forms �nfSU(1; 1) by 
onstru
ting a polyhedral totally geodesi
 fundamentaldomain F for � in the Lorentz manifold fSU(1; 1) together with the 
orrespondingpairing of fa
es. The 
onstru
tion given in se
tion 3 shows that this is possible, andthe examples analyzed in se
tion 4 and 5 show that this 
ombination of di�erentialand 
ombinatorial geometry reveals subtle features of the theory of representationsof dis
rete groups in fSU(1; 1) and is related to the stru
ture of series of singularitiesas de�ned by Arnold.3. The 
onstru
tion of fundamental domains3.1 In this se
tion we shall 
onstru
t fundamental domains for a large 
lass ofdis
rete subgroups � of fSU(1; 1). The Lorentz geometry of fSU(1; 1) is not as simpleas the spheri
al geometry of SU(2). Therefore, the 
onstru
tion 
annot be as simpleas in the spheri
al 
ase. So the beautiful 
onstru
tion of fundamental domains forsubgroups of level 1 dis
overed by Thomas Fis
her was something really new. Weshall generalize this 
onstru
tion to subgroups of fSU(1; 1) of any �nite level k.There is one feature of Fis
her's 
onstru
tion whi
h is similar to the 
onstru
tionin the spheri
al 
ase as presented in se
tion 1.2. The spheri
al fundamental domainswere not 
onstru
ted dire
tly in the 3-sphere SU(2). They were obtained from a4-dimensional polytope 
onstru
ted in the ambient Eu
lidean 4-spa
e. The bound-ary of this polytope was proje
ted onto the sphere by 
entral proje
tion from theorigin, where we view Eu
lidean 4-spa
e as a 
one over SU(2) with vertex at theorigin. In Fis
her's 
onstru
tion SU(1; 1) is embedded as a Lorentz manifold ina 4-dimensional linear spa
e with a 
at pseudo-metri
 of signature (2; 2). Fis
her
onstru
ts a 4-dimensional polytope in the 
one over SU(1; 1). The boundary of
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ted onto SU(1; 1), and the fundamental domains are the pro-je
tions of the fa
es. The new idea of Fis
her was the remarkable 
onstru
tion ofthe 4-dimensional polytope.Sin
e we want to generalize the 
onstru
tion to arbitrary levels, we pass to theuniversal 
over. This will be done in se
tions 3.2 to 3.4 for SU(1; 1) as well as its
one. Se
tions 3.5 to 3.6 
ontain some elements of the 
onstru
tion. Finally the
onstru
tion itself is presented in 3.7 and visualized in 3.8.3.2 We 
onsider the 
omplex ve
tor spa
e C 2 with the standard hermitian formof signature (1; 1). The real part is a symmetri
 real bilinear form of signature(n+; n�) = (2; 2). The asso
iated quadrati
 form isq(z1; z2) = z1�z1 � z2�z2:The group SU(1; 1) a
ts on C 2 preserving q. The a
tion is free on the 
omplementof the isotropi
 
one. Let L0 be the 
omponent 
ontaining v0 = (0; 1), i.e.L0 = �(z1; z2) 2 C 2 j z1�z1 < z2�z2	:There is a 
anoni
al bije
tive map from SU(1; 1) to its orbitG = SU(1; 1)v0 = �(z1; z2) 2 C 2 j z1�z1 � z2�z2 = �1	 � L0:The spa
e G with the pseudo-metri
 indu
ed from the pseudo-metri
 on C 2 is a
omplete homogeneous Lorentz manifold of signature (n+; n�) = (2; 1) with 
on-stant 
urvature �1, in other words G is a pseudo-hyperboli
 spa
e. The mapSU(1; 1) ! G is equivariant with respe
t to the a
tion of SU(1; 1) on G and thea
tion on itself by left translation. The pseudo-metri
 indu
ed on SU(1; 1) agreeswith the biinvariant metri
 de�ned by the Killing form up to multipli
ation with as
alar fa
tor 8. Hen
eforth we identify SU(1; 1) with G.The group SU(1; 1) a
ts on the hermitian hyperboli
 spa
e D by fra
tional lineartransformations z 7�! az + b
z + d ;where � a b
 d � is a matrix in SU(1; 1), i.e. 
 = �b, a = �d and ad� b
 = 1. The isotropygroup of 0 2 D is S�U(1)�U(1)�. We denote the 
orresponding group in G by H .Then we have 
anoni
al identi�
ations of homogeneous spa
esSU(1; 1)ÆS�U(1)� U(1)� = G=H = D ;where the map G ! G=H is given by (z1; z2) 7! z1=z2. There is a 
orrespondingmap on L0 de�ned by (z1; z2) 7! z1=z2L0 �! D :This is a prin
ipal C �-bundle, where the a
tion of � 2 C � is de�ned by�(z1; z2) := (��1z1; ��1z2):The asso
iated 
omplex line bundle is denoted byL �! D :The group SU(1; 1) a
ts on this bundle. In order to identify the a
tion, we trivializeL mapping L0 to D � C � by (z1; z2) 7! (z1z�12 ; z�12 ). This indu
es the followinga
tion of SU(1; 1) on D � C �:(z; v) 7�! �az + b
z + d ; 1
z + dv� :



18 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERThis identi�es the line bundle L2 as the 
omplex tangent bundle TD of the hermitiansymmetri
 spa
e D . The a
tion of SU(1; 1) indu
es the 
anoni
al a
tion of Aut(D ) =PSU(1; 1) on TD . The a
tion of PSU(1; 1) on the hermitian line bundle TD is simplytransitive on the unit 
ir
le bundle STD . Choosing a base point we may identifyPSU(1; 1) with STD . The double 
overing SU(1; 1) is identi�ed with the 
ir
lebundle G � L0 � L. We may view G as the boundary of a disk bundle in L whi
h isa neighbourhood of the zero se
tion. This is the reason why the lo
ally homogeneousspa
es �nfSU(1; 1) are links of quasi-homogeneous Gorenstein singularities. For aGorenstein automorphy fa
tor (D ; L; ��) of level 1 or 2, the pun
tured singularityX(L; ��)r f0g equals ~�nL0, where ~� � SU(1; 1) is a lifting of �� for level 2, and theinverse image of �� for level 1. Note that we have a 
ommutative diagram of mapsL0 ����! ������!'G ����!� DThe map ' is the prin
ipal C �-bundle des
ribed above, � is the restri
tion of ' toG � L0 and  is the 
entral proje
tion given by (z1; z2) = �(z2�z2 � z1�z1)� 12 z1; (z2�z2 � z1�z1)� 12 z2�:The C �-a
tion on L0 indu
es a
tions of R+ � C � on L0 and of S1 � C � on G, sothat  is a prin
ipal R+-bundle and � is a prin
ipal S1-bundle.3.3 Now we shall 
onsider universal 
overings. In view of the identi�
ation ofSU(1; 1) with G � L0, the universal 
overing fSU(1; 1) ! SU(1; 1) identi�es withthe universal 
overing ~G ! G. Denote by ~L0 the indu
ed R+-bundle over ~G. Wehave a 
ommutative diagram ~L0 ����!� L0~ ����! ����!  ~G ����!�0 GThe maps ~ and  are the proje
tion maps of R+-bundles, and � and �0 areuniversal 
overing maps. ~L0 inherits a pseudo-Riemannian metri
 of signature(n+; n�) = (2; 2) from L0. Both bundles have 
anoni
al se
tions ~G � L0 and~G � ~L0. So we might des
ribe them by a 
anoni
al trivialization.However, we �nd it more 
onvenient to work with another des
ription of ~L0obtained as follows. L0 is 
ontained in�(z1; z2) j z2 6= 0	 = C � C �:We may view L0 as a bundle of pun
tured dis
s imbedded in the C �-bundle de�nedby the proje
tion m on the �rst fa
tor. Consider the universal 
overing � : C �R �R+ ! C � C � de�ned by (z; �; r) 7! (z; rei�). The inverse image of L0 identi�eswith the universal 
overing � : ~L0 ! L0, where~L0 = �(z; �; r) 2 C � R � R+ j jzj < r	



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 19and �(z; �; r) = (z; rei�). Moreover ~G � ~L0 has the following des
ription~G = �(z; �; r) 2 C � R � R+ j r2 = 1 + jzj2	:The map ~ : ~L0 ! ~G is des
ribed as follows:~ (z; �; r) =  zpr2 � jzj2 ; � ; rpr2 � jzj2! :3.4 The universal 
over fSU(1; 1) of PSU(1; 1) = Aut(D ) a
ts on D . For x 2 Dthere is a unique 1-parameter subgroup�x : R �! fSU(1; 1)su
h that �x(t) a
ts on D as rotation through angle t with 
entre x. It is easy tosee that �0 : R ! ~G is given by �0(2t) = (0;�t; 1):Moreover, multipli
ation by �0(2t) from the left is given by�0(2t)(z; �; r) = (eitz; �� t; r):The two generators of the in�nite 
y
li
 
entre Z of fSU(1; 1) are �0(�2�) =(0;��; 1) = �x(�2�) for all x 2 D .Let k be a natural number. The subgroup of index k in Z has generators(0;�k�; 1). Given a level k and a natural number p relatively prime to k, wede�ne d := k=p and rd := (0;��d; 1) = �0(2�k=p):The image of rd in PSU(1; 1) generates a 
y
li
 group of order p.Now let � � fSU(1; 1) be a dis
rete subgroup of level k. Let �� be the image of �in PSU(1; 1). Assume that �� has a �xed point x 2 D of order p. We assume x = 0without loss of generality. Moreover, we make the following assumption whi
h isimportant for our 
onstru
tion: p > k:Be
ause of 2.6 we have (k; p) = 1. Therefore the isotropy group of 0 2 D in � isthe in�nite 
y
li
 group generated by rd, d = k=p.We shall now start presenting the elements of the 
onstru
tion of a fundamentaldomain for �.3.5 The advantage of embedding the Lorentz manifold SU(1; 1) as a submanifold Gof L0 in the aÆne spa
e C 2 with its pseudo-metri
 
omes from the fa
t that C 2is 
at. The maximal geodesi
s in C 2 are the real aÆne lines. The maximal to-tally geodesi
 submanifolds are the real aÆne linear subspa
es. Their interse
tionswith L0 are maximal totally geodesi
 submanifolds of L0. The maximal totallygeodesi
 submanifolds of G are the 
onne
ted 
omponents of the interse
tions of Gwith real aÆne linear subspa
es of C 2 
ontaining the origin.We shall use the aÆne linear geometry in L0 � C 2 in order to de�ne 
ertaintotally geodesi
 hypersurfa
es in ~L0 
orresponding to aÆne tangent hyperplanes ofG in L0. Let g be any element g 2 ~G and �g its image �g = �(g) in G. The aÆnetangent hyperplane of G � L0 at �g is�E�g = �y 2 L0 j hg; yi = �1	



