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ABSTRACT. We consider discrete subgroups I' of the simply connected Lie
group éﬁ(l, 1) of finite level. This Lie group has the structure of a 3-dimen-
sional Lorentz manifold coming from the Killing form. T' acts on §ﬁ(1, 1) by
left translations. We want to describe the Lorentz space form F\é‘ﬁ(l, 1) by
constructing a fundamental domain F' for I'. We want F' to be a polyhedron
with totally geodesic faces. We construct such F for all T satisfying the fol-
lowing condition: The image T of T in PSU(1,1) has a fixed point u in the
unit disk of order larger than the level of I". The construction depends on T"
and T'u. N

For co-compact ' the Lorentz space form I'\SU(1, 1) is the link of a quasi-
homogeneous Gorenstein singularity. The quasi-homogeneous singularities of
Arnold’s series E, Z, Q are of this type. We compute the fundamental domains
for the corresponding group. They are represented by polyhedra in Lorentz
3-space shown on tables 1-13. Each series exhibits a regular characteristic
pattern of its combinatorial geometry related to classical uniform polyhedra.

1. INTRODUCTION

1.1 Between 1972 and 1976 Vladimir Igorevich Arnold published a very impor-
tant series of articles on the classification of singularities of functions. The series
began with a beautiful paper in @yHKIHOHAIBLHBIN AHATIN3 U €TI0 TPUIOKEHUS €n-
titled Normal forms of functions near degenerate critical points, the Weyl groups
of Ay, Dy, Ey, and Lagrangian singularities, [1]. In this paper Arnold introduced
the notion of a simple singularity. A simple singularity is one which does not have
moduli. Tt has a normal form not involving any continuous parameters. The main
result of the paper was the classification of all simple singularities of functions. The
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classification was given in the form of a complete list of normal forms as follows:

Ap:  f=xd+ 22 +Q, k>1,

Dy : f= iz + :c’;_l +Q, k>4,

FEg : f= a:f + a:% +Q,

Er : f= 2} +ma2} +Q,

Eg: f= 2 + =z +0.
where @) is a standard nondegenerate quadratic form in the remaining variables
Z3,...,Tn- These are real normal forms. In the complex analytic case one can

ignore the signs, so that there is just one normal form for each type Ay, Dy, Ey.

At the time when Arnold published this list of normal forms for the simple sin-
gularities which he had just introduced in 1972, these forms, or at least some of
them, were exactly 100 years old. They first occur in a paper by H. A. Schwarz
which appeared in 1872 in Crelles Journal [82]. The title was: Ueber diejenigen
Fille, in welchen die Gaussische hypergeometrische Reihe eine algebraische Func-
tion ihres vierten Elementes darstellt. The problem indicated in the title and solved
by Schwarz goes back to Riemann. In a manuscript about minimal surfaces writ-
ten around 1860 and published in 1867 after Riemann’s death, Riemann not only
pointed to the relevance of the problem, but also indicated how to solve the analytic
problem by means of geometry, [77], p. 296. The quotient s = y; /y» of two linearly
independent solutions of a hypergeometric differential equation defines a multival-
ued map from the Riemann sphere to the Riemann sphere. The upper half-plane
is mapped to a spherical triangle. Its angles are 7(1 —¢), 7(a + b—¢) and w(a — b),
where a, b and ¢ are the parameters of the hypergeometric differential equation.
The lower half-plane is mapped to a reflected triangle, and the whole range of the
function s is covered by the triangles obtained by iterated reflections, which are
permuted by the monodromy group of the differential equation.

The function s is algebraic if and only if this covering is finite. The interesting
cases where this occurs are those where the triangles are bounded by symmetry
planes of a regular polyhedron inscribed in the sphere. We consider the case where
they are fundamental triangles for the full symmetry group. So they are spherical
triangles with angles 7 /p, n/q, w/r, where (p,q,r) equals (2,3,3), (2,3,4) and
(2,3,5) for the tetrahedron, octahedron and icosahedron respectively.

The inverse map from the triangle to the half-plane is described by a rational
function of s invariant under the triangle group of orientation preserving symme-
tries. There are three natural relative invariants of this group, namely the polynomi-
als whose zeroes are the orbit of a vertex of the triangle. In case of the icosahedron,
these are absolute invariants. In view of their degree, Schwarz denotes them by
P12, Y20 and @sg. There is a basic relation between these three invariants, written
by Schwarz in the following form:

[p20(5)]° =47 - 3% - [p12(5)]” = [1030 ()]
This is essentially the equation of the Eg-singularity of Arnold’s list for the case of

three variables, and we see that from the very beginning there was a close relation
between these singularities and the symmetry of regular polyhedra.

1.2 In the next years, the subject was carried on by Felix Klein in a series of articles
and in his famous book Vorlesungen iber das Ikosaeder, which appeared in 1884.
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There is a very nice new edition of this book with an introduction and commentaries
by Peter Slodowy [51]. Klein considered not only the symmetry groups of the
regular polyhedra, but also the corresponding binary polyhedral groups obtained by
passing from PSU(2) to its universal cover SU(2). The finite subgroups of SU(2) are
the cyclic groups, the binary dihedral groups and the binary tetrahedral, octahedral
and icosahedral groups T, O and I. In Chapter III, § 1 of his book Klein determined
the polynomials in two variables invariant under these groups. He found that for
any of these groups I', the ring of invariant polynomials C[u,v]' is of the form
Clz,y,2]/(f). The polynomial f describing the basic relation between the three
generators z, y, z is exactly one of Arnold’s list, or it is easily transformed into
one of Arnold’s normal forms for n = 3. The correspondence is as follows: cyclic
groups correspond to Ay, binary dihedral groups to Dy, and binary tetrahedral,
octahedral and icosahedral groups T, O, I to Eg, E7, FEs.

Klein’s result was rediscovered around 1960 as a result of an exchange of ideas
between Friedrich Hirzebruch and Patrick DuVal, see [28]. In geometric terms it
means that the affine algebraic surface described by the equation f(z,y,2) =0 is
the quotient surface C?/T.

1.3 Therefore, the link of the singular point of this surface has the structure of the
3-dimensional spherical space form I'\ SU(2) = T'\S?, where we identify SU(2) with
the group S* of unit quaternions. It is natural to describe these spherical space
forms by means of a fundamental domain for T' acting on S* by left translations.
This has been done by Seifert and Threlfall in a paper [87] on 3-dimensional spher-
ical space forms published in two parts in 1930 and 1932. Perhaps the simplest
way of stating their result would be to say that the Dirichlet cell of the unit ele-
ment of I' € S? is a fundamental domain for T. Tt is a spherical polyhedron with
totally geodesic faces which Seifert and Threlfall determine explicitly for each of
the groups I'. However, this way of stating the result does not suggest how to pass
from the spherical geometry of SU(2) to the Lorentz geometry of SU(1,1), and it
also does not do justice to the beautiful classical geometry of the spherical case.

Recall that in the years 1850-1852 Ludwig Schlafli wrote a most remarkable
treatise entitled Theorie der vielfachen Kontinuitat which, alas, was published only
six years after his death in 1901, [81]. In section 17 of that treatise Schléfli classified
the 4-dimensional regular convex polytopes. There are six of them. Their Schlafli
symbols are:

(3,3,3), (3,3,4), (4,3,3),
(3,4,3), (3,3,5), (5,3,3).

The first three of them are the analogues of the tetrahedron, octahedron and cube,
which exist in every dimension. The other three are particular for dimension 4.
Two of them, (3, 3,5) and (5, 3,3) may be seen as analogues of the icosahedron and
dodecahedron. Their maximal faces are as follows: (3,3, 5) has 600 tetrahedra, and
(5,3,3) has 120 dodecahedra. They are dual to each other.

For (3,4,3) and (3,3,5) the vertices can be taken to be the elements of one of
the finite groups I' C S®. The polytope (3,4, 3) has vertex set T, and (3,3,5) has
vertex set I. The dual circumscribed polytopes of type (3,4,3) and (5,3,3) have T
and I as sets of centres of their octahedral and dodecahedral faces. Thus it is clear
that by central projection onto S* we get a tiling of S* by Dirichlet cells which are
spherical octahedra or dodecahedra.
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In order to deal with the binary octahedral group O we have to consider not only
regular, but also semi-regular polytopes, in the same way as Greek mathematicians
like Pappus of Alexandria admitted not only Platonic, but also Archimedian solids.
Their generalization to higher dimensions may be defined as follows. A convex
polytope is uniform, if it satisfies the following two conditions:

(a) The symmetry group acts transitively on the set of vertices.
(b) All facets are uniform.

To start the induction, one has to say what (b) means for the lowest dimensions:
a convex polygon is uniform if it is regular. Some authors call uniform polytopes
synonymously Archimedian. In dimension 3 the uniform convex polytopes are the
5 Platonic solids, the 13 Archimedian solids and the regular prisms and anti-prisms
added to this list by Johannes Kepler in his wonderful book Harmonice mundi
[49], p.- 73. In dimensions larger than 4, there is no complete classification. In
dimension 4 the uniform convex polytopes were enumerated by J. H. Conway in joint
work with M. T. J. Guy [20]. Most of them can be obtained by applying Wythoff’s
construction to the 4-dimensional reflection groups as described by H. S. M. Coxeter
[21], [22]. In particular, this applies to the convex polytope with vertices O. Tt is
obtained by mutual truncation from the two 24-cells of type (3,4, 3) whose vertices
are the two cosets of T in O. Here are the Wythoff constructions for the three
Archimedian solids with vertex sets T, O and I:

4
T & (3,4,3),
4
0O @@ t2(3,4,3),
5
I ® " (3,3,5).

The maximal faces of #; 2(3,4,3) are Archimedian polyhedra obtained from a cube,
truncated by an octahedron. Their faces are regular octagons and triangles. The
three Archimedian polyhedra belonging to I, O and T, i.e. to Eg, E;, Fg are
shown in the left column of Table 1. The other figures of that table indicate what
we intend to show in this paper.

We intend to show that the tilings of the spherical space SU(2) coming from the
three Archimedian polytopes described above are at the root of three infinite series
of tilings of the Lorentz manifold SU(1, 1) related to Arnold’s series E, Z, Q.

1.4 The idea to try something of this kind occurred to one of us many years ago.
In 1974 the beautiful results of Arnold and his students were to be presented at
the ICM in Vancouver, [4]. Since Arnold was not allowed to travel for political
reasons, the task of presenting his work fell to E. Brieskorn. Since that time,
Arnold’s discoveries have been a source of inspiration for him and his students and
coworkers as well as many other mathematicians.

Let us very briefly recall some of the results presented in Vancouver. For details,
we have to refer to the series of three articles in Ycmexu maremarndeckux Hayk
[3], [5], [6], which also show the rich mathematical context in which this work has
evolved. Some part of the history preceding Arnold’s work, especially the establish-
ment of the relation between the simple singularities and the simple complex Lie
groups of type Ay, Dy, Eg, E7, Es has been described in [18]. For further reading
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on this subject, we refer to the literature quoted in Peter Slodowy’s foreword to
the new edition of the lectures on the icosahedron and to [19]. We also refer to
Arnold’s article in Inventiones [7] and to the two books [8], [10].

Arnold classified singularities of functions up to right equivalence, and terms
such as number of moduli, 0-modular or I-modular refer to classes in this sense.
Arnold found that the classification of singularities with a small number of moduli
is “nice”. This applies in particular to the 0-modular and 1-modular singularities,
where several possible aspects contribute to the impression that we understand
these classes of singularities. One of these aspects is the arithmetic of the quadratic
form of the Milnor fibres associated to these singularities. The Milnor fibration of a
complex hypersurface singularity is an important part of the differential topology of
such singularities. It was introduced by John Milnor in 1966 and published in [55]
in the course of developments described in [18]. Another aspect refers to ways
of generating or constructing the singularities. It turned out that all the 0- and
1-modular singularities which Arnold found by analyzing the defining polynomial
forms have constructions involving discrete groups of transformations of complex
curves and surfaces. It is this relation to beautiful classical mathematics which
Arnold must have had in mind when, after describing the relation between Platonic
solids, simple Lie groups and simple singularities, he wrote in [4]:

As we will see now, the classification of more and complex singularities
provides new wonderful coincidences, where Lobatchevski triangles and au-
tomorphic forms take part.

Arnold’s classification of 0- and 1-modular singularities is summarized in the fol-
lowing theorem.

Theorem.

(1) The 0-modular singularities are the simple singularities Ay, k > 1 and Dy,
k>4 and Eg, Ey, Eg.
(2) The 1-modular singularities are (up to stable equivalence) those listed below:
(a) The simply elliptic singularities Eg, Er, E.
(b) The cusp singularities Tp 4,, 1/p+1/g+1/r < 1.
(¢) The fourteen exceptional one parameter families Ei2, E13, E14, Z11,
Z2, Zh3, Qro, Q11,Q12, S11, S12, Wiz, Wis, Ura.

Arnold describes these singularities by normal forms of the corresponding functions.
The normal forms of the 0-modular singularities and of the 1-modular singularities
of type (a) are quasi-homogeneous. Those of type (b) are not quasi-homogeneous.
The normal forms of type (c) are semi-quasihomogeneous. They are forms f =
g+ah, where g is quasi-homogeneous of a certain integral weight d, h is a monomial
of weight d + 2 and a is a real or complex parameter. Thus each of the 14 families
contains exactly one quasi-homogeneous singularity, the one with a = 0.

