
THE COMBINATORIAL GEOMETRY OF SINGULARITIESAND ARNOLD'S SERIES E, Z, QEGBERT BRIESKORN, ANNA PRATOUSSEVITCH, AND FRANK ROTHENH�AUSLERTo Vladimir Igorevih ArnoldWith a�etion and admirationEtenim um multae �gurae solidae, quae varias super�ieshabeant, ogitatione �ngi possint, imprimis tamenrespiiendae sunt eae quae ordinatae esse videntur.Pappus of Alexandria, Colletion v. 2, ed. Hultsh 353, 7{9Abstrat. We onsider disrete subgroups � of the simply onneted Liegroup fSU(1; 1) of �nite level. This Lie group has the struture of a 3-dimen-sional Lorentz manifold oming from the Killing form. � ats on fSU(1; 1) byleft translations. We want to desribe the Lorentz spae form �nfSU(1; 1) byonstruting a fundamental domain F for �. We want F to be a polyhedronwith totally geodesi faes. We onstrut suh F for all � satisfying the fol-lowing ondition: The image �� of � in PSU(1; 1) has a �xed point u in theunit disk of order larger than the level of �. The onstrution depends on �and �u.For o-ompat � the Lorentz spae form �nfSU(1; 1) is the link of a quasi-homogeneous Gorenstein singularity. The quasi-homogeneous singularities ofArnold's series E, Z, Q are of this type. We ompute the fundamental domainsfor the orresponding group. They are represented by polyhedra in Lorentz3-spae shown on tables 1{13. Eah series exhibits a regular harateristipattern of its ombinatorial geometry related to lassial uniform polyhedra.1. Introdution1.1 Between 1972 and 1976 Vladimir Igorevih Arnold published a very impor-tant series of artiles on the lassi�ation of singularities of funtions. The seriesbegan with a beautiful paper in Funkional~ny� analiz i ego prilo�eni� en-titled Normal forms of funtions near degenerate ritial points, the Weyl groupsof Ak; Dk; Ek and Lagrangian singularities, [1℄. In this paper Arnold introduedthe notion of a simple singularity. A simple singularity is one whih does not havemoduli. It has a normal form not involving any ontinuous parameters. The mainresult of the paper was the lassi�ation of all simple singularities of funtions. TheDate: August 7, 2002.2000 Mathematis Subjet Classi�ation. Primary 53C50; Seondary 14J17, 20H10, 30F35,30F60,32G15, 32S25, 51M20, 52B10.Key words and phrases. Lorentz spae form, polyhedral fundamental domain, quasihomoge-neous singularity, Arnold singularity series.This researh was partially supported by the Graduiertenkolleg Mathematik in Bonn, �nanedby DFG. 1



2 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERlassi�ation was given in the form of a omplete list of normal forms as follows:Ak : f = �xk+11 � x22 +Q; k > 1;Dk : f = x21x2 � xk�12 +Q; k > 4;E6 : f = x31 � x42 +Q;E7 : f = x31 + x1x32 +Q;E8 : f = x31 + x52 +Q:where Q is a standard nondegenerate quadrati form in the remaining variablesx3; : : : ; xn. These are real normal forms. In the omplex analyti ase one anignore the signs, so that there is just one normal form for eah type Ak , Dk, Ek.At the time when Arnold published this list of normal forms for the simple sin-gularities whih he had just introdued in 1972, these forms, or at least some ofthem, were exatly 100 years old. They �rst our in a paper by H. A. Shwarzwhih appeared in 1872 in Crelles Journal [82℄. The title was: Ueber diejenigenF�alle, in welhen die Gaussishe hypergeometrishe Reihe eine algebraishe Fun-tion ihres vierten Elementes darstellt. The problem indiated in the title and solvedby Shwarz goes bak to Riemann. In a manusript about minimal surfaes writ-ten around 1860 and published in 1867 after Riemann's death, Riemann not onlypointed to the relevane of the problem, but also indiated how to solve the analytiproblem by means of geometry, [77℄, p. 296. The quotient s = y1=y2 of two linearlyindependent solutions of a hypergeometri di�erential equation de�nes a multival-ued map from the Riemann sphere to the Riemann sphere. The upper half-planeis mapped to a spherial triangle. Its angles are �(1� ), �(a+ b� ) and �(a� b),where a, b and  are the parameters of the hypergeometri di�erential equation.The lower half-plane is mapped to a reeted triangle, and the whole range of thefuntion s is overed by the triangles obtained by iterated reetions, whih arepermuted by the monodromy group of the di�erential equation.The funtion s is algebrai if and only if this overing is �nite. The interestingases where this ours are those where the triangles are bounded by symmetryplanes of a regular polyhedron insribed in the sphere. We onsider the ase wherethey are fundamental triangles for the full symmetry group. So they are spherialtriangles with angles �=p, �=q, �=r, where (p; q; r) equals (2; 3; 3), (2; 3; 4) and(2; 3; 5) for the tetrahedron, otahedron and iosahedron respetively.The inverse map from the triangle to the half-plane is desribed by a rationalfuntion of s invariant under the triangle group of orientation preserving symme-tries. There are three natural relative invariants of this group, namely the polynomi-als whose zeroes are the orbit of a vertex of the triangle. In ase of the iosahedron,these are absolute invariants. In view of their degree, Shwarz denotes them by'12, '20 and '30. There is a basi relation between these three invariants, writtenby Shwarz in the following form:['20(s)℄3 � 43 � 33 � ['12(s)℄5 = ['30(s)℄2:This is essentially the equation of the E8-singularity of Arnold's list for the ase ofthree variables, and we see that from the very beginning there was a lose relationbetween these singularities and the symmetry of regular polyhedra.1.2 In the next years, the subjet was arried on by Felix Klein in a series of artilesand in his famous book Vorlesungen �uber das Ikosaeder, whih appeared in 1884.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 3There is a very nie new edition of this book with an introdution and ommentariesby Peter Slodowy [51℄. Klein onsidered not only the symmetry groups of theregular polyhedra, but also the orresponding binary polyhedral groups obtained bypassing from PSU(2) to its universal over SU(2). The �nite subgroups of SU(2) arethe yli groups, the binary dihedral groups and the binary tetrahedral, otahedraland iosahedral groups T, O and I. In Chapter III, x 1 of his book Klein determinedthe polynomials in two variables invariant under these groups. He found that forany of these groups �, the ring of invariant polynomials C [u; v℄� is of the formC [x; y; z℄=(f). The polynomial f desribing the basi relation between the threegenerators x, y, z is exatly one of Arnold's list, or it is easily transformed intoone of Arnold's normal forms for n = 3. The orrespondene is as follows: yligroups orrespond to Ak , binary dihedral groups to Dk, and binary tetrahedral,otahedral and iosahedral groups T, O, I to E6, E7, E8.Klein's result was redisovered around 1960 as a result of an exhange of ideasbetween Friedrih Hirzebruh and Patrik DuVal, see [28℄. In geometri terms itmeans that the aÆne algebrai surfae desribed by the equation f(x; y; z) = 0 isthe quotient surfae C 2=�.1.3 Therefore, the link of the singular point of this surfae has the struture of the3-dimensional spherial spae form �n SU(2) = �nS3, where we identify SU(2) withthe group S3 of unit quaternions. It is natural to desribe these spherial spaeforms by means of a fundamental domain for � ating on S3 by left translations.This has been done by Seifert and Threlfall in a paper [87℄ on 3-dimensional spher-ial spae forms published in two parts in 1930 and 1932. Perhaps the simplestway of stating their result would be to say that the Dirihlet ell of the unit ele-ment of � � S3 is a fundamental domain for �. It is a spherial polyhedron withtotally geodesi faes whih Seifert and Threlfall determine expliitly for eah ofthe groups �. However, this way of stating the result does not suggest how to passfrom the spherial geometry of SU(2) to the Lorentz geometry of SU(1; 1), and italso does not do justie to the beautiful lassial geometry of the spherial ase.Reall that in the years 1850{1852 Ludwig Shl�ai wrote a most remarkabletreatise entitled Theorie der vielfahen Kontinuit�at whih, alas, was published onlysix years after his death in 1901, [81℄. In setion 17 of that treatise Shl�ai lassi�edthe 4-dimensional regular onvex polytopes. There are six of them. Their Shl�aisymbols are: (3; 3; 3); (3; 3; 4); (4; 3; 3);(3; 4; 3); (3; 3; 5); (5; 3; 3):The �rst three of them are the analogues of the tetrahedron, otahedron and ube,whih exist in every dimension. The other three are partiular for dimension 4.Two of them, (3; 3; 5) and (5; 3; 3) may be seen as analogues of the iosahedron anddodeahedron. Their maximal faes are as follows: (3; 3; 5) has 600 tetrahedra, and(5; 3; 3) has 120 dodeahedra. They are dual to eah other.For (3; 4; 3) and (3; 3; 5) the verties an be taken to be the elements of one ofthe �nite groups � � S3. The polytope (3; 4; 3) has vertex set T, and (3; 3; 5) hasvertex set I. The dual irumsribed polytopes of type (3; 4; 3) and (5; 3; 3) have Tand I as sets of entres of their otahedral and dodeahedral faes. Thus it is learthat by entral projetion onto S3 we get a tiling of S3 by Dirihlet ells whih arespherial otahedra or dodeahedra.