20 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERwhere h � ; � i is the real part of the hermitian form on C 2. The totally geodesi
hypersurfa
e �E�g de
omposes L0 into two half-spa
es, an \inner" half-spa
e�I�g = �y 2 L0 j hg; yi 6 �1	and an \outer" half-spa
e �H�g . The spa
es �E�g and �I�g are simply 
onne
ted and even
ontra
tible. Hen
e their preimages under � : ~G ! G 
onsist of in�nitely many
omponents, one of them 
ontaining g.De�nition. For g 2 ~G, the spa
es Eg ; Ig ; Hg � ~L0 are de�ned as follows:(i) Eg is the 
omponent of ��1( �E�g) 
ontaining g.(ii) Ig is the 
omponent of ��1(�I�g) 
ontaining g.(iii) ~L0nEg has two 
onne
tedness 
omponents. Ig is the 
losure of one of them.Hg is the 
losure of the other one. Eg = Ig \Hg is the 
ommon boundary.Note that Ig maps bije
tively onto �I�g , whereas Hg is the union of ��1( �H�g) and��1(�I�g)nIg .In terms of the des
ription of ~L0 given in 3.3, the spa
es de�ned above for anyg 2 G have the following 
on
rete and simple des
ription for the unit elemente = (0; 0; 1) �I�e = �(z1; z2) 2 C 2 j Re(z2) > 1; jz1j < jz2j	;�E�e = �(z1; z2) 2 C 2 j Re(z2) = 1; jz1j < jz2j	:The boundary of �E�e is a rotational hyperboloid of one sheet de
omposing the3-spa
e Re(z2) = 1 into two 
omponents, and �E�e is the 
omponent 
ontainingthe axis of rotation.The 
orresponding subsets of ~L0 are as follows:��1(�I�e) = �(z; �; r) 2 C � R � R+ j r 
os� > 1; jzj < r	;Ie = �(z; �; r) 2 C � R � R+ j r 
os� > 1; jzj < r; j�j < �=2	;Ee = �(z; �; r) 2 C � R � R+ j r 
os� = 1; jzj < r; j�j < �=2	:We may visualize these sets by means of a proje
tion to the (�; r)-half-plane R�R+.The 
ommon boundary Ee of Ie and He proje
ts to the 
urve de�ned by j�j < �2and r = 1= 
os�. This 
urve de
omposes the half-plane into two 
omponents. Their
losures are Xe = �(�; r) 2 R � R+ j r 6 1= 
os� or j�j > �=2	Ye = �(�; r) 2 R � R+ j r > 1= 
os� and j�j < �=2	The 
ondition jzj < r de�nes He as an open disk bundle over Xe and Ie as adis
 bundle over Ye. If we 
onsider Ie and He as di�erentiable manifolds, they areobviously 4-dimensional half-spa
es.The sets Ig and Hg asso
iated to any other element g 2 ~G are obviously obtainedfrom Ie and He by the operation of ~G on ~L0, i.e. Hg = gHe et
.3.6 Suppose we are given positive integers k and p without 
ommon divisor. Putd = k=p and 
onsider the in�nite 
y
li
 subgroup �d � ~G generated by the elementrd = (0;��d; 1) as in se
tion 3.4. This group a
ts on ~G by left multipli
ation.Consider the set Q(d) := \g2�dHg:
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Figure 2: The image X(d) of Q(d) in the (r; �) half-planeHow does it look like? The generator rd a
ts as follows:rd(z; �; r) = (ei�dz; �� �d; r):It a
ts on the (�; r)-half-plane by the translation �d mapping (�; r) to (� � �d; r).In view of gHe = Hg , the images of the sets Hg , g 2 �d are the translates �nd (Xe)of the image Xe of He des
ribed in 3.5. Therefore we see that Q(d) is a dis
 bundleover the set X(d) := \n2Z�nd (Xe):Obviously, the nature of this set is very di�erent for the two 
ases d < 1 and d > 1.For instan
e, in the 
ase d < 1, the boundary is 
onne
ted, whereas for d > 1there are in�nitely many boundary 
omponents. Figure 2 shows the 
ase d < 1, i.e.p > k. The shaded area is the image X(d) of Q(d).The manifolds gQ(d) play a 
entral role in our 
onstru
tion. So it is importantthat the reader should understand the geometri
 nature of these obje
ts. We havedes
ribed Q(d) as a dis
 bundle over the set X(d) in the (�; r)-half-plane R � R+.We may des
ribe Q(d) � ~L0 � C � R � R+ asQ(d) = (C �X(d)) \ L0:The reader should think of X(d) as a universal 
overing of a pun
tured planepolygon. Consider the following diagram of 
overing mapsR � R+ ����!�0 C �������!� ����! �00C �where �(�; r) = rei� and �0(�; r) = r1=kei�=k and �00(z) = zk. Consider the 
urve�(�X(d)). It is easy to see that this is a regular star polygon � 2pk 	 when k is oddand a regular star polygon � pk	 when k is even. Therefore the 
urve �0(�X(d))is a 
urvilinear 2p-gon 
overing the star polygon on
e or twi
e. Let P 0 � C andP = P (d) � C be the plane areas bounded by the 
urvilinear polygon �0(�X(d))and by the star polygon �(X(d)). The images of X(d) are the pun
tured plane



22 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERpolygons �0(X(d)) = P 0 n f0g and �(X(d)) = P n f0g. We think of the produ
tC � P 0 as a 4-dimensional 2p-gonal prism. C �X(d) is the universal 
overing ofthe pier
ed prism C � (P 0 n f0g). The produ
t C � P � C 2 might be 
onsideredas a 4-dimensional \star prism". Its axis C � f0g does not meet L0 � C � C �.Therefore the universal 
overing � : ~L0 ! L0 maps Q(d) to the interse
tion of L0with the star prism: �(Q(d)) = L0 \ (C � P (d)):3.7 Let � � fSU(1; 1) be a dis
rete subgroup of �nite level k. Its image �� inPSU(1; 1) is a dis
rete subgroup of Aut(D ). We assume that u 2 D is a �xed pointof �� of order p > k. Set d = k=p. The 
onstru
tion of a fundamental domain forthe a
tion of � on fSU(1; 1) depends on the 
hoi
e of u.Let �u � � be the isotropy subgroup of u and �(u) � D the �-orbit of u. Forx 2 �(u), let T (x) be the left 
oset of �uT (x) := �g 2 � j g(u) = x	:De�nition. Qx := \g2T (x)Hg:The Hg � ~L0 are the \half-spa
es" 
onstru
ted in 3.5. Note that obviouslyQgu = gQu:The geometry of Qu has been des
ribed in 3.6. We assume without loss of generalityu = 0. Then Qu = Q(d);where d = k=p and Q(d) is the universal prismati
 set des
ribed in 3.6. So all Qxare obtained from su
h a prismati
 set by the a
tion of � on ~L0.De�nition. P := [x2�(u)Qx:Now we 
an state the main result.Theorem. The boundary of P is invariant with respe
t to the a
tion of � on ~L0.For any g 2 � the subset Fg := Cl�P (Int�P (�Hg \ �P ))is a fundamental domain for the a
tion of � on �P . The proje
tion ~ : ~L0 ! ~Gindu
es a �-equivariant homeomorphism �P ! ~G. The imageFg := ~ (Fg)is a fundamental domain for the a
tion of � on ~G, the universal 
overing ofSU(1; 1). The family (Fg)g2� is a lo
ally �nite �-equivariant tiling of ~G. Forevery pair of di�erent elements g; h 2 � the interse
tion Fg \ Fh lies in a totallygeodesi
 submanifold of ~G. If � is 
o-
ompa
t, then Fg and Fg are 
ompa
t.The proof is given in [75℄.3.8 The 
onstru
tion of the 4-dimensional polytope P and the �-equivariant tilingof its boundary �P by the fundamental domains Fg was done in the universal
overing ~L0 of L0. It des
ends to the quotient of ~L0 by the subgroup of index kin the 
entre of ~G, but in general not to L0. However, the individual fundamental