Note that for some singularities we use symbols different from those originally
introduced by Arnold. For the simply elliptic ones we use the symbols FEg, E;, Eg
introduced 1974 by K. Saito in [80]. Arnold’s symbols are T3 353, T2,4,4, T2.3,6 OF
Py, Xy, Jig. Our exceptional Fi5, Ei3, E14 were originally denoted by Kio, K3,
K4, but in 1975 Arnold adopted himself the new notation FEi», Ei3, E14. For
the singularities which Arnold denotes by Ji o we shall use E} o, because our work
shows that they fit into the E-series in the same way as Zj, o fits into the Z-series
and @, into the ()-series.
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The distinction between the various cases in the theorem above is reflected by
properties of the quadratic form on the second homology group of the Milnor fibre
of the corresponding complex surface singularity. Let p be the rank of the lattice,
i.e. the Milnor number. One has y = p4 + p— + po, where po is the rank of the
radical and py the rank of a maximal positive definite sublattice. The result of
work of several authors as summarized by Arnold is as follows.

Theorem. Complex surfaces of embedding dimension 3 with puy + po < 2 are
classified as follows.

(1) Those with (u+, o

( ) = (0,0) are the simple singularities.
(2a) Those with (4, o) = (0,2) are the simply elliptic singularities.
(2b) Those with (4, po) = (1,1) are the cusps Tp q,r-
(2¢) Those with (py,po) = (2,0) and number of moduli equal to 1 are the 1}
exceptional 1-modular singularities.

)

G. N. Tjurina and V. I. Arnold called these singularities in case (1) elliptic, in
case (2a) parabolic and in case (2b) hyperbolic.

1.5 The signature (u4,p—, o) describes only the real quadratic form. Actually
much more can be said about the Milnor lattices of these singularities. A. M. Ga-
brielov has described distinguished bases of vanishing cycles for these singularities
[40], [41]. They may be characterized by a triple of integers which Arnold called
Gabrielov numbers. From the arithmetic point of view, a very thorough inves-
tigation of these lattices was carried out by one of us in [17], supplemented by
B. Stoppok [85]. This was closely related to a description of the base space of the
semi-universal unfolding of exceptional 1-modular singularities in terms of arith-
metic quotients of bounded symmetric domains [16].

These investigations gave us reasons to focus on a particular part of the deforma-
tion hierarchy of 1-modular singularities, which was called “boundary layer” in [16].
Today we see this as a layer of transition from spherical to Lorentz geometry. If we
add the elliptic singularities, we get the following pattern of 12 singularities:

Ey Zi Quo exceptional layer,

Tos7r Tous Ts34 hyperbolic layer,
Eg Ey Es parabolic layer,

Ex E; Es elliptic layer.

The singularities of the three unimodular layers may be characterized as follows:
(a) Every non-simple singularity deforms into a singularity of the
parabolic layer.
(b) Every non-simple non-parabolic singularity deforms into a sin-
gularity of the hyperbolic layer.
(¢) Every non-simple, non-parabolic, non-hyperbolic singularity
deforms into a singularity of the exceptional layer.
The deformation relations of singularities above the boundary layer are very com-
plicated, also with respect to singularities in the boundary layer and below [12],
[13], [15], [42]. But within the boundary layer the situation is simple: the only
deformation relations are those of going downward in the vertical columns. We
take this as an indication that these three “stems” with “roots” in Eg, F, Eg and
continuation by Arnold’s series E, Z, () are very particular objects which deserve
special attention.
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1.6 In 1973, Arnold had published the classification of unimodal critical points of
functions [2]. Some of his normal forms for the exceptional 1-modular singularities
have a long history. The form for E;5 occurs already in 1878 in Klein’s paper Uber
die Transformationen siebenter Ordnung der elliptischen Funktionen [50] p. 652.
The equation for Ei3 occurs in Vorlesungen tber die Theorie der automorphen
Functionen by Fricke and Klein, [38], volume II, p. 652 and is related to the simple
group of order 360, [36]. The equation for F4 was found in 1880 by Klein’s student
W. Dyck in his dissertation, [30], [29].

The normal form of Arnold for the quasi-homogeneous singularity Fio in three
variables is

> + y7 + 22,

Mathematical objects related to this form were important as examples preceding the
development of a general theory of automorphic functions by Klein and Poincaré.
The same objects have been the starting point of the work of I. V. Dolgachev to
which Arnold was referring when he spoke about the wonderful coincidences with
Lobatchevsky triangles and automorphic functions.

We consider PSU(1, 1) as group of automorphisms of the unit disk D. In this 3-
dimensional Lie group, we consider discrete co-compact subgroups I'. In particular,
we consider triangle groups I'(p, ¢, ) belonging to hyperbolic triangles with angles

E, T and E, where 1+1+1<1.

p q r p q T
The smallest triangle is the one with (p,q,7) = (2,3,7). In T' = T'(2,3,7) there
is a unique largest normal subgroup I''. For a suitable representation of I" as an
arithmetic group, the group I'' can be described as a certain congruence subgroup.
The quotient I'/T” is the simple group G16s of order 168. This is the second smallest
simple group of composite order. It comes next after the icosahedral group Gego.
There are isomorphisms Ggo = PSL(2,F5) and G145 = PSL(2,F7). The analogy
between these two cases has been noted by Klein.

The group I'V acts on D without fixed points. It has a fundamental domain which
is a regular hyperbolic 14-gon consisting of 2 - 168 hyperbolic triangles with angles
/2, /3, w/7. This is the Hauptfigur of Felix Klein [50], p. 126. The surface I'"\D
is a Riemann surface of genus g = 3 with an automorphism group of the maximal
possible order 84(g — 1).

The surface X = I'"\D is non-hyperelliptic of genus g > 2. Therefore it has a
canonical embedding X € CPY~! into the projective space which belongs to the
space C? dual to the space of holomorphic 1-forms. This canonical curve in CP?
is the Klein quartic given by the homogeneous equation

3 3 3
ToxT1 + T2 + 520 = 0.

The finite group Gigs acts linearly on the space of holomorphic 1-forms. Therefore
it acts on C*> and on CP? leaving invariant X ¢ CP? and the cone Cx C C3.
Calculations of invariants by Klein and Gordan imply:

@
[Clzo, 71, 22]/ (zha1 + Time + T320)] '™ 2 Clz,y, 2]/ (2 +y" + 22).

This algebraic result can be interpreted geometrically as follows: The affine alge-
braic surface defined by the equation

2 +y +22=0
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is the quotient of the cone C'x over the canonical curve X by the group G163 = T'/T".

This was generalized in 1974 by I. V. Dolgachev [23]. Dolgachev introduced the
notion of a quotient-conical singularity. Let X € CP™ ! be a smooth projectively
normal curve. This means that the cone Cx C C" over C is a normal affine surface
with an isolated singular point. Let G C GL(n,C) be a finite group leaving C'x
invariant. The singularity of the quotient surface C'x /G corresponding to the vertex
of the cone is called a quotient-conical singularity. If X ¢ CPY"! is a canonical
curve and G a subgroup of Aut(X), the resulting quotient conical singularity is
called canonical of type (X, G).

For any hyperbolic triangle group I' one can find normal subgroups I'' acting
freely on DD, Mennicke [54]. Dolgachev proved that the canonical quotient conical
singularity of type (I'"\D,T'/T") depends only on I'. So there is a unique canonical
triangle singularity for each hyperbolic triangle group I'. Dolgachev characterized
these triangle singularities by their resolution graph. He proved the following the-
orem.

Theorem. There are exactly 14 canonical triangle singularities which can be em-
bedded in C3. They are the complex surface singularities corresponding to the 14
I-modular exceptional quasi-homogeneous normal forms of Arnold.

We note in passing that most of these triangles occur in the work of Fricke and
Klein when they describe arithmetic triangle groups. A complete enumeration of
all arithmetic triangle groups was given by K. Takeuchi [86].

1.7 The results which we are going to present in this paper are to be seen within
the context described in this introduction.

In section 2 we recall work of Dolgachev describing the links of all Gorenstein
quasi-homogeneous surface singularities as quotients T'\G of a 3-dimensional simply
connected Lie group G by a discrete co-compact subgroup. The groups G that occur
are SU(2), SU(1, 1) and the Heisenberg group. We describe the groups I' C SU(1, 1)
corresponding to Arnold’s singularities Ej, Zi, Qr and Es g, Z1,0, @2,0-

In section 3 we consider more generally discrete subgroups I' C §ﬁ(1,1) of
finite level. The level is the index of I' N Z in the centre Z of SAI/J(I, 1). Discrete
co-compact subgroups are of finite level by a general result of André Weil [92]
on discrete co-compact subgroups of connected semi-simple Lie groups without
compact components. We describe a construction of fundamental domains for all
discrete subgroups of finite level with a fixed point in I of order larger than the
level. This fundamental domain is a polyhedron in the Lorentz manifold SU(1,1)
with totally geodesic faces. It is modeled on a polyhedron in Lorentz 3-space.

In section 4 these fundamental domains are determined explicitely for the infinite
series Ek, Zk, Qk-

Section 5 is devoted to the description of fundamental domains for Es g, Z;,
Q2,0 Although these cases have been analyzed completely, we cannot present all
details in this exposition.

Section 6 describes fundamental domains for the subgroups I' of the Heisenberg
group corresponding to Fg, Er, Es.

The results are illustrated by tables 1-13. Tables 5-8 correspond to section 4,
tables 9-12 to section 5 and table 13 to section 6. Tables 14 offer a synopsis of the
different cases. They reveal a coherent combinatorial pattern for each of Arnold’s
series E, Z, () united with the three stems of the boundary layer. In particular
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table 1 shows the transition from the classical elliptic layer to the exceptional layer
via the parabolic layer. The tables show that the polyhedra in Lorentz 3-space
which we construct are true analogues of the three classical uniform polyhedra in
Euclidean 3-space which belong to the binary groups T, O, I of the tetrahedron,
octahedron and icosahedron.

1.8 The work presented in this paper has evolved during a period of more than 12
years. It began with the thesis of Thomas Fischer [35]. Fischer found the beautiful
construction of fundamental domains for canonical quotient-conic singularities and
calculated the first three cases F1o, Z11, Q10. His work was carried on by A. Kaiss,
U. Neuschifer, F. Rothenhdusler and S. Scheidt [48]. Up to now their joint paper
with L. Balke [11] published in Topology has been the only publication on this kind
of work which has appeared in a journal. Further progress was made in [74] by the
second author. At last, the final construction presented in section 3 was found by
A. Pratoussevitch [75]. The analysis of Ey, Zi, Q in section 4 is also her work.
The analysis of Es3 g, Z1,0, Q2,0 in section 5 is the work of F. Rothenh&usler [78].
The observations on Eg, E7, Eg are due to E. Brieskorn and were made many years
ago in discussions with Thomas Fischer.

We wish to thank Ludwig Balke and Claus Hertling for discussions with them
on our work in progress. We would like to thank Ilya Dogolazky for his help in
producing the figures. We also thank the referee for pointing out that any lattice in
a semi-simple Lie group without compact factors intersects its center in a subgroup
of finite index.

2. LINK SPACES OF QUASI-HOMOGENEOUS SINGULARITIES

2.1 Let R be the ring C[z1,...,z,] of polynomials in n variables with complex
coefficients. Let ¢ = (q1,.-.,q,) be a system of n positive integers, called weights.
Then R is a positively graded C-algebra R, if we define z; to be homogeneous of
degree ¢;. A monomial 1‘? - xﬁ{b has degree d = 41¢1 + - - - + i,¢n- The monomials
of degree d form a basis for the vector space R; of homogeneous polynomials of
degree d. This terminology is used in commutative algebra. When we deal with
singularities, we have to consider many different systems of weights. We shall then
call such polynomials quasi-homogeneous or weighted homogeneous of degree d with
weights (q1,...,qn).

An ideal I C R, is homogeneous if it is generated by homogeneous elements. An
affine algebraic variety V' C C" is quasi-homogeneous with weights (q1, . . ., qp) if its
defining ideal I in R, is homogeneous. Its affine coordinate ring R,/I is a finitely
generated positively graded C-algebra.

To a system of weights we associate a C*-action on C™:

(21, ey 2n) = (02, . 80 2p).

A variety V' C C" is invariant with respect to this action iff the defining ideal in
R, is homogeneous. There is a contravariant equivalence between complex affine
algebraic varieties with good C*-action and finitely generated positively graded
C-algebras.

Let (X,z) be a complex analytic singularity, i.e. the germ of a complex space
X at a point z. We call (X,z) quasi-homogeneous if there is an isomorphism

(X,z) = (V,0), where V C C" is an affine variety which is quasi-homogeneous for
some system of weights and 0 € C" is the origin. There may be several possible
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algebraic
geometry
automorphic topology of
forms manifolds
quasi-
homogeneous
singularities
Lie groups Seifert
and discrete fibre
subgroups spaces
differential
geometry

Figure 1: Quasi-homogeneous singularities in mathematics

systems of weights. However, the following result about uniqueness was proved by
Saito [79]. Let (X,x) be an isolated quasi-homogeneous hypersurface singularity
and (X,z) = (V,0), where (V,0) is an affine hypersurface defined by a quasi-
homogeneous polynomial of degree d with weights ¢, ..., q,. The weights can be
chosen so that (g;,d) = 1 and 2¢; < d. Then up to permutations the weights are
uniquely determined.

2.2 Quasi-homogeneous singularities are interesting objects. Two-dimensional qua-
sihomogeneous singularities are even more interesting, because they are at the cen-
tre of a net of relations between different fields of mathematics, as shown by figure 1.
We cannot explain all relations between these fields, but we want to mention those
which place our work in its proper context.

The relations between automorphic forms, algebraic geometry and the theory of
invariants existed from the beginning of the theory of automorphic functions and
are obvious in the writings of Fricke and Klein, [37], [38], [52].

The relation between algebraic geometry and the topology of manifolds which we
have in mind is also very old. It goes back to the turn of the century around 1900.
The relation is established as follows. Let V' C C" be an m-dimensional complex
algebraic variety with an isolated singularity at the origin. Let B2™ be the 2n-ball
of radius ¢ with centre 0. The boundary of the ball is a (2n — 1)-sphere S2"~!.
Consider the intersections

V.=VNB* and M.=VnS

For ¢ sufficiently small M. is a compact oriented differentiable manifold of dimen-
sion 2m — 1 smoothly embedded in S?"~1. The diffeomorphism type of the pair
(8271 M2™~1), £ small, depends only on the singularity (V,0). Moreover, there is
a homeomorphism between the pair (B., V) and the pair (B.,CM.), where C M.
is the cone over M. with vertex 0. When V is analytically irreducible at 0, M.
is connected. Otherwise, it will have several components which may be linked.
Therefore, the boundary M. of the neighbourhood V. of 0 is also called the link of
the singularity (V,0).
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For varieties V of complex dimension 1 and 2 these constructions go back to
W. Wirtinger, P. Heegard and H. Tietze and are closely related to the early history
of knot theory, M. Epple [34], chapter 8. Around 1960 work of D. Mumford [63] and
F. Hirzebruch [47] showed that there is a close link between singularities of com-
plex surfaces and the topology of 3-manifolds established by the link construction.
Further developments described in [18] led to interesting relations between links of
higher dimensional quasi-homogeneous singularities and differential topology [14],
[47], [55], [44]. For example consider the link M?"~3 of the quasi-homogeneous
affine hypersurface singularity given by the Eg-equation

o+ a5+ o+ + a2l = 0.

The curve M* C S is the (3,5)-torus knot. M? C S® is the link of the icosahedral
singularity. So M? is the spherical dodecahedral space obtained from a spherical
dodecahedron by identifying opposite faces by a screw motion with angle 7 /5, and
so M? can be identified with the famous Poincaré homology sphere, [91]. For n = 4,
the link space M? is a knotted 5-sphere in S”. Finally, the link space M7 in S°
is the exotic 7-sphere of Milnor, which Hirzebruch constructed as boundary of an
8-manifold obtained by glueing 8 copies of the tangent disc bundle of S* according
to the Coxeter-Dynkin diagram Fg.

The results mentioned above led to investigations on the topology of quasi-
homogeneous singularities such as [44], [57], [56], [65], [68], [88]. At the same time,
together with other developments, they led to the first systematic treatment of
quasi-homogeneous surface singularities as objects of algebraic geometry by P. Orlik
and Ph. Wagreich [72], [71].

2.3 The links of quasi-homogeneous singularities carry additional structures. One
structure is obvious. When M is the link of an isolated singularity of a quasi-
homogeneous variety V' with good C* action, this action induces an action of
S' ¢ C* on M. A closely related structure is the orbit decomposition of M as-
sociated to the action of S'. This is a fibration of M by circles which may have
exceptional fibres, if the action of S' has nontrivial isotropy groups. Such fibrations
are called Seifert fibre spaces, since they were first studied in 1933 by H. Seifert as an
additional structure on 3-manifolds [83]. Since then this extra structure was used as
a condition which makes the topology of 3-manifolds more accessible. Around 1967
investigations on the topology of Seifert fibre spaces such as [70] and closely related
work on S'-actions on 3-manifolds such as [69] merged with the new results quoted
above and led to systematic investigations on quasi-homogeneous singularities.

2.4 Two-dimensional quasi-homogeneous singularities are particular because the
corresponding graded affine coordinate rings can be identified with graded rings of
generalized automorphic forms. This was found in 1975-1977 by Dolgachev, Milnor,
Neumann and Pinkham, [24], [25], [56], [65], [73]. Let us recall their results.

Definition. A negative unramified automorphy factor (U,L,T) is a complex line
bundle L on the simply connected Riemann surface U, U = CP' or C or I, together
with a discrete co-compact subgroup I' C Aut(U) acting compatibly on U and the
line bundle L, such that the following two conditions are satisfied:

(i) The action of T is free on Lg, the complement of the zero-section of L.
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(ii) Let I «T be a normal subgroup of finite index which acts freely on U, and
let L' — Y be the complex line bundle L' = T\ L over the compact Riemann
surface Y = I\U. Then L’ is a negative line bundle.

Since L' is negative, one can contract the zero-section of L' and get a complex
surface with an isolated singularity corresponding to the zero-section. There is
a canonical action of the finite group I'/T’ on this surface. The quotient is a
complex surface X (L,T) with an isolated singular point 0, which depends only on
the automorphy factor (U, L,T).

Theorem. The surface X (L,T) associated to a negative unramified automorphy
factor (U,L,T) is a quasi-homogeneous affine algebraic surface with a normal iso-
lated singularity. Its affine coordinate ring is the graded C-algebra of generalized
[-invariant automorphic forms

A= U L™

m2>0

All normal isolated quasi-homogeneous surface singularities (X, z) are obtained in
this way, and the automorphy factors with (X (L,T),0) isomorphic to (X, z) are
uniquely determined by (X, z) up to isomorphism.

2.5 In a sense it is an abuse of language to call an element, of H°(U, L~™)" a gen-
eralized automorphic form. It is an automorphic form of integral weight m in
the classical sense when U = D and L = Tp, the tangent bundle of D, on which
[ C Aut(D) acts in the canonical way. As a generalization which is closer to the
classical case one may introduce automorphic forms with fractional weight. This
was done by Milnor in [56]. An elegant way of defining such forms is the following
definition of Dolgachev [27].

Definition. A Gorenstein automorphy factor is an unramified negative automor-
phy factor (U, L, T') such that there is an integer k and an isomorphism of I'-bundles
L* and Ty, where Ty is the tangent bundle of U. Moreover, for U = C the group
[ must be contained in the translation subgroup of Aut(C). The integer k is called
the exponent or the level of the automorphy factor.

Possible values of the exponent are k = —1 or —2 for U = CP!, whereas k = 0 for
U=Cand k>0 for U =D.

The name Gorenstein for these automorphy factors was chosen because of their
relation with Gorenstein singularities. A Gorenstein singularity is a singularity
whose local ring is a Gorenstein local ring. We shall not give the definitions of this
notion coming from commutative algebra. Instead, we give the definition used by
Dolgachev. An isolated singularity of dimension n is a Gorenstein singularity if its
local ring is a Cohen-Macaulay ring and if there is a nowhere vanishing holomorphic
n-form on a punctured neighbourhood of z. All isolated singularities of complete
intersections are Gorenstein singularities. In particular, the theory applies to the
surfaces in C* which we are going to study. In [27] Dolgachev proved the following
theorem obtained independently by W. Neumann (see also [26]).

Theorem. The quasi-homogeneous surface singularity (X(L,T),0) associated to
a negative unramified automorphy factor (U,L,T) is a Gorenstein singularity iff
(U,L,T) is a Gorenstein automorphy factor.
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2.6 The next problem is to determine the Gorenstein automorphy factors for a
given T, if they exist. The following proposition proved in [74] is an answer for " C
Aut(D).
Theorem. Let I' C PSU(1,1) be a discrete co-compact subgroup with signature
(g501,...,0;). Let b=2(g — 1) +r. There exists a Gorenstein automorphy factor
(D, L,T) of level k > 0 iff k satisfies the following divisibility conditions:

(i) (k,a;)=1foralli=1,...,r;

(ii) k divides [aq,...,0.] - (b— Za;l).
i=1

If these conditions are satisfied, there exist ezactly k2?9 Gorenstein automorphy fac-
tors for T'. In particular, there is a unique one if g = 0.

2.7 The affine coordinate ring of a quasi-homogeneous affine algebraic surface has
two alternative descriptions. On one hand it is a graded C-algebra R/I, where R is
a polynomial ring and I an ideal generated by quasi-homogeneous polynomials with
certain degrees for a given system of weights (¢q1,...,¢,). On the other hand, it is a
graded C-algebra of automorphic forms for a certain discrete group I’ with a certain
signature (g; a1, ...,a,). Comparison of these two descriptions leads to relations
between the two sets of data. Such arguments were used by Ph. Wagreich and
other authors to describe and classify certain algebras of automorphic forms with
few generators, [84], [89], [90]. Recently K. Mohring has used similar arguments and
K. Saito’s paper [79] for proving a theorem which allows to calculate the signature
and the level of the Gorenstein automorphy factors from the weights and degree
for all isolated quasi-homogeneous surface singularities of embedding dimension 3.

Theorem. Let V C C? be a quasi-homogeneous affine surface with an isolated sin-

gularity. Let (q1,q2,q3) be the weights and d the degree of a polynomial defining V.

Let k be the level and (g; o, . . ., a,) be the signature of the Gorenstein automorphy

factor associated to V. These data are related as follows.

(1) k=d—q — ¢ — g3,

(2) {au,...,a.} is contained in the union of the two disjoint sets {q; | ¢; 1 d} and
{(gi,q;) #1]i < j}. The as in the first set occur with multiplicity one. The
o in the second set occur with multiplicity m;;, where m;; + 1 is the number
of solutions of the equation xq; + yq; = d by nonnegative integers x, y.

(8) The genus g is determined by the relation

r
419293 (29—2+T—Za;1) =k-d.
i=1

Remark. Put e; =0 if ¢; | d and ¢; = 1 otherwise. Then Mohring proves:
mij = (d — eiq; — €;4:) /14, 45]-

2.8 Using his theorem quoted in 2.7 Mohring has calculated the exponents and
signatures of the automorphy factors for all quasi-homogeneous polynomials in three
variables in the well-known classes I-VII. In particular, table 19 in [58] gives these
data for Arnold’s series E, Z, Q, W, S, U. The results for E, Z, ) are as follows.

Theorem. The Gorenstein automorphy factors (U, L,T) for the series E, Z, Q
are of hyperbolic type, i.e. U =D and I' C PSU(1,1). Let k be the exponent and
(g;01,-..,qap) the signature of T. These data are given in the following two tables.
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In the first table the signature is given by (au,as,as3), since r = 3 and g = 0 for
all En, Zn, Qn.

Type | n mod 4 k (a1, 0,a3)
0 (n—10)/2 | (2,3,k+6)
ol 2 (n—10)/4 | (3,3,k+3)
1,3 (n—10)/3| (2,4,k+4)
3 (n=9)/2 |(2,3,2k +6)
Zn 1 (n—=9)/4 |(3,3,2k+3)
0,2 (n—9)/3 | (2,4,2k +4)
2 (n—28)/2 | (2,3,3k+6)
Qn 0 (n—28)/4 | (3,3,3k+3)
1,3 (n—8)/3 | (2,4,3k+4)
Type | n mod 2 k (g;01,-..,04)
5 1 n—2 (0;2,2,2,n)
o 0 (n—2)/2 (L;n/2)
2 1 n (0;2,2,2,2(n + 1))
0 0 n/2 (1;n+1)
0 0 n—1 (0;2,2,2,3n— 1)
ol [ m-n/2| (16— 1)/2)

The groups which belong to E,,, Z,, @, are triangle groups I'(av1, as, a3). They will
be investigated in section 4. The groups for E3 o, Z1 o and (2,9 are the “quadrangle
groups” I'(2,2,2,p), where p = 3,4,5. They will be the subject of section 5.

2.9 Dolgachev’s paper [27] shows how to pass from Gorenstein automorphy factors
(U, L,T) to quotients f\G of 3-dimensional Lie groups G by discrete co-compact
subgroups I'. This is done case by case for U = CP!, C and . We recall the
arguments for the case U = D.

(1) The universal covering group SAIIJ(I, 1) of PSU(1,1) has an infinite cyclic
centre Z. For each natural number k there is a unique cyclic covering
Gr — G of G; = PSU(1,1) defined by Gy, = SU(1,1)/kZ.

(2) For any complex line bundle and any natural number & there is a canonical
ramified covering map L — LF defined by v — v®- - -®v. The restriction to
the complements of the 0-sections is a cyclic unramified covering Ly — LE of
degree k. Let L* have a hermitian metric. Then there is a hermitian metric
on L, such that we get an unramified covering map for the corresponding
unit circle bundles:

SL —s SL*.

(3) The group G; = Aut(D) acts canonically on the circle bundle STy of unit
tangent vectors in the tangent bundle 7. The action is simply transitive.
Choosing a basepoint vy € Tp we get a Gi-invariant bijection G; —
STp, where (G1 acts on itself by left translations. This is an S'-bundle
isomorphism, where (G is fibred by the cosets of the isotropy group of 0 € D.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 15

(4) Now let (D, L,T) be a Gorenstein automorphy factor of level k. Then there
is a T-equivariant bundle isomorphism L* 2 Ty,. This induces a hermitian
metric on L¥ and a T-equivariant isomorphism of S'-bundles STy, = SLF.
Altogether we get a [-invariant isomorphism of S'-bundles ¢ : Gy — SL*.
This can be lifted to the k-fold cyclic coverings:

Y

Gk—>SL

|

G, —f ., Sk

The bijection 1 is determined up to multiplication with a root of unity. So
we get a well defined action of T on G, covering the action of T on G by left
translation. The T-orbit of the unit element in Gy, is a discrete co-compact
subgroup [ of G The covering map I' - T is an isomorphism identifying
the actions of T’ and T on G}, where T acts by left multiplication. We call
[ a lifting of T.

This leads to the following theorem proved by Dolgachev in [27] (see also the related

earlier results of J. Milnor [56], W. Neumann [65], [66], and F. Raymond and

A. T. Vasqez [76] quoted by Dolgachev).

Theorem. To every Gorenstein automorphy factor (I, L,T) of level k corresponds
a lifting T C Gy, of T C Gy. The link of the Gorenstein quasi- homogeneous surface
singularity (X (L, [),0) identifies with T\Gy. Conversely every lifting T C Gy
of T C Gy gives rise to a Gorenstein automorphy factor (D, L,T) of level k.