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 23domains Fg and Fg have models �(Fg) and �(Fg) in L0 � C 2. Without loss ofgenerality we 
onsider only Fe, sin
e �(Fg) =  (�(Fe)) by radial proje
tion. Wealso assume that the �xed point is u = 0, so that Qgu = gQ(d).By de�nition Fe lies in �He = Ee. Re
all that � : Ee ! �E�e is a homeomorphismonto a solid rotational hyperbola lying in the aÆne tangent spa
e of G = SU(1; 1)at the neutral element �e. Therefore � maps Fe bije
tively onto a domain�(Fe) � �E�elying in that solid hyperbola. Moreover Fe is 
ontained in the interse
tion of Eeand Q(d). Therefore the image �(Fe) lies in �(Ee \ Q(d)). This is a pie
e of thesolid hyperbola 
ut out by two parallel planes orthogonal to the rotational axis. Interms of 
oordinates z1 = x1 + iy1 and z2 = x2 + iy2 we have�(Ee \Q(d)) =�(z1; z2) 2 C 2 j x2 = 1; x21 + y21 � y22 < 1; jy2j 6 tan(�d=2)	:The set Fe is obtained from Ee \Q(d) by removing the interior of its interse
tionwith the other prismati
 sets Qgu = gQ(d). Therefore �(Fe) is obtained from thepie
e of the solid hyperbola �(Ee\Q(d)) by removing those parts of its interse
tionswith the star prisms �(gQ(d)) that are images of Ee \Q(d) \ gQ(d).This shows that for a dis
rete 
o-
ompa
t group � � fSU(1; 1) the image �(Fe)of the fundamental domain Fe is a 
ompa
t polyhedron with 
at fa
es in the three-dimensional 
at Lorentz spa
e tangent to G at �e. Thus we have inside the 
atLorentz spa
e su(1; 1) a polyhedral model for the 
urved fundamental domains Fg.This polyhedron represents the Lorentz spa
e form �nfSU(1; 1).Figure 3 shows how the polyhedron �(Fe) is 
arved from the solid hyperbola byremoving interse
tions with prisms. The example shown in the �gure is a funda-mental domain for Arnold's ex
eptional singularity E14. The tables given in 2.8show that E14 has an automorphy fa
tor of level k = 1 and signature (3; 3; 4). Thefundamental domain is 
onstru
ted for the �xed points of order 4. Be
ause of k = 1the star prisms are honest prisms, and the order 4 leads to prisms with an o
tagonalbase. Figure 3 is a slightly improved version of �gure 4 in [11℄.

Figure 3: The 
onstru
tion in the 
ase E14



24 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLER4. Fundamental domains for Em, Zm, Qm4.1 Anybody who has 
ome to know the 
onstru
tion of fundamental domainsdes
ribed in the last se
tion will want to see examples. But if he tries to do someexamples, he is going to dis
over that there is a remarkable 
ontrast between theelegan
e of the general 
onstru
tion and the hard work required for the expli
itdetermination of the fundamental domains for a given 
lass of dis
rete groups. Theexamples presented in this se
tion were 
al
ulated in [75℄ on more than hundredpages and 
ould not be done on less. The examples in the next se
tion were donein [78℄, and the analysis of those three examples needed about two hundred pageswithout pre
eding preparations.There is an obvious explanation for these diÆ
ulties. The de�nition of the poly-tope P and the fundamental domain Fe given in 3.7 involves all prismati
 sets Qxfor the in�nitely many points x 2 �(u) in the orbit of the �xed point u of � 
hosenfor the 
onstru
tion. When � is 
o-
ompa
t, only �nitely many Qx are needed inthe 
onstru
tion of Fe. However, there is no reasonable a priori estimate to tell usup to whi
h distan
e from u points x 2 �(u) have to be taken into a

ount. In fa
tin se
tion 5 we shall see an example where the number of essential prisms Qx variesin the Tei
hm�uller spa
e of � and goes to in�nity when we approa
h the boundary.4.2 The 
hoi
e of the examples presented in this paper was motivated by two kindsof experien
es. One motivation has been des
ribed in the introdu
tion. It is thebelief that the series E, Z, Q play a distinguished role. The se
ond motivation
omes from the previous experien
e with 
al
ulations of fundamental domains in[35℄, [48℄, [74℄. The authors of [35℄ and [48℄ 
al
ulated the fundamental domains ofthe Fis
her 
onstru
tion for all 14 triangle groups of Arnold's 14 ex
eptional uni-modular quasi-homogeneous singularities and for all 
hoi
es of �xed points ex
eptthose of order two. Altogether, these are 27 examples of fundamental domains.The experien
e with these examples shows two things. First, the 
hoi
e of the �xedpoint of highest order leads to the fundamental domain with the highest degree ofsymmetry. As we will shortly see, this is not too surprising. Se
ondly, the 
hoi
eof the �xed point of the highest order seems to be suitable for the arrangementof singularities in series. This assumption was 
on�rmed in [74℄ by the 
al
ulationof fundamental domains of the six triangle groups of level 2 whi
h 
orrespond tobimodular ex
eptional quasi-homogeneous singularities.We do believe that all these fundamental domains are interesting and that more
al
ulations for other series both for highest order of the �xed points and lowerorders would lead to new insight into the nature of Arnold's series and the relationsbetween the series. However, we have de
ided to adhere to the prin
iple statedby Pappus of Alexandria quoted at the beginning of this paper. Pappus uses thisprin
iple when he introdu
es the Ar
himedian polyhedra 
oming right after thePlatoni
 solids be
ause of their regularity. So we have 
hosen to 
al
ulate thefundamental domains for the series Em, Zm, Qm as well as for the three 
asesE3;0, Z1;0, Q2;0, and in all 
ases we have 
hosen the �xed point of highest order.In our opinion, the results 
on�rm our expe
tations. In parti
ular, the series ofpolyhedra for Em with m even, for Zm with m odd, and for Qm with m even, issimple, regular and beautiful. Other parts of the results are more subtle and willbe dis
ussed later on.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 25Before we go on, the reader should 
ontemplate the �gures of tables 5{7 show-ing the fundamental domains for the series Em, Zm, Qm. We refer to the legendpre
eding the tables for explanations 
on
erning the drawing of the �gures. We em-phasize that the �gures are stri
tly a

urate representations of pre
isely 
al
ulatedpolyhedra.4.3 The group � � ~G a
ts on ~G by left multipli
ation, and this a
tion extends toan a
tion on ~L0 by isometries. This indu
es an a
tion on P and on �P and �nallyan a
tion of � on the tiling (Fg)g2G whi
h is simply transitive. However, there maybe other isometries of ~L0 whi
h a
t on the tiling. Those of these isometries whi
hmap a parti
ular Fg onto itself will be 
alled symmetries of Fg. We are interestedin the group of these symmetries or subgroups of this group. It suÆ
es to des
ribethese symmetries for the linear model of Fe.The group ~G a
ts on itself by left multipli
ations and also by right multipli
a-tions. Any isometry in the 
onne
ted 
omponent of the identity is a produ
t of aleft multipli
ation and a right multipli
ation. In parti
ular, we have the subgroup�G �= PSU(1; 1) of inner automorphisms and its adjoint representation on su(1; 1),the spa
e 
ontaining the linear model of the fundamental domain. The isometrygroup of ~G has four 
onne
ted 
omponents. They may be des
ribed as follows. Theelement " 2 Isom( ~G) is de�ned by "(g) = g�1. The isometry � 2 Isom( ~G) is theinvolutive automorphism de�ned by �(�(g)) = �(g). We haveIsom( ~G) = Isom( ~G)0 o f1; "; �; "�g;Isom+( ~G) = Isom( ~G)0 o f1; �g:The isometries of ~G lift to isometries of ~L0. The symmetry groups of our polyhedraFe will be dihedral groups of the formh�io h�i;where � is an inner automorphism of �nite order.Now let � � ~G be a dis
rete 
o-
ompa
t subgroup of level k, su
h that 0 2 D isa �xed point of order p for �� � PSU(1; 1), and let Fe be the fundamental domainfor � with this �xed point. As before, let �0 : R ! ~G be the 1-parameter subgroupsu
h that �0(t) a
ts on D by the rotation � 7! eit�. Let �(t) 2 Isom( ~G)0 be the
onjugation by �0(t). This isometry a
ts on ~Lo as follows:�(t)(z; �; r) = (eitz; �; r):The isometry �(2�=p) 
omes from 
onjugation with a generator of the isotropygroup �0. Thus �, �0, P , �P and Fe are invariant under �(2�=p). Thereforethe symmetry group of Fe 
ontains at least the 
y
li
 group h�(2�=p)i of order p.However, there may be more rotational symmetry. Suppose for example that �� isa triangle group �(p; q; r), where 0 2 D is the �xed point of order p. If q = r, thenormalizer of �� in Aut(D ) = Isom+(D ) 
ontains the rotation by the angle �=p with
entre 0, whereas the isotropy group ��0 is generated by the rotation by the angle2�=p. Therefore, in this 
ase the symmetry group of Fe 
ontains the 
y
li
 group�(�=p) of order 2p.Other symmetries may o

ur when there is a re
e
tion in Isom(D ) whi
h nor-malizes �� and the isotropy group ��0. Without loss of generality we may assumethat the re
e
tion is given by � 7! ��. When the signature of �� has genus 0, thegroup � � ~G is uniquely determined by �. In this 
ase it is obvious that �(�) = �



26 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERand �(�0) = �0. Therefore, in this 
ase, the involutive isometry � is a symmetryof the fundamental domain Fe. In parti
ular, these arguments apply to all trianglegroups, sin
e they are those normal subgroups of index 2 in the group generated byre
e
tions in the sides of the triangles whi
h 
onsist of orientation preserving isome-tries. We assume without loss of generality that the triangle group is normalizedby the re
e
tion � 7! �� .4.4 A dis
rete 
o-
ompa
t subgroup � of level k in fSU(1; 1) su
h that the im-age in PSU(1; 1) is a triangle group with signature (�1; �2; �3) will be denotedby �(�1; �2; �3)k . We assume without loss of generality that �1 6 �2 6 �3 andthat 0 2 D is a �xed point of order �3. When we 
onsider a fundamental domainFe of �, we always mean the fundamental domain for the �xed point 0. Moreover,we assume without loss of generality that � is normalized by �.De�nition. The symmetry index q(�) of � = �(�1; �2; �3)k is de�ned byq(�) = ( �3; if �1 < �2,2�3; if �1 = �2.In 2.8 we have given tables showing the groups �(�1; �2; �3)k 
orresponding tosingularities of the series Em, Zm, Qm. Whenever it is 
onvenient, we shall denotethese groups by the symbols Em, Zm, Qm.The following two tables list all singularities Em, Zm, Qm and show the symme-try index of their group �. In both tables n is a positive integer. In the table onthe left n is not divisible by 3. We shall say that singularities or groups listed onthe left are of type I and those on the right of type II.� q(�) � q(�)E10+2n n+ 6 E7+6n 2n+ 3Z9+2n 2n+ 6 Z6+6n 4n+ 2Q8+2n 3n+ 6 Q5+6n 6n+ 1Type I Type IITheorem. Let � = �(�1; �2; �3)k be the group 
orresponding to one of the sin-gularities of the series Em, Zm, Qm. The fundamental domain Fe of � has thesymmetry group Sym(Fe) = h�(2�=q(�)io h�i:This is a dihedral group of order 2q(�), where q(�) is the symmetry index of �.The in
lusion h�ioh�i � Sym(Fe) is obvious. The arguments for the other in
lusionare given in [11℄ Proposition 8 and [75℄, p. 41.4.5 The fundamental domains for the groups � of type I are suÆ
iently simple sothat we 
an des
ribe them in this expository paper. For those of type II we referto the �gures of the tables and to [75℄.There are two di�erent levels of pre
ision in the des
ription of the fundamentalpolyhedra �(Fe). A pre
ise des
ription has to determine su
h a polyhedron as a
ertain subspa
e of the aÆne Lorentz spa
e. This may be done by giving all verti
esand the partially ordered stru
ture of the fa
ets. Or we may present the polyhedronby some 
onstru
tion beginning with half-spa
es and applying the operations ofunion and interse
tion. This is what we shall do.
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ond and lower level of pre
ision is the purely 
ombinatorial des
ription ofthe partially ordered stru
ture of the fa
ets. There is a systemati
 way of des
ribingthese data for a group a
ting on a tiling, whi
h was developed by A. Dress. Notwithstanding the advantages of su
h a systemati
 approa
h, we prefer a simpler andnaive des
ription of the 
ombinatorial stru
ture whi
h is adequate for the tilingswhi
h we want to des
ribe. This approa
h is also suitable for the analysis of thetilings in the next se
tion, where the 
ombinatorial stru
ture is not 
onstant on theTei
hm�uller spa
e.We shall now indi
ate a pre
ise 
onstru
tion for the model fundamental domainsof type I. These polyhedra live in the 
at Lorentz spa
e of signature (n+; n�) =(2; 1). However, su
h a polyhedron has a distinguished rotational axis of symmetry.The dire
tion of this axis is negative de�nite, and the orthogonal 
omplement ispositive de�nite. Changing the sign of the pseudo-metri
 in the dire
tion of the axisof rotation transforms Lorentz spa
e into a well-de�ned Eu
lidean spa
e. In thisway, the model fundamental domain is transformed into a polyhedron in Eu
lideanspa
e with dihedral symmetry. We are going to give a 
onstru
tion, or rather two
onstru
tions for su
h polyhedra in R 3.Let �q be the rotation of R 3 around the z-axis by the angle 2�=q. Let � be therotation around the x-axis by the angle �. These rotations generate the dihedralgroup h�qi o h�i of order 2q. Let H+ be an half-spa
e bounded by a plane whi
his not parallel to a 
oordinate axis, and let H� be the half-spa
e H� = �H+. Weassume that the wedge H+ \H� does not meet the z-axis. The wedge meets the(x; y)-plane in a 
ertain se
tor with some angle �. We assume that 0 < ��2�=q < �.Let ! be some positive real number. We de�ne the following subset of R 3:P (H; q; !) := �R 3 n q[i=1 �iq(H+ \H�)0� \ �R 2 � [�!; !℄�:This is a 
ompa
t polyhedron with symmetry group h�qi o h�i. We shall 
all it apolyhedron of type Ia. We 
an modify the 
onstru
tion repla
ing the wedge by ablunted wedge where the edge has been 
ut o� by a plane parallel to the edge andto the z-axis. We 
all polyhedra obtained by this modi�ed 
onstru
tion of type Ib.Mu
h of the labour in 
al
ulations of the fundamental domains 
onsists in re-du
ing their theoreti
al 
onstru
tion given in 3.7 to an expli
it des
ription su
h asthe one given in the following theorem.Theorem. Let � � fSU(1; 1) be a dis
rete 
o-
ompa
t subgroup whi
h belongs toone of the series Em, Zm, Qm. Let q = q(�) be its symmetry index. Suppose that� is of type I. Then the fundamental domain for � is a polyhedron in Lorentz spa
ewhose symmetry group is a dihedral group of order 2q. It is of type Ia for the seriesEm and Qm and of type Ib for the series Zm.4.6 On
e we have obtained a des
ription of the fundamental domain Fe as in 4.5where the fa
es are identi�ed as 
omponents of interse
tions Fe \ Fg , it is easy todedu
e the following des
ription of the 
ombinatorial stru
ture.We shall des
ribe the identi�
ation of fa
es of Fe by pairings of 
ags (f; e) and(f 0; e0), where f is a fa
e and e is an edge of the fa
e. Su
h a pairing is enough todes
ribe the identi�
ation of f and f 0, sin
e the identi�
ation reverses the orienta-tion. When f1 and f2 are adja
ent fa
es with 
ommon edge e = f1 \ f2, the 
ag(f1; e) will be denoted by (f1; f2).



28 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERLet Pq be a regular q-gonal prism. The re
tangular fa
es are numbered in 
y
li
order. For ea
h of the types E, Z, Q de�ne Pq(E), Pq(Z), Pq(Q) as the prism Pqtogether with a subdivision of the re
tangular fa
es whi
h is equivariant with respe
tto the dihedral group of orientation preserving symmetries of Pq . The subdivisionof the j-th fa
e is des
ribed by �gure 4 together with a notation for the fa
es. Theq-gonal fa
es on top and bottom of the prism are denoted by d+ and d�.
ajbjType E aj bj 
jType Z bj 
jType QFigure 4: The subdivision of the j-th fa
e of the prism PqTheorem. Let � � fSU(1; 1) be a group of type I belonging to one of the seriesEm, Zm, Qm. Let q = q(�) be its symmetry index. The fundamental domainfor � 
onstru
ted in 3.7 has the same 
ombinatorial type as Pq(E), Pq(Z) andPq(Q) respe
tively. The fa
e identi�
ation is equivariant with respe
t to the dihedralsymmetry of these prisms. It is given by the following table of pairs of 
ags.� q(�) pairingsE10+2n n+ 6 (aj ; bj) ! (bj�3; d+) (d+; bj) ! (d�; aj�n)Z9+2n 2n+ 6 (aj ; bj) ! (
j�3; d+) (d+; bj) ! (d�; aj�n)(bj ; 
j) ! (bj�3�n; d+)Q8+2n 3n+ 6 (bj ; 
j) ! (
j�3�n; d+) (d+; 
j) ! (d�; bj�n)These identi�
ations of fa
es are illustrated on table 8.The results of 4.5 and 4.6 
over 6 of the 9 
ases in the �rst table in 2.8. The re-maining three 
ases with signature (2; 4; p) are 
onsiderably more 
ompli
ated. Wehave 
al
ulated fundamental domains for all these 
ases, as illustrated in tables 5{7,in [75℄. However, at present it is not proved for all p that these fundamental domains
oin
ide with those 
onstru
ted in 3.7. We are 
onvin
ed that this is true.5. Fundamental domains for E3;0, Z1;0, Q2;05.1 The se
ond table in 2.8 shows that the automorphy fa
tors for E3;0, Z1;0 andQ2;0 have level 1 and signature (0; 2; 2; 2; p), where p = 3, 4 and 5 respe
tively. Sin
ethe level is 1, it is enough to 
onsider Fu
hsian groups of signature (0; 2; 2; 2; p) inPSU(1; 1) and their preimages in SU(1; 1). The 
onstru
tion of fundamental do-mains in SU(1; 1) 
an be 
arried out within the framework of the original 
onstru
-tion of Thomas Fis
her.We begin with a des
ription of the real analyti
 Tei
hm�uller spa
e of Fu
hsiangroups with signature (0; 2; 2; 2; p). The essential idea is the use of Fri
ke 
oordi-nates and goes ba
k to Fri
ke [37℄, p. 335{341 and [38℄, p. 296{299.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 29Let �p be the group de�ned by the following presentation:�p := 

0; 
1; 
2; 
3 j 
p0 = 
21 = 
22 = 
23 = 
0
1
2
3 = 1�:The group of orientation preserving automorphisms of �p is de�ned asAut+(�p) := �' 2 Aut(�p) j 9� 2 � '(
0) = �
0��1	:The group of inner automorphisms is a subgroup, and the modular groups arede�ned as Mod+(�p) := Aut+(�p)= Inn(�p) �= PSL(2;Z)Mod (�p) := Aut (�p)= Inn(�p) �= PGL(2;Z)The representation spa
e R(�p) and the Tei
hm�uller spa
e T(�p) are de�ned asfollows:R(�p) := �d 2 Hom(�p;PSU(1; 1)) j d inje
tive and d(�) dis
rete	:T(�p) := Aut(PSU(1; 1)) n R(�p):The moduli spa
e and the redu
ed moduli spa
e for Fu
hsian groups with signature(0; 2; 2; 2; p) are the quotientsT(�p)=Mod+(�p) and T(�p)=Mod(�p):We shall 
onstru
t an isomorphism� : T(�p) �! Tpof the real analyti
 Tei
hm�uller spa
e with a real analyti
 variety Tp whi
h is a
onne
tedness 
omponent of the real 
ubi
 hypersurfa
e Vp in R 3 given by thefollowing equation: t21 + t22 + t23 � t1t2t3 � 4 sin2(�=p) = 0:The 
ubi
 Vp has tetrahedral symmetry and has �ve 
onne
tedness 
omponentsseparated by the planes ti = �2. The 
omponent Tp is de�ned as follows:Tp = �(t1; t2; t3) 2 Vp j t1; t2; t3 > 2	:We de�ne three spe
ial elements Æi 2 �p as follows:Æ1 := 
0
1; Æ2 := 
2
0; Æ3 := 
1
2:The 
oordinate fun
tions �i of the map � are the Fri
ke 
oordinates de�ned by�i(d) = jtra
e d(Æi)j; i = 1, 2, 3:The 
anoni
al a
tion of the modular group Mod(�p) on T(�p) is transferred to Tpvia �. The modular group a
ts on Tp as a group generated by re
e
tions Si andS0i de�ned as follows: Let fi; j; kg = f1; 2; 3g. Then Si permutes the 
oordinates tjand tk, whereas S0i repla
es ti by t0i = tjtk � ti:We want to 
onstru
t a fundamental triangle �p � Tp su
h that Mod(�p) is thegroup generated by the re
e
tions in the sides of �p. The 
onstru
tion is illustratedby �gure 5.The �gure shows an image of Tp obtained by 
entral proje
tion from 0 2 R 3onto the proje
tive plane. The proje
tion maps Tp one to one onto the equilateraltriangle with sides zi = 0, where i = 1; 2; 3. The �xed point sets of the Si aremapped onto the straight lines bise
ting the angles of the triangle. The images
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z3 = 0
z 2= 0

z1 = 0

Figure 5: The image of Tp in the proje
tive planeof the �xed point sets of the S0i are three 
urves whi
h form a 
urvilinear trianglewith 
uspidal verti
es on the boundary. The bise
tors subdivide the 
urvilineartriangle into six smaller triangles. The preimages of these triangles are the sixsubsets Xij � Tp de�ned as follows:Xij = �t 2 Tp j ti > tj > tk; tjtk > 2ti	:The re
e
tions in the sides of Xij are Si; Sk and S0i. The shaded triangle in theFigure 5 is X12. We 
hoose �p = X12as a fundamental domain for the triangle groupMod(�p) = 
S1; S3; S01�:Mod+(�p) is the subgroup of index two preserving the orientation, and we might
hoose X12 [X21 as fundamental domain for this group.5.2 It suÆ
es to study the 
onstru
tion of the fundamental domain F (d) de�nedin subse
tion 3.7 as F (d) = Fe(d(�p)) for representations d 2 R(�p) whi
h satisfythe following 
onditions:(i) 0 2 D is a �xed point of d(
0), and d(
0) is the rotation by the angle 2�=p.(ii) �(d) 2 �.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 31Let us 
all su
h d normalized and redu
ed, and let us denote the subset of theserepresentations by R(�p)�.We are going to need a pre
ise des
ription of the elements in the preimagesd̂(�p) � SU(1; 1) of the groups d(�p) � PSU(1; 1). Consider the group ~�p presentedas follows: ~�p = 
r0; r1; r2; r3 j r2p0 = r41 = r42 = r43 = r0r1r2r3 = 1�:There is a natural way of lifting elements of �nite order in PSU(1; 1) to elements oftwi
e that order if we 
onsider these elements as 
ontained in 1-parameter groups ofrotations and lift these 1-parameter groups. In this way we get for any d 2 R(�p)�well-de�ned elements ri(d) 2 SU(1; 1) by lifting d(
i). Note that r0(d) = r0 is
onstant. There is an isomorphism~d : ~�p �! d̂(�p)de�ned by ~d(ri) = ri(d).5.3 We shall now begin with Fis
her's 
onstru
tion of the fundamental domainsF (d) for d 2 R(�p)�. We re
all two elements of that 
onstru
tion. Re
all thatin 3.5 we have de�ned for any g 2 G = SU(1; 1) � L0 � C 2 a 
ertain \half-spa
e"�Ig � L0 bounded by the tangent hyperplane �Eg . Re
all also from 3.8 that we have
onsidered a 
ertain interse
tion Ee \Q(d) of a tangent spa
e and a prismati
 set.We have des
ribed the image Se := �(Ee \Q(d)) in the tangent spa
e �Ee of e 2 Gas a 
ertain pie
e of a solid rotational hyperbola. Using these elements we de�nethe following polyhedron in the tangent spa
e �Ee of G at eF0(d) = Se \ p�1\m=0 3\i=1 2p�1[n=p+1 �Irm0 ri(d)rn�m0 :This is not yet the Fis
her domain F (d). But F (d) will be 
onstru
ted by inter-se
ting a �nite number of polyhedra of this type. In order to get them, we de�nethe following automorphism � 2 Aut+(�):�(
0; 
1; 
2; 
3) = (
0; 
1
2
�11 ; 
1; 
3):The �rst main result is the following theorem.Theorem. For p = 3, 4, 5 and d 2 R(�p)� the following statements hold:(i) The Fis
her fundamental domain F (d) for the Fu
hsian group d(�p) of sig-nature (0; 2; 2; 2; p) 
an be des
ribed as followsF (d) = 1\�=�1F0(d Æ ���)(ii) This interse
tion is �nite. ThereforeF (d) = �+(d)\�=��(d)F0(d Æ ���)with uniquely determined maximal ��(d) 2 Z and minimal �+(d) 2 Z.(iii) ��(d) 6 0 6 �+(d)(iv) ��(d) + �+(d) 2 f0; 1g(v) �(d) = �+(d)� ��(d) is lower semi-
ontinuous on R(�p)�.



32 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERThe proof given in [78℄ is very 
omplex. To some extent it uses the analysis of the
ombinatorial stru
ture in the individual 
ases p = 3, 4, 5. In the present expositionwe take this main theorem as a point of departure for the des
ription of the resultsin the individual 
ases whi
h will be given below.5.4 Note that the element � 2 Aut+(�p) de�ned in 5.3 a
ts on Tp as a generatorfor the in�nite 
y
li
 isotropy group of Mod+(�p) at the 
uspidal vertex of �, sin
e�(d Æ �) = S01 � S3(�(d)). Therefore, for d 2 R(�p)�, the representations d Æ �n inthe main theorem have images �(d Æ �n) in the following set[n2Z(S01 � S3)n(X12 [X21):This is a neighbourhood of the 
usp in the Satake-Borel-Bailey topology.5.5 We shall now state the results of the analysis for the three 
ases p = 3, 4 and 5.There are 
ertain very interesting features whi
h are 
ommon to all three 
ases, butthere are also di�eren
es so that we prefer to present the individual 
ases in theorder of in
reasing 
omplexity. We shall deal with p = 3 in se
tion 5.6, while p = 5is done in 5.7 and p = 4 in 5.8. The results are illustrated on tables 10{12 for theindividual 
ases, table 9 for all three 
ases and on tables 2{4 in a synopsis of theresults of all three authors.The fun
tions �+, �� and � = �+ � �� de�ned in 5.3 indu
e 
orrespondingfun
tions on �p whi
h we shall denote with the same symbols. � is a lower semi-
ontinuous fun
tion � : �p ! N . For any nonnegative integer n we 
onsider theinterior of the 
orresponding preimage in �p,�(n)p := ��1(n)0:In all three 
ases the verti
es of the fundamental triangle �p will play a spe
ial role.We shall denote the vertex with angle �=3 by v0, the one with angle �=2 by v1.They are the �xed points of Mod+(�p) in �p of order 3 and 2 respe
tively. Thesepoints 
orrespond to spe
ial values of the j-invariant of the quasi-homogeneoussingularities. There are several possible normal forms for these singularities (seee.g. [13℄, p. 191). Consider the following ones:E3;0 : x3 + ax2y3 + xy6 + z2;Z1;0 : x3y + ax2y3 + xy5 + z2;Q2;0 : x3 + ax2y2 + xy4 + yz2:Then the j-invariant is j = 427 � (a2 � 3)3a2 � 4 :The values j = 0 and j = 1 are attained for a2 = 3 and a = 0. The pointv0 
orresponds to j = 0, and v1 
orresponds to j = 1. We shall therefore referto the fundamental domains of groups d(�p) with �(d) = v0 or �(d) = v1 asthe fundamental domains for j = 0 or j = 1. These fundamental domains aredistinguished by spe
ial symmetries. Moreover, they are distinguished by a veryinteresting feature whi
h we shall observe in ea
h of the six 
ases p = 3, 4, 5 andj = 0, 1. Namely, ea
h of them �lls a well-de�ned gap in one of the six series Em,Zm, Qm of type I or of type II. If the reader has not yet noti
ed these gaps, heshould look again at the tables of symmetry indi
es in 4.4 and 
ontemplate the