The discrete groups I' C G}, obtained as liftings of discrete co-compact groups in G
are those discrete co-compact subgroups of G which do not intersect the centre
of Gx. We may also describe them as follows. Let I' C SU(1,1) be a discrete
co-compact subgroup of level k. The image Cofin Gy, is a lifting of the image T
of T' in GG;. Therefore we may rephrase the results quoted above as follows.

Corollary. The links of quasi-homogeneous Gorenstein surface singularities of hy-
perbolic type identify with quotient spaces T\SU(1,1), where T is a discrete co-
compact subgroup in the simply connected 3-dimensional Lie group SU(1,1).

By “hyperbolic type” we mean that the singularity comes from an automorphy
factor (D, L,T) for the hyperbolic plane D.

2.10 In view of the results quoted above it is interesting to discuss the relations
between quasi-homogeneous singularities and differential geometry. The links of
quasi-homogeneous surface singularities may be given different kinds of geometric
structures.

One structure that always exists on links of isolated singularities is the CR-struc-
ture obtained immediately from the construction of the link. This CR-structure
determines the complex analytic singularity. 3-dimensional compact locally homo-
geneous nondegenerate CR-manifolds (i.e. CR-space forms) have been classified
by F. Ehlers, J. Scherk and W. D. Neumann [33]. They also classified the normal
complex surface singularities whose link is a CR-space form: Dolgachev’s quasi-
homogeneous Gorenstein singularities, cusp singularities, and quotients of them by
involutions.
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Another possibility is to ask for a geometric structure on the link of a surface sin-
gularity in the sense that it should carry a locally homogeneous Riemannian metric.
This leads to the well-known 8 geometries of Thurston. W. Neumann has discussed
the question which of these geometric structures occur on links of surface singu-
larities [67]. In particular he proved the following theorem. We consider a closed
orientable 3-manifold M endowed with a geometric structure which admits a Seifert
fibration with negative Euler number, and we exclude lens spaces. Then there is a
one-to-one correspondence between isometry classes of such structures on M and
biholomorphic equivalence classes of quasi-homogeneous surface singularities with
link homeomorphic to M.

For Gorenstein quasi-homogeneous singularities there is a third possibility. In the
hyperbolic case their links identify with quotients T'\SU(1,1), and so they are
Lorentz space forms. Here we do not restrict the notion of space form to Rie-
mannian space forms. A space form is any complete pseudo-Riemannian manifold
with constant curvature. The group SU(1,1) has a Lorentz metric of constant
curvature coming from the Killing form. So the links of quasi-homogeneous Goren-
stein surface singularities are closed 3-dimensional Lorentz space forms. Closed
3-dimensional Lorentz space forms have been characterized by R. S. Kulkarni and
F. Raymond [53]. Such space forms are orientable Seifert fibre spaces with hyper-
bolic base and nonzero Euler number. Of course, the relation with Seifert fibrations
is very important. However, we want to plead for another perspective which has
a long tradition in the case of spherical and hyperbolic space forms, but has not
been explored in the realm of Lorentz space forms. We propose to represent such
space forms T'\SU(1, 1) by constructing a polyhedral totally geodesic fundamental
domain F for T in the Lorentz manifold SU(1,1) together with the corresponding
pairing of faces. The construction given in section 3 shows that this is possible, and
the examples analyzed in section 4 and 5 show that this combination of differential
and combinatorial geometry reveals subtle features of the theory of representations

of discrete groups in SU(1,1) and is related to the structure of series of singularities
as defined by Arnold.

3. THE CONSTRUCTION OF FUNDAMENTAL DOMAINS

3.1 In this section we shall construct fundamental domains for a large class of
discrete subgroups I" of SU(1, 1). The Lorentz geometry of SU(1, 1) is not as simple
as the spherical geometry of SU(2). Therefore, the construction cannot be as simple
as in the spherical case. So the beautiful construction of fundamental domains for
subgroups of level 1 discovered by Thomas Fischer was something really new. We
shall generalize this construction to subgroups of SU(1, 1) of any finite level k.
There is one feature of Fischer’s construction which is similar to the construction
in the spherical case as presented in section 1.2. The spherical fundamental domains
were not constructed directly in the 3-sphere SU(2). They were obtained from a
4-dimensional polytope constructed in the ambient Euclidean 4-space. The bound-
ary of this polytope was projected onto the sphere by central projection from the
origin, where we view Euclidean 4-space as a cone over SU(2) with vertex at the
origin. In Fischer’s construction SU(1,1) is embedded as a Lorentz manifold in
a 4-dimensional linear space with a flat pseudo-metric of signature (2,2). Fischer
constructs a 4-dimensional polytope in the cone over SU(1,1). The boundary of
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this polytope is projected onto SU(1, 1), and the fundamental domains are the pro-
jections of the faces. The new idea of Fischer was the remarkable construction of
the 4-dimensional polytope.

Since we want to generalize the construction to arbitrary levels, we pass to the
universal cover. This will be done in sections 3.2 to 3.4 for SU(1,1) as well as its
cone. Sections 3.5 to 3.6 contain some elements of the construction. Finally the
construction itself is presented in 3.7 and visualized in 3.8.

3.2 We consider the complex vector space C* with the standard hermitian form
of signature (1,1). The real part is a symmetric real bilinear form of signature
(ny,n_) =(2,2). The associated quadratic form is

q(z1,22) = 2121 — 2225.

The group SU(1,1) acts on C? preserving ¢. The action is free on the complement
of the isotropic cone. Let Lo be the component containing vy = (0,1), i.e.

Lo = {(21,22) ec? | 2121 < 2222}.
There is a canonical bijective map from SU(1, 1) to its orbit
G =SU(1, v = {(21’22) eC? | 212) — 22722 = —1} C Ly.

The space G with the pseudo-metric induced from the pseudo-metric on C? is a
complete homogeneous Lorentz manifold of signature (ny,n_) = (2,1) with con-
stant curvature —1, in other words G is a pseudo-hyperbolic space. The map
SU(1,1) — G is equivariant with respect to the action of SU(1,1) on G and the
action on itself by left translation. The pseudo-metric induced on SU(1,1) agrees
with the biinvariant metric defined by the Killing form up to multiplication with a
scalar factor 8. Henceforth we identify SU(1,1) with G.

The group SU(1, 1) acts on the hermitian hyperbolic space D by fractional linear

transformations
az+b

cz+d’
where (25) is a matrix in SU(1,1), i.e. ¢ =b, a = d and ad — bc = 1. The isotropy
group of 0 € D is S(U(1) x U(1)). We denote the corresponding group in G by H.
Then we have canonical identifications of homogeneous spaces
SU(1,1)/S(U(1) x U(1)) =G/H =D,

where the map G — G/H is given by (21, 22) — 21/22. There is a corresponding
map on Lg defined by (z1,22) — 21/22

Lo — D.
This is a principal C*-bundle, where the action of A € C* is defined by
Mz, 29) i= (A2, A ).
The associated complex line bundle is denoted by
L —D.

The group SU(1,1) acts on this bundle. In order to identify the action, we trivialize
L mapping Ly to D x C* by (21, 22) = (2125 ', 25 "). This induces the following
action of SU(1,1) on D x C*:

(2,0) — az+b 1 y
’ cz+d’ cz+d )
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This identifies the line bundle L? as the complex tangent bundle T of the hermitian
symmetric space D. The action of SU(1, 1) induces the canonical action of Aut(D) =
PSU(1,1) on Tp. The action of PSU(1, 1) on the hermitian line bundle Tp is simply
transitive on the unit circle bundle STp. Choosing a base point we may identify
PSU(1,1) with STp. The double covering SU(1,1) is identified with the circle
bundle G C Ly C L. We may view G as the boundary of a disk bundle in L which is
aneighbourhood of the zero section. This is the reason why the locally homogeneous
spaces I'\SU(1,1) are links of quasi-homogeneous Gorenstein singularities. For a
Gorenstein automorphy factor (I, L,T) of level 1 or 2, the punctured singularity
X (L,T) ~ {0} equals T'\ Ly, where T'  SU(1, 1) is a lifting of T for level 2, and the
inverse image of T for level 1. Note that we have a commutative diagram of maps

o] N
G ——D
X

The map ¢ is the principal C*-bundle described above, x is the restriction of ¢ to
G C Ly and 19 is the central projection given by

1 _ 1
Y(z1,22) = ((2252 —2121) 221, (2272 — 2121) 222)-

The C*-action on Lg induces actions of R, € C* on Ly and of S' ¢ C* on G, so
that 1 is a principal R_-bundle and Y is a principal S'-bundle.

3.3 Now we shall consider universal coverings. In view of the identification of
SU(1,1) with G C Ly, the universal covering SAI/J(I, 1) — SU(1,1) identifies with
the universal covering G — G. Denote by Ly the induced R -bundle over G. We
have a commutative diagram

EOL)LU

v J l v
- ’
G -G
The maps 1/; and 1 are the projection maps of R -bundles, and 7= and 7' are
universal covering maps. Lo inherits a pseudo-Riemannian metric of signature
(ny,n_) = (2,2) from Ly. Both bundles have canonical sections G C Ly and
G C Ly. So we might describe them by a canonical trivialization.

However, we find it more convenient to work with another description of L
obtained as follows. Lg is contained in

{(21,22) | Z9 7£ 0} =C x (C*.

We may view Lg as a bundle of punctured discs imbedded in the C*-bundle defined
by the projection m on the first factor. Consider the universal covering 7 : C x R x
R, — C x C* defined by (z,a,r) = (z,7e!®). The inverse image of Lg identifies
with the universal covering 7 : I~/0 — Lg, where

Lo={(z,a,7) EC xR xRy | |2| <r}
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and 7(z,a,r) = (z,re'®). Moreover G C Lo has the following description
G={(z,a,r) ECxR xRy |r? =1+2°}.
The map 1/; : Ly — G is described as follows:

P(z,a,r) =

z r
7a ) *
VPR P TP

3.4 The universal cover §IVJ(1,1) of PSU(1,1) = Aut(D) acts on D. For z € D
there is a unique 1-parameter subgroup

ps : R — SU(1, 1)

such that p,(¢) acts on D as rotation through angle ¢ with centre z. It is easy to
see that pp : R — G is given by

po(2t) = (0,~1,1).
Moreover, multiplication by pg(2t) from the left is given by
,00(2t)(2’, Q, ’I") = (6itza a—t, 7“).

The two generators of the infinite cyclic centre Z of SAI/J(I,I) are po(£27) =
(0,Fm,1) = pp(£2m) for all z € D.

Let k£ be a natural number. The subgroup of index k in Z has generators
(0, £km,1). Given a level k£ and a natural number p relatively prime to k, we
define

d:=k/p and rg:=(0,—7d, 1) = po(27k/p).
The image of 74 in PSU(1,1) generates a cyclic group of order p.

Now let ' C SAIIJ(I, 1) be a discrete subgroup of level k. Let I be the image of T’
in PSU(1,1). Assume that T has a fixed point z € D of order p. We assume z = 0
without loss of generality. Moreover, we make the following assumption which is
important for our construction:

p>k.

Because of 2.6 we have (k,p) = 1. Therefore the isotropy group of 0 € D in T is
the infinite cyclic group generated by rq4, d = k/p.

We shall now start presenting the elements of the construction of a fundamental
domain for I'.

3.5 The advantage of embedding the Lorentz manifold SU(1, 1) as a submanifold G
of Ly in the affine space C? with its pseudo-metric comes from the fact that C?
is flat. The maximal geodesics in C? are the real affine lines. The maximal to-
tally geodesic submanifolds are the real affine linear subspaces. Their intersections
with Ly are maximal totally geodesic submanifolds of Ly. The maximal totally
geodesic submanifolds of G are the connected components of the intersections of G
with real affine linear subspaces of C* containing the origin.

We shall use the affine linear geometry in Lo C C? in order to define certain
totally geodesic hypersurfaces in Ly corresponding to affine tangent hyperplanes of
G in Ly. Let g be any element g € G and § its image § = 7(g) in G. The affine
tangent hyperplane of G C Lg at g is

E; ={y€Lo|(g,y)=-1}
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where (-,-) is the real part of the hermitian form on C2. The totally geodesic
hypersurface F; decomposes Lo into two half-spaces, an “inner” half-space

I;={yeLol|(gy) <-1}

and an “outer” half-space Hj. The spaces E; and I; are simply connected and even
contractible. Hence their preimages under 7 : G — G consist of infinitely many
components, one of them containing g.
Definition. For g € G, the spaces E, I,,H, C Lo are defined as follows:

(i) E, is the component of 7! (Ej) containing g.

(ii) I, is the component of 7—!(I;) containing g.

(iii) Lo\E, has two connectedness components. I, is the closure of one of them.

H, is the closure of the other one. E;, = I, N H, is the common boundary.

Note that I, maps bijectively onto Ij, whereas H, is the union of 7~ (Hj) and
T (Ip)\ I -
In terms of the description of Ly given in 3.3, the spaces defined above for any

g € G have the following concrete and simple description for the unit element
e=(0,0,1)

I ={(z1,20) € C? | Re(zy) =1, |z1| < |22},

Eg = {(2’1,22) S (C2 | Re(zg) =1, |21| < |22|}
The boundary of Ej; is a rotational hyperboloid of one sheet decomposing the
3-space Re(z2) = 1 into two components, and E; is the component containing

the axis of rotation. R
The corresponding subsets of Lo are as follows:

' (Iz) = {(z,a,7) E C xR x R4 | rcosa
I ={(z,a,r) ECx R xRy | rcosa

lz| <1},
lz| <7, |a <m/2},
E.={(z,a,r) eCXR xRy |rcosa=1, |z|<r, |af<m/2}.