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 33�gures on tables 5{7. Tables 2{4 show how the gaps are �lled. The fundamentaldomains for j = 0 and j = 1 �t perfe
tly with respe
t to 
ombinatorial stru
ture,symmetry and identi�
ation of fa
es.5.6 For p = 3 we 
an prove �� � 0. Thus �3 de
omposes into the two opensubsets �(0)3 and �(1)3 and a 
urve C3 separating these regions. We have v0 2 �(0)3and v1 2 �(1)3 . The 
urve C3 is de�ned by the equation�t1 + t2 + t3 = 2:This de
omposition �3 = �(0)3 [ C3 [�(1)3 is shown on table 9.Theorem. There are three 
ombinatorial types of fundamental domains F (d) forFu
hsian groups d(�3). For d 2 R(�3)� the type of F (d) is 
onstant on �(0)3 , on C3and on �(1)3 .Figures 1{3 on table 10 show examples for the three 
ombinatorial types for p = 3.The numbers of the �gures are the same as those of the 
orresponding points of �3shown on table 9.Corollary. The fundamental domains for E3;0 �ll the gaps(i) for j = 0 between E14 and E18,(ii) for j = 1 between E13 and E19.The 
orollary is illustrated by table 2.5.7 For p = 5 we 
an prove �� � 0. Thus �5 de
omposes into two open subsets�(0)5 and �(1)5 . They are separated by a 
urve C5 de�ned by the equation�t1t2t3 + t22t3 + t2t23 + t21 � t1t2 � t1t3�(1 + �)t2t3 + �t1 + �t2 + �t3 � � = 0;where � = (p5 � 1)=2. We have v0 2 �(0)5 and v1 2 �(1)5 . We must re�ne thisstrati�
ation of �5 in order to get a strati�
ation of �5 by the 
ombinatorial typeof fundamental domains. The domain �(0)5 is subdivided into two open domains�(0)05 and �(0)005 by a 
urve C 05 de�ned by the equation�t22 + t1t2 + �t2t3 � 2�t1 � t3 + 2� � = 0:The �gure at the right hand on table 9 shows that C 05 runs from the vertex v0 to the
usp. The vertex v0 is not 
onsidered as a point of the 
urve. So we have de�neda de
omposition of �5 into 6 disjoint strata:�5 = fv0g [�(0)05 [ C 05 [�(0)005 [ C5 [�(1)5 :We have marked one point on ea
h stratum, numbered in this order. Table 11shows the 
orresponding fundamental domains with the same numbering.Theorem. There are six 
ombinatorial types of fundamental domains F (d) forFu
hsian groups d(�5). For d 2 R(�5)� the type of F (d) is 
onstant on the sixstrata of �5 de�ned above. In parti
ular, the 
ombinatorial type for j = 0 o

ursonly at the isolated point v0.Corollary. The fundamental domains for Q2;0 �ll the gaps(i) for j = 0 between Q12 and Q16,(ii) for j = 1 between Q11 and Q17.
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orollary is illustrated by table 4.5.8 The analysis of the 
ase p = 4 led to a result whi
h we did not expe
t at all: theexisten
e of in�nitely many di�erent 
ombinatorial types of fundamental domainsfor Fu
hsian groups with signature (0; 2; 2; 2; 4).For p = 4 it turns out that the lower semi-
ontinuous map � : �4 ! N tothe nonnegative integers is surje
tive. Therefore, one gets a de
omposition intoin�nitely many open sets �(n)4 , n > 0. It turns out that anyone of these domains isadja
ent to its su

essor �(n+1)4 , and that there is a 
onne
ted 
urve C(n)4 separating�(n)4 and �(n+1)4 . The �rst of these 
urves C(0)4 is de�ned by the following equation:t2t3 � t1 � t2 � t3 +p2 = 0:This equation de�nes a 
urve C4 in all of T4, whi
h interse
ts �5 in C(0)4 . The other
urves C(n)4 are obtained from C4 by applying the re
e
tions S3 and S01 by turns.Altogether we get an in�nite strati�
ation�4 = �(0)4 [ C(0)4 [�(1)4 [ C(1)4 [�(2)4 [ C(2)4 [ : : :The strati�
ation is illustrated by the �gure in the middle of table 9. We haveagain v0 2 �(0)4 , v1 2 �(1)4 .Theorem. There are in�nitely many 
ombinatorial types of fundamental domainsF (d) for Fu
hsian groups d(�4). For d 2 R(�4)� the 
ombinatorial type is 
onstantas long as �(d) remains in one of the strata de�ned above.Table 12 shows four fundamental domains 
orresponding to four points in the �rstfour strata �(n)4 , n = 0, 1, 2, 3. The four points are shown on table 9.Corollary. The fundamental domains for Z1;0 �ll the gaps(i) for j = 0 between Z13 and Z17,(ii) for j = 1 between Z12 and Z18.The 
orollary is illustrated by table 3.6. Fundamental domains for ~E8, ~E7, ~E66.1 The results of Dolga
hev quoted in se
tion 2 imply that the links of singularitiesof type ~E8, ~E7, ~E6 
an be des
ribed as �nG, where G is the group of unipotentupper triangular 3� 3-matri
es and � is a dis
rete 
o-
ompa
t subgroup. Prior tothis, Milnor had given su
h a des
ription for the link as a di�erentiable manifold,where � � G \ SL(2;Z) was the 
ongruen
e subgroup modulo �, where � = 1; 2; 3for ~E8, ~E7, ~E6. However, Milnor's des
ription did not involve the moduli of thesesingularities, and Milnor 
onsidered his proof as \rather ad ho
" and wrote \I do notknow whether there exists a more natural 
onstru
tion of these di�eomorphisms",[56℄.The approa
h of Dolga
hev leads to more natural 
onstru
tions. But if we want todes
ribe the quotient �nG by a fundamental domain, in 
ontrast to the spheri
al
ase SU(2) and to the Lorentz 
ase SU(1; 1) we do not have a natural pseudo-metri
 
oming from the Lie group, and we do not have a general 
onstru
tionsu
h as the 
lassi
al 
onstru
tion in the spheri
al 
ase and the generalized Fis
her
onstru
tion developed by A. Pratoussevit
h. Nevertheless, we shall make an \adho
" 
onstru
tion whi
h is �t to �ll the gap between the spheri
al 
ase and theLorentz 
ase.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 356.2 By the work of K. Saito on simply ellipti
 singularities [80℄ it is known that thesingularities of type ~E8, ~E7, ~E6 are obtained by 
ontra
ting the zero se
tion of aline bundle over an ellipti
 
urve with Chern 
lass ��, where � = 1; 2; 3. Therefore,the links of these singularities are the 
orresponding S1-bundles.Complex line bundles over 
omplex tori are des
ribed by the theorem of Appel-Humbert, Mumford [64℄, p. 20. The spe
ialization to the 
ase of ellipti
 
urves isas follows.Let H be the upper half-plane, � = �+ i� 2 H and �� the latti
e Z+Z� � C .The 
omplex line bundles over the ellipti
 
urve X� = C =�� are 
onstru
ted asfollows. We de�ne a hermitian form H on C byH(z; w) = k� (z �w):Let � = (�1; �2) 2 S1 � S1 a pair of 
omplex numbers of absolute value 1. Foru = m+ n� 2 �� , de�neeu(z) = �m1 �n2 � exp ��(ikmn+H(z; u) + 12 H(u; u))�:The latti
e �� a
ts on C � C as follows:u(z; �) = (z + u; eu(z) � �):The proje
tion to the �rst fa
tor de�nes a 
omplex line bundle Lk;�;� = C � C =��over X� with Chern number k. The theorem of Appel-Humbert says that any
omplex line bundle over X� is isomorphi
 to a unique Lk;�;�. Two bundles Lk;�;�and Lk;�;� di�er only by a translation. In our 
ase k = ��, where � = 1; 2; 3.The link of the singularity obtained by 
ontra
ting the zero se
tion identi�eswith Lk;�;�=R+, and this identi�es with C � S1=�� , where u = m + n� 2 �� a
tsas u(z; �) = (z + u; "u(z) � �) with"u(z) = �m1 �n2 � exp �i�(kmn+ ImH(z; u))�:We evaluate the symple
ti
 form !(z; u) = ImH(z; u). For u = m + n� andz = � + �� with real �; � we have!(z; u) = �(n� �m�):6.3 We shall now pass to the universal 
overing C � R ! C � S1 mapping (z; t)to (z; ei�t). We de�ne a Heisenberg group stru
ture on C � R by means of thesymple
ti
 form ! = ImH :(u; s) � (z; t) := (u+ z; s+ t+ !(z; u)):Let us denote C � R with this group stru
ture depending on � and � by H�;� .We shall des
ribe the links of our singularities as quotients of H�;� by dis
retesubgroups. We des
ribe these dis
rete subgroups as representations of an abstra
tgroup �� isomorphi
 to the fundamental group of the link (� = 1; 2; 3):�� = 
a; b; 
 j aba�1b�1 = 
�; a
 = 
a; b
 = 
b�:Re
all that in 6.2 we used � = (�1; �2) 2 S1 � S1 in our 
onstru
tion of a bundleover C =�� . Passing to the universal 
overing, we have to use instead a pair of realnumbers " = ("1; "2), where �� = ei�"� . Now we 
an de�ne a representation�" : �� �! H�;�as follows: �"(a) = (1; "1); �"(b) = (�; "2); �"(
) = (0; 2):



36 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERIt is easy to see that �" is inje
tive and that the image is a dis
rete 
o-
ompa
tsubgroup �"(��) =: ��;�;" � H�;� :This dis
rete group operates onH�;� by left multipli
ation, and the following propo-sition follows immediately from the de�nitions and 6.2.Proposition. ��;�;"nH�;� identi�es with the link of the singularities obtained by
ontra
ting the zero se
tion in L��;�;�.6.4 The parameters (�; ") are points in a 4-dimensional spa
e of representations of��. We shall simplify the analysis by two di�erent redu
tions. The �rst redu
tionis to 
onsider only � in a fundamental domain � � H of the modular group. � isthe triangle de�ned by� := �� 2 H j � �� > 1; �1 6 � + �� 6 0	:The verti
es are v0 = e2�i=3 and v1 = i and the 
usp at in�nity. For � 2 �, we
onsider the Diri
hlet 
ell D� of 0 2 C 2 for the latti
e �� . For � 2 � not on theimaginary axis D� is a hexagon. The adja
ent Diri
hlet 
ells belong to �1, �� and�(1 + �). When � tends to the imaginary axis, the Diri
hlet 
ell degenerates intoa re
tangle. D� is a regular hexagon for v = v0 and a square for v = v1.Now 
onsider the prism D� � [�1; 1℄ � H�;� :It is obvious from the de�nition of ��;�;" that we may 
hoose this prism as afundamental domain for ��;�;" a
ting on H�;� by left multipli
ation. However,we have to subdivide the re
tangular fa
es in �D� � [�1; 1℄ if we want that theidenti�
ations on the boundary of the prism maps fa
es to fa
es. The minimalsubdivisions satisfying this 
ondition are 
anoni
al, and we de�neP�;�;" = D� � [�1; 1℄as the prism with this subdivision of �D� � [�1; 1℄.The se
ond redu
tion is guided by the prin
iple of highest symmetry statedin 4.2. We want that P�;�;" should have a dihedral symmetry group of order 12 for� = v0 and of order 8 for � = 1. For any � 2 �, the subdivision of a re
tangularfa
e of the prism in �D� � [0; 1℄ should be invariant under rotation of the fa
earound its 
enter by 180Æ. It is easy to see that these 
onditions are equivalent tothe 
ondition "1; "2 2 Z. Therefore, we assume without loss of generality"1; "2 2 f0; 1g:After this redu
tion one has to analyze 12 = 3 � 4 families of fundamental domainsP�;�;", where � = 1, 2, 3 and " = ("1; "2) and � 2 �. This is an exer
ise in linearalgebra. In ea
h 
ase it is easy to determine the strati�
ation of � by 
ombinatorialtypes and the most symmetri
 polytopes for the verti
es v0 and v1 of �. We shallbe 
ontent to state the result pertinent to the main theme of this arti
le. We de�ne"(�) = ((1; 1); for � = 1 and 3;(0; 0); for � = 2:Proposition. The six fundamental domains P�;�;"(�) with � = 1; 2; 3 for � = v0and � = v1 
orrespond to the links of the simply ellipti
 singularities ~E8, ~E7, ~E6



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 37with j-invariants j = 0 and j = 1. They are the six fundamental domains shownon table 13.Corollary.(i) P1;�;(1;1) for j = 0 �ts between E8 and E12.(ii) P2;�;(0;0) for j = 0 �ts between E7 and Z11.(iii) P3;�;(1;1) for j = 0 �ts between E6 and Q10.The 
orollary is illustrated by table 1.7. Con
luding Remarks7.1 We believe that the work of Vladimir Igorevi
h Arnold on series of singular-ities and our work on polyhedra representing Lorentz spa
e form for su
h seriesforeshadow the existen
e of some stru
ture as yet invisible. Therefore, we want to
on
lude with some remarks on open problems, history and future perspe
tives.As for open problems there are at least three problems resulting from our arti
le.Problem number one is the analysis of the series En;0, Zn;0, Qn;0. This may be aformidable task. At least we have done the three �rst 
ases. We may expe
t thatfundamental domains for these series �t into the gaps of the series En, Zn, Qn.Problem number two is the determination of the 
omplex stru
ture of the Tei
h-m�uller spa
es Tp. This is the unsolved problem of the a

essory parameters.We wish we 
ould 
al
ulate the j-invariant of a quadrangle singularity from a givenpoint of Tp. For it is known that singularities with spe
ial values of the j-invariantallow exoti
 deformations. First examples were given by F. Pham and C. T. C. Wall.Afterwards, there was extensive work on this done by our group, [12℄, [13℄, [42℄.For example the exoti
 deformations of E3;0, Z1;0 and Q2;0 into 
ombinations ofsimple singularities o

ur exa
tly for j = 0 and j = 1:j = 0 j = 1E3;0 �!E6 +E8 E3;0 �!E7 +E7Z1;0 �!E8 +E5, E7 +E6 Z1;0 �!E7 +D6Q2;0 �!E8 + 2A2, E6 +E6 Q2;0 �!E7 +A5For the other three bimodular quadrangle singularities exoti
 deformations o

uralso for other values of j (see [13℄, p. 56). For example W1;0 ! D13 o

urs forj = 53 � 10933212 � 112 :One may wonder about the meaning of these spe
ial values of the j-fun
tion.Do they have anything to do with spe
ial properties of our fundamental domains?The third problem is to understand the unexpe
ted phenomenon of in�nitelymany 
ombinatorial types for the signature (0; 2; 2; 2; 4) as opposed to �nitely manytypes for (0; 2; 2; 2; 3) and (0; 2; 2; 2; 5).7.2 In 1983 Arnold published a list of \Some open problems in the theory of sin-gularities" [9℄. In it Arnold posed the problem \A, D, E", whi
h 
onsists in �ndinga general 
lassi�
ation theorem from whi
h one 
ould derive the solutions of themany di�erent problems in whi
h there appear \unexpe
tedly" the Dynkin dia-grams of type A, D, E. It seems to us that su
h a problem raises questions aboutthe nature of our s
ien
e. The \unexpe
ted" o

urren
e of the same 
ombinatorial
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ture in solutions of di�erent problems may be due to the fa
t that in all theseproblems we are trying to 
lassify obje
ts of a parti
ular simple nature and thatin all 
ases the 
onditions ne
essary for their 
onstru
tion or existen
e redu
e tothe same simple stru
ture of some 
ombinatorial nature whi
h we do not yet see.However, this stru
ture might be something very abstra
t of a metamathemati
alnature. Frequently in the history of mathemati
s 
on
rete individual obje
ts ofa simple and regular nature appear many years before they �nd a pla
e in theframework of some general stru
ture.It seems to us that this may still be the status of Arnold's series of singularities.As we have seen, �rst examples appeared 100 years before Arnold found his series.And yet Arnold himself has to say ([10℄, Vol. I, p. 243):After a series has been found, we 
an de�ne it. However a general de�nitionof a series of singularities is not known.7.3 There is no doubt that the series of quasi-homogeneous singularities de�ned byArnold are meaningful. Their meaning appears in the 
ontext of various mathemat-i
al theories, as pointed out in 2.2. The work of many mathemati
ians has shownregular patterns within individual series or in the relations between series or 
om-mon to many of them. It would lead us to far to quote all these arti
les. We wouldlike to mention only a few results of our group apart form those already quoted:The results of W. Ebeling [31℄ and Ebeling and C. T. C. Wall [32℄ on quadrati
forms and monodromy groups of singularities and on Arnold's \strange duality"between Dolga
hev numbers and Gabrielov numbers, the results of C. Hertlingon Torelli type theorems for Arnold's unimodular and bimodular singularities andother quasi-homogeneous singularities [45℄, [46℄, the results of Greuel, Hertling andP�ster on moduli spa
es of semi-quasihomogeneous singularities [43℄, and the re
entwork of K. M�ohring [58℄ on numeri
al invariants and series of quasi-homogeneoussingularities whi
h led to the dis
overy of a 
ertain regular pattern for the systemof several of Arnold's series and the introdu
tion of new series whi
h �t into thispattern.7.4 The approa
h presented in this paper o�ers a new perspe
tive on regular pat-terns related to Arnold's series. Our regularity is that of a 
ombinatorial pattern,the 
ombinatori
s and symmetry of the fundamental domain 
onstru
ted in perfe
tgenerality by Anna Pratoussevit
h. This pattern 
an be used as an instrument forthe exploration of relations between series of quasi-homogeneous Gorenstein surfa
esingularities. At the same time it is an instrument for the exploration of relationsbetween series of 
losed Lorentz spa
e forms.Some aspe
ts of this 
ombinatorial pattern are ni
e and simple, at least forsuÆ
iently simple examples. Other aspe
ts show surprisingly subtle properties evenin the 
ase of simple examples su
h as the Fu
hsian group of signature (0; 2; 2; 2; 4).These subtle phenomena should not be ignored or reje
ted be
ause of the 
ontrastbetween their 
omplexity and the apparent simpli
ity of the normal forms of su
hsingularities.7.5 The remarks about the appearan
e of individual ni
e obje
ts whi
h later be-
ome examples of a general theory or 
onstru
tion applies to our 
onstru
tion too.When Thomas Fis
her had found his 
onstru
tion, we dis
overed that one of our
ombinatorial patterns had appeared many years before, albeit without any real-ization of a 
onne
tion with Lorentz spa
e forms. However, there was some 
onta
t
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e forms and Seifert �bre spa
es. Hereis the story, as we know it from a letter of H. Seifert, who got it from the diaryof W. Threlfall. In 1933 Seifert and Weber had published a joint paper entitled\Die beiden Dodekaederr�aume" [91℄. They 
onstru
ted a spheri
al spa
e form and ahyperboli
 spa
e form by identifying opposite fa
es of a dode
ahedron by s
rew mo-tions with angles �=5 and 3�=5. In [83℄, p. 209 and [87℄, I, x 12 Seifert and Threlfallidenti�ed the spheri
al dode
ahedral spa
e as the unique 
losed orientable Seifert�bre spa
e with �nite fundamental group di�erent from the sphere. Early in 1938a student who had written a masters thesis on spa
e groups asked Threlfall for atopi
 for a PhD-thesis. His name was H. Friedg�e. In January 1938 Seifert showedFriedg�e the position of the three ex
eptional �bres of multipli
ity 2, 3, 5 in thespheri
al dode
ahedral spa
e. At the end of the year, Friedg�e presented his thesisentitled \Verallgemeinerung der Dodekaederr�aume". It was published in 1940 inMathematis
he Zeits
hrift [39℄.In his thesis Friedg�e examines an in�nite series of 
losed 3-manifolds obtained byidenti�
ation of fa
es of 
ertain polyhedra. The polyhedra are not realized in someaÆne spa
e. The 
onstru
tion is purely topologi
al. In essen
e the polyhedra arethe same as our prisms with the subdivision of the re
tangular fa
es des
ribed in4.6, �gure 4, type E. And the identi�
ation of fa
es is the same as the one shownon table 8 for the E-series, type I.Friedg�e 
al
ulates the fundamental group and homology of his manifolds andnoti
es the period 6 in his series. For those of his manifolds whi
h are homol-ogy spheres he 
onstru
ts a Seifert �bration with his bare hands and 
al
ulatesthe multipli
ities of the �bres. They are (2; 3; 6k � 1) and agree with the sig-nature (�1; �2; �3) for E4m in our table 2.8. This identi�es his manifolds withknot-manifolds obtained as 
overings of the sphere rami�ed over the trefoil knot.Finally, he noti
es that there are other s
hemes for the identi�
ation of fa
es ofthe same polyhedra leading to other manifolds.7.6 A similar remark applies to the polyhedra whi
h we have found for the type IZ-series. In 1983/84 E. Moln�ar has given a 
ombinatorial 
onstru
tion of an in-�nite series of twi
e pun
tured 
ompa
t hyperboli
 manifolds obtained from su
hpolyhedra [59℄, [60℄. Of 
ourse, his identi�
ation s
heme is di�erent from ours.There is a ri
h literature on 
ombinatorial 
onstru
tions of hyperboli
 spa
eforms. Combinatorial 
onstru
tions for Lorentz spa
e forms seem to be rare. Butwe have found at least one su
h 
onstru
tion, again by E. Moln�ar. It was foundaround 1988 and presented in a short note [61℄. Moln�ar 
onstru
ts a doubly in�niteseries of 3-manifolds by identi�
ation of the fa
es of polyhedra obtained from atetrahedron by a subdivision of the fa
es depending on two natural numbers mand n. He 
laims that this is a Seifert �bre spa
e and that the 
orresponding 2-dimensional orbifold belongs to a triangle group with signature (2;m; n). So for1=2 + 1=m + 1=n < 1 the universal 
overing is fSL(2;R ). The 
ase of signature(2; 3; a), with a > 6 is treated in [62℄, se
tion 3. Again we see the appearan
e ofthe simplest possible 
ases. We do not see whether there is a relation between that
ombinatorial 
onstru
tion and our 
onstru
tion of fundamental domains, whi
h isnot only 
ombinatorial but geometri
al in the sense of Lorentz geometry.7.7 When we see all these di�erent 
ombinatorial 
onstru
tions of in�nite series ofpolyhedra and spa
e forms of di�erent geometries related to \series" of presenta-tions and representations of dis
rete groups we may dream of a theory 
omprising