Z
Z

We may visualize these sets by means of a projection to the (a, r)-half-plane R xR .
The common boundary E, of I, and H. projects to the curve defined by || <
and r = 1/ cosa.. This curve decomposes the half-plane into two components. Their

closures are
Xe = {(04,7‘) ERXR; |r<1/cosa or |a| > 7r/2}

1/cosa and |a| < m/2}

A\YARV/AN

Vo={(a,r) eER xRy |7

The condition |z| < r defines H. as an open disk bundle over X, and I. as a
disc bundle over Y.. If we consider I, and H. as differentiable manifolds, they are
obviously 4-dimensional half-spaces.

The sets I, and H, associated to any other element g € G are obviously obtained
from I, and H, by the operation of G on Lo, i.e. H, = gH, etc.

3.6 Suppose we are given positive integers k and p without common divisor. Put
d = k/p and consider the infinite cyclic subgroup I'y C G generated by the element
rq = (0,—7md,1) as in section 3.4. This group acts on G by left multiplication.
Consider the set

= () H,-

g€la
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Figure 2: The image X (d) of Q(d) in the (r,a) half-plane

How does it look like? The generator rq acts as follows:

ra(z,a,r) = (™2, o — nd, 7).

It acts on the (a,r)-half-plane by the translation 75 mapping («, ) to (o — 7d, r).
In view of gH, = H,, the images of the sets H,, g € I'y are the translates 77 (X,)
of the image X, of H, described in 3.5. Therefore we see that Q(d) is a disc bundle
over the set

X(d) = () 7 (Xe)-

neZ

Obviously, the nature of this set is very different for the two cases d < 1 and d > 1.
For instance, in the case d < 1, the boundary is connected, whereas for d > 1
there are infinitely many boundary components. Figure 2 shows the case d < 1, i.e.
p > k. The shaded area is the image X (d) of Q(d).

The manifolds g@Q(d) play a central role in our construction. So it is important
that the reader should understand the geometric nature of these objects. We have
described @(d) as a disc bundle over the set X (d) in the (a,r)-half-plane R x R..
We may describe Q(d) C Ly € C x R x Ry as

Q(d) = (C x X(d)) N Lo.

The reader should think of X (d) as a universal covering of a punctured plane
polygon. Consider the following diagram of covering maps

RxRy —~ C*

\ Jﬂ_”
™

C*
where 7(a,r) = re’® and 7'(a,r) = r'/kei®/* and 7""(z) = z*. Consider the curve
m(0X (d)). It is easy to see that this is a regular star polygon {%p} when k is odd
and a regular star polygon {2} when k is even. Therefore the curve 7'(9X (d))
is a curvilinear 2p-gon covering the star polygon once or twice. Let P’ ¢ C and

P = P(d) C C be the plane areas bounded by the curvilinear polygon #«'(0X (d))
and by the star polygon 7(X(d)). The images of X(d) are the punctured plane
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polygons 7'(X(d)) = P'\ {0} and n(X(d)) = P\ {0}. We think of the product
C x P' as a 4-dimensional 2p-gonal prism. C x X (d) is the universal covering of
the pierced prism C x (P'\ {0}). The product C x P C C? might be considered
as a 4-dimensional “star prism”. Its axis C x {0} does not meet Ly C C x C*.
Therefore the universal covering 7 : Ly — Lo maps Q(d) to the intersection of Ly

with the star prism:
T(Q(d)) = Lo N (C x P(d)).

3.7 Let T C gﬁ(l,l) be a discrete subgroup of finite level k. Its image T in
PSU(1,1) is a discrete subgroup of Aut(D). We assume that u € D is a fixed point
of T of order p > k. Set d = k/p. The construction of a fundamental domain for
the action of I' on SAIIJ(I, 1) depends on the choice of u.

Let T, C T be the isotropy subgroup of u and I'(u) C D the I'-orbit of u. For
z € T'(u), let T'(z) be the left coset of T,

T(z) := {g el | g(u) = a:}

Definition.
Q= ﬂ H,.
9€T ()
The H, C Lo are the “half-spaces” constructed in 3.5. Note that obviously
qu = 9Qu.-

The geometry of @, has been described in 3.6. We assume without loss of generality
u = 0. Then

Qu = Q(d),
where d = k/p and Q(d) is the universal prismatic set described in 3.6. So all Q,
are obtained from such a prismatic set by the action of T on Lq.

Definition.
P = U Q.
z€l(u)
Now we can state the main result.
Theorem. The boundary of P is invariant with respect to the action of T on L.
For any g € T the subset
Fg = 013P(Int3p(6Hg N 8P))

is a fundamental domain for the action of T' on OP. The projection Y :Ly— G
induces a T'-equivariant homeomorphism OP — G. The image

Fq = &(Fg)

is a fundamental domain for the action of T on G, the universal covering of
SU(1,1). The family (Fy)ger is a locally finite T'-equivariant tiling of G. For
every pair of different elements g,h € T' the intersection Fy, N Fy, lies in a totally
geodesic submanifold of G. If T is co-compact, then F, and F, are compact.

The proof is given in [75].

3.8 The construction of the 4-dimensional polytope P and the T'-equivariant tiling
of its boundary 0P by the fundamental domains F;, was done in the universal

covering Lo of Lg. Tt descends to the quotient of Lo by the subgroup of index k
in the centre of GG, but in general not to Ly. However, the individual fundamental
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domains F, and F, have models 7(F,) and 7(F,) in Ly C C*. Without loss of
generality we consider only F,, since w(F,) = ¢(n(F,)) by radial projection. We
also assume that the fixed point is u = 0, so that Q4. = gQ(d).

By definition F, lies in 0H, = E.. Recall that 7 : E, — E; is a homeomorphism
onto a solid rotational hyperbola lying in the affine tangent space of G = SU(1,1)

at the neutral element &. Therefore # maps F, bijectively onto a domain
W(Fe) C Eé

lying in that solid hyperbola. Moreover F; is contained in the intersection of FE,
and Q(d). Therefore the image m(F,) lies in w(E, N Q(d)). This is a piece of the
solid hyperbola cut out by two parallel planes orthogonal to the rotational axis. In
terms of coordinates z; = x1 + iy; and 2o = x5 + iys we have

m(Ee N Q(d)) =
{(21,22) €C* | w2 =1, @] + 7 —y5 <1, |yo| < tan(wd/2)}.

The set F, is obtained from E, N Q(d) by removing the interior of its intersection
with the other prismatic sets Q4 = gQ(d). Therefore 7(F) is obtained from the
piece of the solid hyperbola 7(E.NQ(d)) by removing those parts of its intersections
with the star prisms 7(g@Q(d)) that are images of E. N Q(d) N gQ(d).

This shows that for a discrete co-compact group I' C SU(1,1) the image 7(F)
of the fundamental domain F, is a compact polyhedron with flat faces in the three-
dimensional flat Lorentz space tangent to G at é. Thus we have inside the flat

Lorentz space su(1, 1) a polyhedral model for the curved fundamental domains F,.
This polyhedron represents the Lorentz space form 1"\§IVJ(1, 1).

Figure 3 shows how the polyhedron 7(F.) is carved from the solid hyperbola by
removing intersections with prisms. The example shown in the figure is a funda-
mental domain for Arnold’s exceptional singularity E14. The tables given in 2.8
show that Fi4 has an automorphy factor of level k = 1 and signature (3, 3,4). The
fundamental domain is constructed for the fixed points of order 4. Because of &k = 1
the star prisms are honest prisms, and the order 4 leads to prisms with an octagonal
base. Figure 3 is a slightly improved version of figure 4 in [11].

Figure 3: The construction in the case F14
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4. FUNDAMENTAL DOMAINS FOR Ep,, Zm, Qm

4.1 Anybody who has come to know the construction of fundamental domains
described in the last section will want to see examples. But if he tries to do some
examples, he is going to discover that there is a remarkable contrast between the
elegance of the general construction and the hard work required for the explicit
determination of the fundamental domains for a given class of discrete groups. The
examples presented in this section were calculated in [75] on more than hundred
pages and could not be done on less. The examples in the next section were done
in [78], and the analysis of those three examples needed about two hundred pages
without preceding preparations.

There is an obvious explanation for these difficulties. The definition of the poly-
tope P and the fundamental domain F, given in 3.7 involves all prismatic sets Q.
for the infinitely many points 2 € I'(u) in the orbit of the fixed point u of T chosen
for the construction. When T is co-compact, only finitely many @, are needed in
the construction of F.. However, there is no reasonable a priori estimate to tell us
up to which distance from u points 2 € I'(u) have to be taken into account. In fact
in section 5 we shall see an example where the number of essential prisms (), varies
in the Teichmiiller space of I and goes to infinity when we approach the boundary.

4.2 The choice of the examples presented in this paper was motivated by two kinds
of experiences. One motivation has been described in the introduction. It is the
belief that the series E, Z, @) play a distinguished role. The second motivation
comes from the previous experience with calculations of fundamental domains in
[35], [48], [74]. The authors of [35] and [48] calculated the fundamental domains of
the Fischer construction for all 14 triangle groups of Arnold’s 14 exceptional uni-
modular quasi-homogeneous singularities and for all choices of fixed points except
those of order two. Altogether, these are 27 examples of fundamental domains.
The experience with these examples shows two things. First, the choice of the fixed
point of highest order leads to the fundamental domain with the highest degree of
symmetry. As we will shortly see, this is not too surprising. Secondly, the choice
of the fixed point of the highest order seems to be suitable for the arrangement
of singularities in series. This assumption was confirmed in [74] by the calculation
of fundamental domains of the six triangle groups of level 2 which correspond to
bimodular exceptional quasi-homogeneous singularities.

We do believe that all these fundamental domains are interesting and that more
calculations for other series both for highest order of the fixed points and lower
orders would lead to new insight into the nature of Arnold’s series and the relations
between the series. However, we have decided to adhere to the principle stated
by Pappus of Alexandria quoted at the beginning of this paper. Pappus uses this
principle when he introduces the Archimedian polyhedra coming right after the
Platonic solids because of their regularity. So we have chosen to calculate the
fundamental domains for the series E,,, Z.,, @Qmn as well as for the three cases
Es0, Z1,0, @2,0, and in all cases we have chosen the fixed point of highest order.
In our opinion, the results confirm our expectations. In particular, the series of
polyhedra for E,, with m even, for Z,, with m odd, and for @,, with m even, is
simple, regular and beautiful. Other parts of the results are more subtle and will
be discussed later on.
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Before we go on, the reader should contemplate the figures of tables 57 show-
ing the fundamental domains for the series F,,, Z,,, @mn. We refer to the legend
preceding the tables for explanations concerning the drawing of the figures. We em-
phasize that the figures are strictly accurate representations of precisely calculated
polyhedra.

4.3 The group I' C G acts on G by left multiplication, and this action extends to
an action on Lo by isometries. This induces an action on P and on &P and finally
an action of I on the tiling (F;)4e¢ which is simply transitive. However, there may
be other isometries of Ly which act on the tiling. Those of these isometries which
map a particular F, onto itself will be called symmetries of F,. We are interested
in the group of these symmetries or subgroups of this group. It suffices to describe
these symmetries for the linear model of F,.

The group G acts on itself by left multiplications and also by right multiplica-
tions. Any isometry in the connected component of the identity is a product of a
left multiplication and a right multiplication. In particular, we have the subgroup
G = PSU(1,1) of inner automorphisms and its adjoint representation on su(1, 1),
the space containing the linear model of the fundamental domain. The isometry
group of G has four connected components. They may be described as follows. The

element ¢ € Isom(G) is defined by (g) = g~!. The isometry n € Isom(G) is the

involutive automorphism defined by 7(n(g)) = 7(g). We have
G’)O X {1757777577}7

CN;’)O X {1777}
The isometries of G lift to isometries of Ly. The symmetry groups of our polyhedra
F, will be dihedral groups of the form

(k) > (n),
where £ is an inner automorphism of finite order.
Now let T' C G be a discrete co-compact subgroup of level &, such that 0 € D is
a fixed point of order p for I' € PSU(1,1), and let F, be the fundamental domain
for T with this fixed point. As before, let po : R — G be the 1-parameter subgroup
such that po(t) acts on D by the rotation ¢ — e¢. Let k(t) € Isom(G)o be the
conjugation by po(t). This isometry acts on L, as follows:

Isom(G) = Isom

Isom™ (G) = Isom

—~~

K(t)(z,0,7) = (ez,0,7).

The isometry k(27/p) comes from conjugation with a generator of the isotropy
group I'g. Thus ', Ty, P, OP and F, are invariant under k(27/p). Therefore
the symmetry group of F, contains at least the cyclic group (k(27/p)) of order p.
However, there may be more rotational symmetry. Suppose for example that T is
a triangle group I'(p,q,r), where 0 € D is the fixed point of order p. If ¢ = r, the
normalizer of T in Aut(DD) = Isom™ (D) contains the rotation by the angle 7/p with
centre 0, whereas the isotropy group Iy is generated by the rotation by the angle
27 /p. Therefore, in this case the symmetry group of F, contains the cyclic group
k(m/p) of order 2p.

Other symmetries may occur when there is a reflection in Isom(ID) which nor-
malizes [ and the isotropy group I'y. Without loss of generality we may assume
that the reflection is given by ¢ + (. When the signature of T’ has genus 0, the
group I C G is uniquely determined by T. In this case it is obvious that n(T') = T
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and n(Tg) = Ty. Therefore, in this case, the involutive isometry 7 is a symmetry
of the fundamental domain F,. In particular, these arguments apply to all triangle
groups, since they are those normal subgroups of index 2 in the group generated by
reflections in the sides of the triangles which consist of orientation preserving isome-
tries. We assume without loss of generality that the triangle group is normalized
by the reflection ¢ — (.

4.4 A discrete co-compact subgroup I' of level k in §fJ(1, 1) such that the im-
age in PSU(1,1) is a triangle group with signature (aq, a2,as3) will be denoted
by F(al,ag,ag)k. We assume without loss of generality that a; < as < a3 and
that 0 € D is a fixed point of order 3. When we consider a fundamental domain
F, of T, we always mean the fundamental domain for the fixed point 0. Moreover,
we assume without loss of generality that I' is normalized by 7.

Definition. The symmetry index ¢(T') of T' = I'(ay, a2, a3)* is defined by

as, if a; < as,
q(T') = .
2a3, if ay = as.

In 2.8 we have given tables showing the groups I'(ai, as,as)* corresponding to

singularities of the series F,,, Z,n, @mn. Whenever it is convenient, we shall denote
these groups by the symbols E,,, Zp,, Qm-

The following two tables list all singularities E,,, Z,,, @ and show the symme-
try index of their group I'. In both tables n is a positive integer. In the table on
the left n is not divisible by 3. We shall say that singularities or groups listed on
the left are of type I and those on the right of type II.

r q(I') r q(I')
Eipyon | n+6 Erien | 2n+3
Zyyon | 2n+6 Zeten | 4n+ 2
Qg4on | 3n+6 Qs46n | Bn+1

Type I Type IT

Theorem. Let I' = I'(ay,as,a3)® be the group corresponding to one of the sin-
gularities of the series E,,, Zm, Qm. The fundamental domain F. of T' has the
symmetry group

Sym(Fe) = (k(2m/q(L)) x (n).
This is a dihedral group of order 2q(T"), where q(T') is the symmetry index of T.

The inclusion (k) x (n) C Sym(F) is obvious. The arguments for the other inclusion
are given in [11] Proposition 8 and [75], p. 41.

4.5 The fundamental domains for the groups I" of type I are sufficiently simple so
that we can describe them in this expository paper. For those of type II we refer
to the figures of the tables and to [75].

There are two different levels of precision in the description of the fundamental
polyhedra m(F.). A precise description has to determine such a polyhedron as a
certain subspace of the affine Lorentz space. This may be done by giving all vertices
and the partially ordered structure of the facets. Or we may present the polyhedron
by some construction beginning with half-spaces and applying the operations of
union and intersection. This is what we shall do.
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The second and lower level of precision is the purely combinatorial description of
the partially ordered structure of the facets. There is a systematic way of describing
these data for a group acting on a tiling, which was developed by A. Dress. Not
withstanding the advantages of such a systematic approach, we prefer a simpler and
naive description of the combinatorial structure which is adequate for the tilings
which we want to describe. This approach is also suitable for the analysis of the
tilings in the next section, where the combinatorial structure is not constant on the
Teichmiiller space.

We shall now indicate a precise construction for the model fundamental domains
of type I. These polyhedra live in the flat Lorentz space of signature (n4,n_) =
(2,1). However, such a polyhedron has a distinguished rotational axis of symmetry.
The direction of this axis is negative definite, and the orthogonal complement is
positive definite. Changing the sign of the pseudo-metric in the direction of the axis
of rotation transforms Lorentz space into a well-defined Euclidean space. In this
way, the model fundamental domain is transformed into a polyhedron in Euclidean
space with dihedral symmetry. We are going to give a construction, or rather two
constructions for such polyhedra in R

Let x, be the rotation of R?* around the z-axis by the angle 27/q. Let n be the
rotation around the z-axis by the angle m. These rotations generate the dihedral
group (k) % (n) of order 2q. Let H be an half-space bounded by a plane which
is not parallel to a coordinate axis, and let H~ be the half-space H~ = nH™*. We
assume that the wedge HT N H~ does not meet the z-axis. The wedge meets the
(z,y)-plane in a certain sector with some angle «. We assume that 0 < a—27/q < =.
Let w be some positive real number. We define the following subset of R:

P(H,q,w) := (R*\ U s{(HTYNH)) N (R? x [—w,w]).

This is a compact polyhedron with symmetry group (kq) % (7). We shall call it a
polyhedron of type In. We can modify the construction replacing the wedge by a
blunted wedge where the edge has been cut off by a plane parallel to the edge and
to the z-axis. We call polyhedra obtained by this modified construction of type Ib.

Much of the labour in calculations of the fundamental domains consists in re-
ducing their theoretical construction given in 3.7 to an explicit description such as
the one given in the following theorem.

Theorem. Let T' C SAI/J(I,I) be a discrete co-compact subgroup which belongs to
one of the series Em, Zm, Qm. Let ¢ = q(T') be its symmetry index. Suppose that
[ is of type I. Then the fundamental domain for T is a polyhedron in Lorentz space
whose symmetry group is a dihedral group of order 2q. It is of type Ia for the series
E,, and Q., and of type Ib for the series Z,,.

4.6 Once we have obtained a description of the fundamental domain F, as in 4.5
where the faces are identified as components of intersections F, N Fy, it is easy to
deduce the following description of the combinatorial structure.

We shall describe the identification of faces of F, by pairings of flags (f,e) and
(f',€e'), where f is a face and e is an edge of the face. Such a pairing is enough to
describe the identification of f and f’, since the identification reverses the orienta-
tion. When f; and f> are adjacent faces with common edge e = fi N f», the flag
(f1,e) will be denoted by (f1; f2)-
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Let P, be a regular ¢g-gonal prism. The rectangular faces are numbered in cyclic
order. For each of the types E, Z, Q define P,(E), Py(Z), P,(Q) as the prism P,
together with a subdivision of the rectangular faces which is equivariant with respect
to the dihedral group of orientation preserving symmetries of P,. The subdivision
of the j-th face is described by figure 4 together with a notation for the faces. The
g-gonal faces on top and bottom of the prism are denoted by d4 and d_.

b N ¢j
b
a; a) bj
Type E Type Z Type Q

Figure 4: The subdivision of the j-th face of the prism P,

Theorem. Let ' C é\lj(l,l) be a group of type I belonging to one of the series
En, Zm, Qm. Let ¢ = q(T) be its symmetry index. The fundamental domain
for T constructed in 3.7 has the same combinatorial type as P,(E), P,(Z) and
P,(Q) respectively. The face identification is equivariant with respect to the dihedral
symmetry of these prisms. It is given by the following table of pairs of flags.

r q(T) pairings
Eroton | n+6 | (a;5b)) «— (bj—s;d4) (dy5b5) «— (d—;ajn)
Zyton | 2n+6 (a5; ;) < (ej-s3dy) (di;b;) ¢ (d—;a;-n)
(bj;cj) > (bj—3—n;d+
Qston | 3n+6 | (bj;cj) = (cj-3—nids) (dy;cj) < (d—;bj—n)

These identifications of faces are illustrated on table 8.

The results of 4.5 and 4.6 cover 6 of the 9 cases in the first table in 2.8. The re-
maining three cases with signature (2,4, p) are considerably more complicated. We
have calculated fundamental domains for all these cases, as illustrated in tables 5-7,
in [75]. However, at present it is not proved for all p that these fundamental domains
coincide with those constructed in 3.7. We are convinced that this is true.

5. FUNDAMENTAL DOMAINS FOR F30, Z10, (2,0

5.1 The second table in 2.8 shows that the automorphy factors for Es, Z; 9 and
Q2,0 have level 1 and signature (0;2, 2, 2, p), where p = 3, 4 and 5 respectively. Since
the level is 1, it is enough to consider Fuchsian groups of signature (0;2,2,2,p) in
PSU(1,1) and their preimages in SU(1,1). The construction of fundamental do-
mains in SU(1,1) can be carried out within the framework of the original construc-
tion of Thomas Fischer.

We begin with a description of the real analytic Teichmiiller space of Fuchsian
groups with signature (0;2,2,2,p). The essential idea is the use of Fricke coordi-
nates and goes back to Fricke [37], p. 335-341 and [38], p. 296-299.
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Let T';, be the group defined by the following presentation:
Ty = (70,71,72,73 | 96 =7 =73 =73 = Y72y = 1).
The group of orientation preserving automorphisms of I',, is defined as
Aut™(Tp) := {p € Aut(T},) | Ja € T p(70) = ayoa™'}.

The group of inner automorphisms is a subgroup, and the modular groups are
defined as

Mod™(T',) := Aut™(T',)/ Inn(T,) = PSL(2,Z)

Mod (T')) := Aut (I',)/Inn(T",) = PGL(2,Z)
The representation space R(I'p) and the Teichmiiller space T(T',) are defined as
follows:

R(T,) := {d € Hom(T',,PSU(1,1)) | d injective and d(T) discrete}.
T(Tp) := Aut(PSU(1, 1)) \ R(T}).
The moduli space and the reduced moduli space for Fuchsian groups with signature
(0;2,2,2,p) are the quotients
T(T,)/ Mod™(T,) and T(T,)/Mod(T,).
We shall construct an isomorphism
:T(T,) —Tp

of the real analytic Teichmiiller space with a real analytic variety 7, which is a

connectedness component of the real cubic hypersurface V, in R?® given by the
following equation:

t2 4 12 + 12 — titotz — 4sin’(7/p) = 0.
The cubic V, has tetrahedral symmetry and has five connectedness components
separated by the planes ¢; = 2. The component 7, is defined as follows:
Tp = {(t1,t2,t3) €V | tr, 12,15 > 2},
We define three special elements §; € '), as follows:
01 ="M, 02:=%%, 0d3:="7172-
The coordinate functions ®; of the map ® are the Fricke coordinates defined by
®,(d) = |trace d(0;)|, i=1,2, 3.

The canonical action of the modular group Mod(T',) on T(T',) is transferred to 7,
via ®. The modular group acts on 7, as a group generated by reflections S; and
S! defined as follows: Let {3, j, k} = {1,2,3}. Then S; permutes the coordinates t;
and ¢, whereas S} replaces ¢; by

t; = tity — t;.

We want to construct a fundamental triangle A, C 7, such that Mod(T'p) is the
group generated by the reflections in the sides of A,,. The construction is illustrated
by figure 5.

The figure shows an image of 7, obtained by central projection from 0 € R?
onto the projective plane. The projection maps 7, one to one onto the equilateral
triangle with sides z; = 0, where ¢ = 1,2,3. The fixed point sets of the S; are
mapped onto the straight lines bisecting the angles of the triangle. The images
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%

A\

23:0

Figure 5: The image of 7, in the projective plane

of the fixed point sets of the S} are three curves which form a curvilinear triangle
with cuspidal vertices on the boundary. The bisectors subdivide the curvilinear
triangle into six smaller triangles. The preimages of these triangles are the six
subsets X;; C 7T, defined as follows:

Xij={teTy | ti>t; > te, tjty =2t}
The reflections in the sides of X;; are S;, S; and S;. The shaded triangle in the
Figure 5 is X15. We choose
Ap = X1»
as a fundamental domain for the triangle group
Mod(T',) = <Sl,Sg,S{>.

M0d+(I‘p) is the subgroup of index two preserving the orientation, and we might
choose X2 U X5, as fundamental domain for this group.

5.2 It suffices to study the construction of the fundamental domain F'(d) defined
in subsection 3.7 as F'(d) = F.(d(Tp)) for representations d € R(I',) which satisfy
the following conditions:
(i) 0 € D is a fixed point of d(vp), and d(vo) is the rotation by the angle 27 /p.
(ii) ®(d) € A.
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Let us call such d normalized and reduced, and let us denote the subset of these
representations by R(T'p)*.
We are going to need a precise description of the elements in the preimages

m C SU(1,1) of the groups d(T',) C PSU(1,1). Consider the group T, presented
as follows:

= 2 A _ 4 _ 4 _ _
r,= (7‘0,7‘1,1‘2,1“3 | ro? =r] =ry =715 =rorirery = 1>.

There is a natural way of lifting elements of finite order in PSU(1, 1) to elements of
twice that order if we consider these elements as contained in 1-parameter groups of
rotations and lift these 1-parameter groups. In this way we get for any d € R(T',)*
well-defined elements r;(d) € SU(1,1) by lifting d(;). Note that ro(d) = rg is
constant. There is an isomorphism
d:T, — d(T},)

defined by d(r;) = r;(d).

5.3 We shall now begin with Fischer’s construction of the fundamental domains
F(d) for d € R(Tp)*. We recall two elements of that construction. Recall that
in 3.5 we have defined for any g € G = SU(1,1) C Lo C C? a certain “half-space”
I, C Lo bounded by the tangent hyperplane E,. Recall also from 3.8 that we have
considered a certain intersection E, N Q(d) of a tangent space and a prismatic set.
We have described the image S, := 7(F. N Q(d)) in the tangent space E. of e € G

as a certain piece of a solid rotational hyperbola. Using these elements we define
the following polyhedron in the tangent space E. of G at e

p—1 3 2p—1 B
Fo(d) == Se N ﬂ ﬂ U IT‘BnT'i(d)T'g_m'
m=0 =1 n=p+1

This is not yet the Fischer domain F(d). But F(d) will be constructed by inter-
secting a finite number of polyhedra of this type. In order to get them, we define
the following automorphism y € Aut™(T):

X(Y0: 71,725 98) = (90, 17271 5715 73)-
The first main result is the following theorem.
Theorem. For p=3,4,5 and d € R(T',)* the following statements hold:

(i) The Fischer fundamental domain F(d) for the Fuchsian group d(T')) of sig-
nature (0;2,2,2,p) can be described as follows

Fd) = [\ Fodex?)