40 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERthem all and giving us also a general notion of series of singularities. For the timebeing we are happy with what we have found. When we asked Seifert about themotivation for the thesis of Friedg�e, he replied:At that time we were delighted by every new three dimensional manifold.
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 singularities 54The image �(Fe) of the fundamental domain Fe for a dis
rete 
o-
ompa
t group� � fSU(1; 1) of �nite level is a 
ompa
t polyhedron in su(1; 1) with 
at fa
es. TheLie algebra su(1; 1) is a 3-dimensional 
at Lorentz spa
e of signature (n+; n�) =(2; 1). Su
h a polyhedron has a distinguished rotational axis of symmetry. Thedire
tion of this axis is negative de�nite, and the orthogonal 
omplement is positivede�nite. Changing the sign of the pseudo-metri
 in the dire
tion of the rotationalaxis transforms Lorentz spa
e into a well-de�ned Eu
lidean spa
e. The image �(Fe)of the fundamental domain is then transformed into a polyhedron in Eu
lideanspa
e with dihedral symmetry. Tables 1{7 and 10{13 show the Eu
lidean polyhedraobtained in this way. The dire
tion of the rotational axis is verti
al. The top andbottom fa
es are removed.The polyhedra in tables 5{7 are all s
aled by the same fa
tor to illustrate theproportions between di�erent fundamental domains. The same is true for tables 10{13. On the 
ontrary the polyhedra in tables 1{4 are s
aled by di�erent fa
tors insu
h a way that all the �gures in the same table seem to have the same size.Table 8 illustrates the identi�
ation s
heme for Em, Zm, Qm in the equian-harmoni
 
ase. The fa
e identi�
ation is equivariant with respe
t to the dihedralsymmetry of the polyhedron. The fa
es shaded in the same way are identi�ed. Ar-rows on the edges of shaded fa
es indi
ate the identi�ed 
ags (fa
e, edge, vertex).Table 9 shows fundamental domains �p for the group Mod(�p) and their strat-i�
ations by 
urves. Some points in �p are marked and numbered. Their numbers
orrespond to the numbers of �gures in tables 10{12.
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E8 ~E8 E12
E7 ~E7 Z11
E6 ~E6 Q10Table 1: Fundamental domains for the boundary layer singularities
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� � �~E8, j = 0 ~E8, j = 1

E12 E13 E14
E3;0, j = 0 E3;0, j = 1

E18 E19 E20Table 2: Fundamental domains for ~E8, E12, E13, E14, E3;0, E18, E19, E20
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~E7, j = 0 ~E7, j = 1
Z11 Z12 Z13

Z1;0, j = 0 Z1;0, j = 1
Z17 Z18 Z19Table 3: Fundamental domains for ~E7, Z11, Z12, Z13, Z1;0, Z17, Z18, Z19
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~E6, j = 0 ~E6, j = 1
Q10 Q11 Q12

Q2;0, j = 0 Q2;0, j = 1
Q16 Q17 Q18Table 4: Fundamental domains for ~E6, Q10, Q11, Q12, Q2;0, Q16, Q17, Q18
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E12 E13 E14�(7; 3; 2) �(5; 4; 2) �(4; 3; 3)
E18 E19 E20�(5; 3; 3)2 �(7; 4; 2)3 �(11; 3; 2)5
E24 E25 E26�(13; 3; 2)7 �(9; 4; 2)5 �(7; 3; 3)4
E30 E31 E32�(8; 3; 3)5 �(11; 4; 2)7 �(17; 3; 2)11Table 5: Fundamental domains for the beginning of the E-series
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Z11 Z12 Z13�(8; 3; 2) �(6; 4; 2) �(5; 3; 3)
Z17 Z18 Z19�(7; 3; 3)2 �(10; 4; 2)3 �(16; 3; 2)5
Z23 Z24 Z25�(20; 3; 2)7 �(14; 4; 2)5 �(11; 3; 3)4
Z29 Z30 Z31�(13; 3; 3)5 �(18; 4; 2)7 �(28; 3; 2)11Table 6: Fundamental domains for the beginning of the Z-series
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Q10 Q11 Q12�(9; 3; 2) �(7; 4; 2) �(6; 3; 3)
Q16 Q17 Q18�(9; 3; 3)2 �(13; 4; 2)3 �(21; 3; 2)5
Q22 Q23 Q24�(27; 3; 2)7 �(19; 4; 2)5 �(15; 3; 3)4
Q28 Q29 Q30�(18; 3; 3)5 �(25; 4; 2)7 �(39; 3; 2)11Table 7: Fundamental domains for the beginning of the Q-series
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........................ ........................ ........................ ........................aj
bj�3 bj

aj+3The 
ase E10+2n, i.e. � = �(k + 3; 3; 3)k or � = �(k + 6; 3; 2)k
........................ ........................ ................................................ ................................................aj


j�3 
j
aj+3bj bj�3�n

The 
ase Z9+2n, i.e. � = �(2k + 3; 3; 3)k or � = �(2k + 6; 3; 2)k
........................ ................................................ ........................bj


j�3�n 
j
bj+3+nThe 
ase Q8+2n, i.e. � = �(3k + 3; 3; 3)k or � = �(3k + 6; 3; 2)kTable 8: Identi�
ation s
heme for E, Z, Q in the equianharmoni
 
ase
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(2; 2; 2; 3) (2; 2; 2; 4) (2; 2; 2; 5)3 2 1��� 12

34

��

��

6 5 4 3 21������

Table 9: Strati�
ation of the fundamental triangles for (2; 2; 2; p), where p = 3; 4; 5
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Figure 1

Figure 2

Figure 3Table 10: The three 
ombinatorial types of fundamental domains for E3;0
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Figure 1 Figure 2
Figure 3 Figure 4
Figure 5 Figure 6Table 11: The six 
ombinatorial types of fundamental domains for Q2;0
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Figure 1 Figure 2
Figure 3

Figure 4
Table 12: Four generi
 
ombinatorial types of fundamental domains for Z1;0
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~E8 � � �

~E7
~E6equianharmoni
 
ase harmoni
 
ase(j = 0) (j = 1)Table 13: Fundamental domains for the simply ellipti
 singularities
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