A=—00

(i) This intersection is finite. Therefore

At (d)
F(d) = [ Foldox™)
A=A_(d)

with uniquely determined maximal A_(d) € Z and minimal Ay (d) € Z.
(iii) A-(d) <0 < Ay (d)
(iv) A=(d) + A+(d) € {0,1}
(v) A(d) = Ap(d) — A=(d) is lower semi-continuous on R(Tp)*.
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The proof given in [78] is very complex. To some extent it uses the analysis of the
combinatorial structure in the individual cases p = 3, 4, 5. In the present exposition
we take this main theorem as a point of departure for the description of the results
in the individual cases which will be given below.

5.4 Note that the element y € Aut™(T,) defined in 5.3 acts on T, as a generator
for the infinite cyclic isotropy group of Mod™ (T'p) at the cuspidal vertex of A, since
O(doy) =S]-S3(®(d)). Therefore, for d € R(I',)*, the representations d o x™ in
the main theorem have images ®(d o x™) in the following set

U (81 - 83)"(X12 U Xo1).
nEZ

This is a neighbourhood of the cusp in the Satake-Borel-Bailey topology.

5.5 We shall now state the results of the analysis for the three cases p = 3, 4 and 5.
There are certain very interesting features which are common to all three cases, but
there are also differences so that we prefer to present the individual cases in the
order of increasing complexity. We shall deal with p = 3 in section 5.6, while p = 5
is done in 5.7 and p = 4 in 5.8. The results are illustrated on tables 10-12 for the
individual cases, table 9 for all three cases and on tables 2—4 in a synopsis of the
results of all three authors.

The functions Ay, A_ and A = AL — A_ defined in 5.3 induce corresponding
functions on A, which we shall denote with the same symbols. A is a lower semi-
continuous function A : A, — N. For any nonnegative integer n we consider the
interior of the corresponding preimage in A,

Al = A7 (n)°.

In all three cases the vertices of the fundamental triangle A, will play a special role.
We shall denote the vertex with angle 7/3 by vg, the one with angle 7/2 by v;.
They are the fixed points of Mod™ (') in A, of order 3 and 2 respectively. These
points correspond to special values of the j-invariant of the quasi-homogeneous
singularities. There are several possible normal forms for these singularities (see
e.g. [13], p. 191). Consider the following ones:

Esp: 23 +ax?y +ayt + 22
Zio: 2y +ar’y +ay® + 22
Q20 : ¥ +ax’y? + ayt +y2t
Then the j-invariant is
.4 (a®-3)?
Y AP

The values j = 0 and j = 1 are attained for a> = 3 and @ = 0. The point
vo corresponds to j = 0, and v; corresponds to j = 1. We shall therefore refer
to the fundamental domains of groups d(T',) with ®(d) = vg or ®(d) = vi as
the fundamental domains for j = 0 or j = 1. These fundamental domains are
distinguished by special symmetries. Moreover, they are distinguished by a very
interesting feature which we shall observe in each of the six cases p = 3, 4, 5 and
j =0, 1. Namely, each of them fills a well-defined gap in one of the six series F,,,
Zm, Qm of type I or of type II. If the reader has not yet noticed these gaps, he
should look again at the tables of symmetry indices in 4.4 and contemplate the
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figures on tables 5-7. Tables 2-4 show how the gaps are filled. The fundamental
domains for j = 0 and j = 1 fit perfectly with respect to combinatorial structure,
symmetry and identification of faces.

5.6 For p = 3 we can prove A_ = 0. Thus Az decomposes into the two open
subsets A§°) and Agl) and a curve (3 separating these regions. We have vy € Ago)
and v € Agl). The curve Cj is defined by the equation

—t1 +to+ 13 =2.

This decomposition Az = Ago) uCsz U Agl) is shown on table 9.

Theorem. There are three combinatorial types of fundamental domains F(d) for
Fuchsian groups d(T's). For d € R(I's)* the type of F(d) is constant on Ago)’ on Cs
and on Agl).

Figures 1-3 on table 10 show examples for the three combinatorial types for p = 3.

The numbers of the figures are the same as those of the corresponding points of Az
shown on table 9.

Corollary. The fundamental domains for Es fill the gaps

(i) for j =0 between Ei4 and Eig,
(i) for j =1 between Ei3 and Eig.

The corollary is illustrated by table 2.

5.7 For p = 5 we can prove A_ = 0. Thus A5 decomposes into two open subsets
Aéo) and Agl). They are separated by a curve C5 defined by the equation

—titots + tatz + tots + 15 — tity — tit3
—(1+T)t2t3+7’t1 +Tt2+7't3 —TZO,

where 7 = (v/5 — 1)/2. We have vy € Ago) and v, € Aél). We must refine this
stratification of Ay in order to get a stratification of Ay by the combinatorial type

of fundamental domains. The domain Ago) is subdivided into two open domains
Aéo)' and Aéo)” by a curve C{ defined by the equation

—13 + tity + Ttatz — 27t —t3 +2— 7 = 0.

The figure at the right hand on table 9 shows that C{ runs from the vertex vy to the
cusp. The vertex vy is not considered as a point of the curve. So we have defined
a decomposition of Ay into 6 disjoint strata:

As ={vtUAP" uctuAaP"ucsuAll.
We have marked one point on each stratum, numbered in this order. Table 11
shows the corresponding fundamental domains with the same numbering.

Theorem. There are siz combinatorial types of fundamental domains F(d) for
Fuchsian groups d(Ts). For d € R(T's)* the type of F(d) is constant on the six
strata of Ay defined above. In particular, the combinatorial type for j = 0 occurs
only at the isolated point vg.

Corollary. The fundamental domains for Q2 fill the gaps

(i) for j =0 between Q12 and Q1q,
(ii) for j =1 between Q11 and Q17.
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The corollary is illustrated by table 4.

5.8 The analysis of the case p = 4 led to a result which we did not expect at all: the
existence of infinitely many different combinatorial types of fundamental domains
for Fuchsian groups with signature (0; 2,2, 2, 4).

For p = 4 it turns out that the lower semi-continuous map A : Ay — N to
the nonnegative integers is surjective. Therefore, one gets a decomposition into
infinitely many open sets Afl"), n > 0. It turns out that anyone of these domains is

adjacent to its successor Afln'H), and that there is a connected curve C’in) separating

Al and A The first of these curves C\” is defined by the following equation:
tats — 1 —t2—t3+\/§=0.

This equation defines a curve Cy in all of 74, which intersects Ax in C’io). The other

curves C’in) are obtained from Cj by applying the reflections S3 and S| by turns.
Altogether we get an infinite stratification

A=AV ucPuaPuchuaPucPu. ..

The stratification is illustrated by the figure in the middle of table 9. We have
again vy € AEIO), v € AS).

Theorem. There are infinitely many combinatorial types of fundamental domains
F(d) for Fuchsian groups d(T'y). For d € R(I's)* the combinatorial type is constant
as long as ®(d) remains in one of the strata defined above.

Table 12 shows four fundamental domains corresponding to four points in the first
four strata Ai"), n =0, 1, 2, 3. The four points are shown on table 9.
Corollary. The fundamental domains for Z o fill the gaps

(i) for j =0 between Z13 and Zyz,
(ii) for j =1 between Z15 and Zi3.

The corollary is illustrated by table 3.
6. FUNDAMENTAL DOMAINS FOR Eg, E;, Fg

6.1 The results of Dolgachev quoted in section 2 imply that the links of singularities
of type Fs, Fr, Eg can be described as I'\G, where G is the group of unipotent
upper triangular 3 x 3-matrices and I is a discrete co-compact subgroup. Prior to
this, Milnor had given such a description for the link as a differentiable manifold,
where T' C G N SL(2,Z) was the congruence subgroup modulo x, where k = 1,2,3
for Eg, Er, Eg. However, Milnor’s description did not involve the moduli of these
singularities, and Milnor considered his proof as “rather ad hoc” and wrote “I do not
know whether there exists a more natural construction of these diffeomorphisms”,
[56].

The approach of Dolgachev leads to more natural constructions. But if we want to
describe the quotient T'\G by a fundamental domain, in contrast to the spherical
case SU(2) and to the Lorentz case SU(1,1) we do not have a natural pseudo-
metric coming from the Lie group, and we do not have a general construction
such as the classical construction in the spherical case and the generalized Fischer
construction developed by A. Pratoussevitch. Nevertheless, we shall make an “ad
hoc” construction which is fit to fill the gap between the spherical case and the
Lorentz case.
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6.2 By the work of K. Saito on simply elliptic singularities [80] it is known that the
singularities of type Es, Fy, Fg are obtained by contracting the zero section of a
line bundle over an elliptic curve with Chern class —«, where k = 1,2, 3. Therefore,
the links of these singularities are the corresponding S'-bundles.

Complex line bundles over complex tori are described by the theorem of Appel-
Humbert, Mumford [64], p. 20. The specialization to the case of elliptic curves is
as follows.

Let H be the upper half-plane, 7 = p + ioc € H and T'; the lattice Z + Z7 C C.
The complex line bundles over the elliptic curve X, = C/T'; are constructed as
follows. We define a hermitian form H on C by

H(z,w) = £(zw).
Let a = (a1, a0) € S' x S' a pair of complex numbers of absolute value 1. For
u=m+nt € T';, define

eu(z) = af*a} - exp (w(ikmn + H(z,u) + 3 H(u,u))).
The lattice I'; acts on C x C as follows:
U(Z, /\) = (Z +u, eu(z) ’ /\)

The projection to the first factor defines a complex line bundle L o = C x C/T';
over X, with Chern number k. The theorem of Appel-Humbert says that any
complex line bundle over X, is isomorphic to a unique Lt . Two bundles Ly ; o
and Ly, , g differ only by a translation. In our case k = —k, where k = 1,2, 3.

The link of the singularity obtained by contracting the zero section identifies
with L ro/R4+, and this identifies with C x Sl/[‘,., where u = m 4+ nt € I'; acts
as u(z,\) = (z + u,eu(2) - A) with

eu(2) = af"ad - exp (in(kmn + Im H(z,u))).
We evaluate the symplectic form w(z,u) = Im H(z,u). For v = m + nr and
z = &+ n7 with real £,n we have
w(z,u) = k(n€ — mn).
6.3 We shall now pass to the universal covering C x R — C x S' mapping (z,t)

to (z,ei™). We define a Heisenberg group structure on C x R by means of the
symplectic form w = Im H:

(u,8) - (z,t) = (u+ 2,8+t +w(z,u)).

Let us denote C x R with this group structure depending on x and 7 by H, .
We shall describe the links of our singularities as quotients of H, , by discrete
subgroups. We describe these discrete subgroups as representations of an abstract
group Il isomorphic to the fundamental group of the link (k = 1,2, 3):

I, = <a,b,c | aba b~ = c*, ac=ca, bc= cb).
Recall that in 6.2 we used a = (a;,a2) € S' x §' in our construction of a bundle

over C/T';. Passing to the universal covering, we have to use instead a pair of real
numbers € = (g1,€2), where a,, = ¢"™». Now we can define a representation

Pe - Hn — HK?,T

as follows:
pE(a') = (1781)7 pE(b) = (7—752)7 pE(c) = (072)
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It is easy to see that p. is injective and that the image is a discrete co-compact
subgroup
pE(Hn) =:Tyre CHg,r-

This discrete group operates on H,, ; by left multiplication, and the following propo-
sition follows immediately from the definitions and 6.2.

Proposition. T', ; \H. - identifies with the link of the singularities obtained by
contracting the zero section in L_, ;.

6.4 The parameters (7,¢) are points in a 4-dimensional space of representations of
I1,,. We shall simplify the analysis by two different reductions. The first reduction
is to consider only 7 in a fundamental domain A C H of the modular group. A is
the triangle defined by

A={reH|rr>1, -1<7+7<0}.

The vertices are vy = €2™/3 and v; = i and the cusp at infinity. For 7 € A, we

consider the Dirichlet cell D, of 0 € C? for the lattice I'». For 7 € A not on the
imaginary axis D, is a hexagon. The adjacent Dirichlet cells belong to £1, £7 and
+(1 + 7). When 7 tends to the imaginary axis, the Dirichlet cell degenerates into
a rectangle. D is a regular hexagon for v = vy and a square for v = v;.

Now consider the prism

D, x[-1,1] C Hy r-

It is obvious from the definition of I'; ;. that we may choose this prism as a
fundamental domain for 'y ;. acting on #, . by left multiplication. However,
we have to subdivide the rectangular faces in 9D, x [—1,1] if we want that the
identifications on the boundary of the prism maps faces to faces. The minimal
subdivisions satisfying this condition are canonical, and we define

P.r.=D; x[-1,1]

as the prism with this subdivision of D, x [—1,1].

The second reduction is guided by the principle of highest symmetry stated
in 4.2. We want that P, ;. should have a dihedral symmetry group of order 12 for
7 = vy and of order 8 for 7 = 1. For any 7 € A, the subdivision of a rectangular
face of the prism in 8D, x [0, 1] should be invariant under rotation of the face
around its center by 180°. It is easy to see that these conditions are equivalent to
the condition 1,e € Z. Therefore, we assume without loss of generality

€1,€2 € {0, ].}

After this reduction one has to analyze 12 = 3 - 4 families of fundamental domains
P, e, where kK =1, 2, 3 and € = (e1,¢2) and 7 € A. This is an exercise in linear
algebra. In each case it is easy to determine the stratification of A by combinatorial
types and the most symmetric polytopes for the vertices vg and v; of A. We shall
be content to state the result pertinent to the main theme of this article. We define

(k) = (1,1), for k=1 and 3,
~1(0,0), for =2

Proposition. The siz fundamental domains Py o) with & = 1,2,3 for 7 = vy
and T = vy correspond to the links of the simply elliptic singularities Es, E;, Eg



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 37

with j-invariants j = 0 and j = 1. They are the siz fundamental domains shown
on table 13.
Corollary.
(i) Py 1,4y for j =0 fits between Eg and Eys.
(i) Py - 0,0y for j =0 fits between E; and Zi;.
(iii) Ps - 1,1y for j =0 fits between Eg and Q1o.
The corollary is illustrated by table 1.

7. CONCLUDING REMARKS

7.1 We believe that the work of Vladimir Igorevich Arnold on series of singular-
ities and our work on polyhedra representing Lorentz space form for such series
foreshadow the existence of some structure as yet invisible. Therefore, we want to
conclude with some remarks on open problems, history and future perspectives.

As for open problems there are at least three problems resulting from our article.
Problem number one is the analysis of the series E, o, Z5,0, @n,0- This may be a
formidable task. At least we have done the three first cases. We may expect that
fundamental domains for these series fit into the gaps of the series E,,, Z,, Q.

Problem number two is the determination of the complex structure of the Teich-
miiller spaces 7,. This is the unsolved problem of the accessory parameters.
We wish we could calculate the j-invariant of a quadrangle singularity from a given
point of 7,. For it is known that singularities with special values of the j-invariant
allow exotic deformations. First examples were given by F. Pham and C. T. C. Wall.
Afterwards, there was extensive work on this done by our group, [12], [13], [42].
For example the exotic deformations of E5, Z1 0 and (2, into combinations of
simple singularities occur exactly for j =0 and j = 1:

j=0 j=1
E3’0 — E6 + Eg Eg,() — E7 + E7
Z1o0— Eg + Es5, E7 + Eg Zip— Er+ Dg
Q20— Es + 245, Es + Es Q20— E7 + As

For the other three bimodular quadrangle singularities exotic deformations occur
also for other values of j (see [13], p. 56). For example Wy o — D;3 occurs for

_5%-1093?

IT e
One may wonder about the meaning of these special values of the j-function.
Do they have anything to do with special properties of our fundamental domains?
The third problem is to understand the unexpected phenomenon of infinitely

many combinatorial types for the signature (0;2,2,2,4) as opposed to finitely many
types for (0;2,2,2,3) and (0;2,2,2,5).

7.2 In 1983 Arnold published a list of “Some open problems in the theory of sin-
gularities” [9]. In it Arnold posed the problem “A, D, E”, which consists in finding
a general classification theorem from which one could derive the solutions of the
many different problems in which there appear “unexpectedly” the Dynkin dia-
grams of type A, D, E. It seems to us that such a problem raises questions about
the nature of our science. The “unexpected” occurrence of the same combinatorial
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structure in solutions of different problems may be due to the fact that in all these
problems we are trying to classify objects of a particular simple nature and that
in all cases the conditions necessary for their construction or existence reduce to
the same simple structure of some combinatorial nature which we do not yet see.
However, this structure might be something very abstract of a metamathematical
nature. Frequently in the history of mathematics concrete individual objects of
a simple and regular nature appear many years before they find a place in the
framework of some general structure.

It seems to us that this may still be the status of Arnold’s series of singularities.
As we have seen, first examples appeared 100 years before Arnold found his series.
And yet Arnold himself has to say ([10], Vol. I, p. 243):

After a series has been found, we can define it. However a general definition
of a series of singularities is not known.

7.3 There is no doubt that the series of quasi-homogeneous singularities defined by
Arnold are meaningful. Their meaning appears in the context of various mathemat-
ical theories, as pointed out in 2.2. The work of many mathematicians has shown
regular patterns within individual series or in the relations between series or com-
mon to many of them. It would lead us to far to quote all these articles. We would
like to mention only a few results of our group apart form those already quoted:
The results of W. Ebeling [31] and Ebeling and C. T. C. Wall [32] on quadratic
forms and monodromy groups of singularities and on Arnold’s “strange duality”
between Dolgachev numbers and Gabrielov numbers, the results of C. Hertling
on Torelli type theorems for Arnold’s unimodular and bimodular singularities and
other quasi-homogeneous singularities [45], [46], the results of Greuel, Hertling and
Pfister on moduli spaces of semi-quasihomogeneous singularities [43], and the recent
work of K. Mdhring [58] on numerical invariants and series of quasi-homogeneous
singularities which led to the discovery of a certain regular pattern for the system
of several of Arnold’s series and the introduction of new series which fit into this
pattern.

7.4 The approach presented in this paper offers a new perspective on regular pat-
terns related to Arnold’s series. Our regularity is that of a combinatorial pattern,
the combinatorics and symmetry of the fundamental domain constructed in perfect
generality by Anna Pratoussevitch. This pattern can be used as an instrument for
the exploration of relations between series of quasi-homogeneous Gorenstein surface
singularities. At the same time it is an instrument for the exploration of relations
between series of closed Lorentz space forms.

Some aspects of this combinatorial pattern are nice and simple, at least for
sufficiently simple examples. Other aspects show surprisingly subtle properties even
in the case of simple examples such as the Fuchsian group of signature (0;2,2,2,4).
These subtle phenomena should not be ignored or rejected because of the contrast
between their complexity and the apparent simplicity of the normal forms of such
singularities.

7.5 The remarks about the appearance of individual nice objects which later be-
come examples of a general theory or construction applies to our construction too.
When Thomas Fischer had found his construction, we discovered that one of our
combinatorial patterns had appeared many years before, albeit without any real-
ization of a connection with Lorentz space forms. However, there was some contact
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with two of the fields mentioned before: space forms and Seifert fibre spaces. Here
is the story, as we know it from a letter of H. Seifert, who got it from the diary
of W. Threlfall. In 1933 Seifert and Weber had published a joint paper entitled
“Die beiden Dodekaederraume” [91]. They constructed a spherical space form and a
hyperbolic space form by identifying opposite faces of a dodecahedron by screw mo-
tions with angles 7/5 and 37/5. In [83], p. 209 and [87], I, § 12 Seifert and Threlfall
identified the spherical dodecahedral space as the unique closed orientable Seifert
fibre space with finite fundamental group different from the sphere. Early in 1938
a student who had written a masters thesis on space groups asked Threlfall for a
topic for a PhD-thesis. His name was H. Friedgé. In January 1938 Seifert showed
Friedgé the position of the three exceptional fibres of multiplicity 2, 3, 5 in the
spherical dodecahedral space. At the end of the year, Friedgé presented his thesis
entitled “Verallgemeinerung der Dodekaederrdume”. It was published in 1940 in
Mathematische Zeitschrift [39].

In his thesis Friedgé examines an infinite series of closed 3-manifolds obtained by
identification of faces of certain polyhedra. The polyhedra are not realized in some
affine space. The construction is purely topological. In essence the polyhedra are
the same as our prisms with the subdivision of the rectangular faces described in
4.6, figure 4, type E. And the identification of faces is the same as the one shown
on table 8 for the E-series, type I.

Friedgé calculates the fundamental group and homology of his manifolds and
notices the period 6 in his series. For those of his manifolds which are homol-
ogy spheres he constructs a Seifert fibration with his bare hands and calculates
the multiplicities of the fibres. They are (2,3,6k + 1) and agree with the sig-
nature (a1,qq,as) for Eyy, in our table 2.8. This identifies his manifolds with
knot-manifolds obtained as coverings of the sphere ramified over the trefoil knot.

Finally, he notices that there are other schemes for the identification of faces of
the same polyhedra leading to other manifolds.

7.6 A similar remark applies to the polyhedra which we have found for the type I
Z-series. In 1983/84 E. Molnér has given a combinatorial construction of an in-
finite series of twice punctured compact hyperbolic manifolds obtained from such
polyhedra [59], [60]. Of course, his identification scheme is different from ours.

There is a rich literature on combinatorial constructions of hyperbolic space
forms. Combinatorial constructions for Lorentz space forms seem to be rare. But
we have found at least one such construction, again by E. Molndr. It was found
around 1988 and presented in a short note [61]. Molndr constructs a doubly infinite
series of 3-manifolds by identification of the faces of polyhedra obtained from a
tetrahedron by a subdivision of the faces depending on two natural numbers m
and n. He claims that this is a Seifert fibre space and that the corresponding 2-
dimensional orbifold belongs to a triangle group with signature (2,m,n). So for
1/24+1/m + 1/n < 1 the universal covering is §[:(2,]R). The case of signature
(2,3,a), with a > 6 is treated in [62], section 3. Again we see the appearance of
the simplest possible cases. We do not see whether there is a relation between that
combinatorial construction and our construction of fundamental domains, which is
not only combinatorial but geometrical in the sense of Lorentz geometry.

7.7 When we see all these different combinatorial constructions of infinite series of
polyhedra and space forms of different geometries related to “series” of presenta-
tions and representations of discrete groups we may dream of a theory comprising



40 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENHAUSLER

them all and giving us also a general notion of series of singularities. For the time
being we are happy with what we have found. When we asked Seifert about the
motivation for the thesis of Friedgé, he replied:

At that time we were delighted by every new three dimensional manifold.
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The image 7(F,) of the fundamental domain F, for a discrete co-compact group

' ¢ SU(1,1) of finite level is a compact polyhedron in su(1,1) with flat faces. The
Lie algebra su(1,1) is a 3-dimensional flat Lorentz space of signature (ny,n_) =
(2,1). Such a polyhedron has a distinguished rotational axis of symmetry. The
direction of this axis is negative definite, and the orthogonal complement is positive
definite. Changing the sign of the pseudo-metric in the direction of the rotational
axis transforms Lorentz space into a well-defined Euclidean space. The image 7(F;)
of the fundamental domain is then transformed into a polyhedron in Euclidean
space with dihedral symmetry. Tables 1-7 and 10-13 show the Euclidean polyhedra
obtained in this way. The direction of the rotational axis is vertical. The top and
bottom faces are removed.

The polyhedra in tables 57 are all scaled by the same factor to illustrate the
proportions between different fundamental domains. The same is true for tables 10—
13. On the contrary the polyhedra in tables 1-4 are scaled by different factors in
such a way that all the figures in the same table seem to have the same size.

Table 8 illustrates the identification scheme for FE,,, Z,,, @ in the equian-
harmonic case. The face identification is equivariant with respect to the dihedral
symmetry of the polyhedron. The faces shaded in the same way are identified. Ar-
rows on the edges of shaded faces indicate the identified flags (face, edge, vertex).

Table 9 shows fundamental domains A, for the group Mod(I',) and their strat-
ifications by curves. Some points in A, are marked and numbered. Their numbers
correspond to the numbers of figures in tables 10-12.
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& N XY

Es Es Eq»

\ZA N
N

\/

Es Es Q1o

Table 1: Fundamental domains for the boundary layer singularities
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S

Fs,j=0 By, j=1
E,, FEi; Eiy
E30,5=0 Esp,j=1
Es Eiq Fso

Table 2: Fundamental domains for Es, Ey2, Fi3, Fia, F30, Fis, Eig, Ex
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Z17 Z18 Z19

Table 3: Fundamental domains for E'r, Z11, Z12, Z13, Z1707 Z177 Zlg, Z19
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xS N N

E,, E;3 Ey
I(7,3,2) T(5,4,2) (4,3,3)
E18 E19 EQO
r(5,3,3)2 I(7,4,2)3 I(11,3,2)°
Esy Ess Es
I(13,3,2)7 T'(9,4,2) I(7,3,3)"
Esp Esq Es
r(8,3,3)° I(11,4,2)7 r(17,3,2)"

Table 5: Fundamental domains for the beginning of the E-series
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Z11
I'(8,3,2)

A

Zir
I(7,3,3)2

AU

Z23
r'(20,3,2)7

Z.

A
1“(132,23?, 3)

A\

b\

NN

r'(5,3,3)

N

I(16,3,2)

A\

r(11,3,3)*

yr )

==

r(28,3,2)"

Table 6: Fundamental domains for the beginning of the Z-series
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e — -4

S AN AANN
QlO Qll Q
r(9,3,2) 1(7,4,2) r'(6,3,3)

Table 7: Fundamental domains for the beginning of the @)-series
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bj

IS
77
4/4/4

S
/) ;/

7

7
/s

;///
4/ //
S S

7

S S

77

aj

@j+3

The case Eigton, i.e. [ =T(k+3,3,3)F or T =T(k +6,3,2)"

7,

a; aj+3

49

bj_3_n

The case Zgyon, i.e. T =T(2k +3,3,3)% or T = T'(2k + 6,3, 2)*

Cj—3-n

AN

The case Qgi2n, i.e. [ =T(3k+3,3,3)% or T =T'(3k + 6,3,2)F

Table 8: Identification scheme for E, Z, @ in the equianharmonic case
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(2,2,2,3) (2,2,2,4) (2,2,2,5)
1 1 1
] » 4 p

3 2
2 65
[ 3]
3
[
4

Table 9: Stratification of the fundamental triangles for (2,2, 2, p), where p = 3,4,5
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Figure 1

Figure 2

Figure 3

Table 10: The three combinatorial types of fundamental domains for E3
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RN A

Figure 1 Figure 2
Figure 3 Figure 4

L L L

Figure 5

Table 11: The six combinatorial types of fundamental domains for @2



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 53

NN

Figure 1 Figure 2

Table 12: Four generic combinatorial types of fundamental domains for Z; o



54 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENHAUSLER

AT

equianharmonic case harmonic case
(=0 G=1

Table 13: Fundamental domains for the simply elliptic singularities
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