4 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERIn order to deal with the binary otahedral groupO we have to onsider not onlyregular, but also semi-regular polytopes, in the same way as Greek mathematiianslike Pappus of Alexandria admitted not only Platoni, but also Arhimedian solids.Their generalization to higher dimensions may be de�ned as follows. A onvexpolytope is uniform, if it satis�es the following two onditions:(a) The symmetry group ats transitively on the set of verties.(b) All faets are uniform.To start the indution, one has to say what (b) means for the lowest dimensions:a onvex polygon is uniform if it is regular. Some authors all uniform polytopessynonymously Arhimedian. In dimension 3 the uniform onvex polytopes are the5 Platoni solids, the 13 Arhimedian solids and the regular prisms and anti-prismsadded to this list by Johannes Kepler in his wonderful book Harmonie mundi[49℄, p. 73. In dimensions larger than 4, there is no omplete lassi�ation. Indimension 4 the uniform onvex polytopes were enumerated by J. H. Conway in jointwork with M. T. J. Guy [20℄. Most of them an be obtained by applying Wytho�'sonstrution to the 4-dimensional reetion groups as desribed by H. S. M. Coxeter[21℄, [22℄. In partiular, this applies to the onvex polytope with verties O. It isobtained by mutual trunation from the two 24-ells of type (3; 4; 3) whose vertiesare the two osets of T in O. Here are the Wytho� onstrutions for the threeArhimedian solids with vertex sets T, O and I:......................................................................................................................................................................................................................� � � �4T (3; 4; 3);......................................................................................................................................................................................................................� � � �4 O t1;2(3; 4; 3);......................................................................................................................................................................................................................� � � �5I (3; 3; 5):The maximal faes of t1;2(3; 4; 3) are Arhimedian polyhedra obtained from a ube,trunated by an otahedron. Their faes are regular otagons and triangles. Thethree Arhimedian polyhedra belonging to I, O and T, i.e. to E8, E7, E6 areshown in the left olumn of Table 1. The other �gures of that table indiate whatwe intend to show in this paper.We intend to show that the tilings of the spherial spae SU(2) oming from thethree Arhimedian polytopes desribed above are at the root of three in�nite seriesof tilings of the Lorentz manifold fSU(1; 1) related to Arnold's series E, Z, Q.1.4 The idea to try something of this kind ourred to one of us many years ago.In 1974 the beautiful results of Arnold and his students were to be presented atthe ICM in Vanouver, [4℄. Sine Arnold was not allowed to travel for politialreasons, the task of presenting his work fell to E. Brieskorn. Sine that time,Arnold's disoveries have been a soure of inspiration for him and his students andoworkers as well as many other mathematiians.Let us very briey reall some of the results presented in Vanouver. For details,we have to refer to the series of three artiles in Uspehi matematiqeskih nauk[3℄, [5℄, [6℄, whih also show the rih mathematial ontext in whih this work hasevolved. Some part of the history preeding Arnold's work, espeially the establish-ment of the relation between the simple singularities and the simple omplex Liegroups of type Ak, Dk, E6, E7, E8 has been desribed in [18℄. For further reading



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 5on this subjet, we refer to the literature quoted in Peter Slodowy's foreword tothe new edition of the letures on the iosahedron and to [19℄. We also refer toArnold's artile in Inventiones [7℄ and to the two books [8℄, [10℄.Arnold lassi�ed singularities of funtions up to right equivalene, and termssuh as number of moduli , 0-modular or 1-modular refer to lasses in this sense.Arnold found that the lassi�ation of singularities with a small number of moduliis \nie". This applies in partiular to the 0-modular and 1-modular singularities,where several possible aspets ontribute to the impression that we understandthese lasses of singularities. One of these aspets is the arithmeti of the quadratiform of the Milnor �bres assoiated to these singularities. The Milnor �bration of aomplex hypersurfae singularity is an important part of the di�erential topology ofsuh singularities. It was introdued by John Milnor in 1966 and published in [55℄in the ourse of developments desribed in [18℄. Another aspet refers to waysof generating or onstruting the singularities. It turned out that all the 0- and1-modular singularities whih Arnold found by analyzing the de�ning polynomialforms have onstrutions involving disrete groups of transformations of omplexurves and surfaes. It is this relation to beautiful lassial mathematis whihArnold must have had in mind when, after desribing the relation between Platonisolids, simple Lie groups and simple singularities, he wrote in [4℄:As we will see now, the lassi�ation of more and omplex singularitiesprovides new wonderful oinidenes, where Lobathevski triangles and au-tomorphi forms take part.Arnold's lassi�ation of 0- and 1-modular singularities is summarized in the fol-lowing theorem.Theorem.(1) The 0-modular singularities are the simple singularities Ak, k > 1 and Dk,k > 4 and E6, E7, E8.(2) The 1-modular singularities are (up to stable equivalene) those listed below:(a) The simply ellipti singularities ~E6, ~E7, ~E8.(b) The usp singularities Tp;q;r, 1=p+ 1=q + 1=r < 1.() The fourteen exeptional one parameter families E12, E13, E14, Z11,Z12, Z13, Q10, Q11,Q12, S11, S12, W12, W13, U12.Arnold desribes these singularities by normal forms of the orresponding funtions.The normal forms of the 0-modular singularities and of the 1-modular singularitiesof type (a) are quasi-homogeneous. Those of type (b) are not quasi-homogeneous.The normal forms of type () are semi-quasihomogeneous. They are forms f =g+ah, where g is quasi-homogeneous of a ertain integral weight d, h is a monomialof weight d+ 2 and a is a real or omplex parameter. Thus eah of the 14 familiesontains exatly one quasi-homogeneous singularity, the one with a = 0.Note that for some singularities we use symbols di�erent from those originallyintrodued by Arnold. For the simply ellipti ones we use the symbols ~E6, ~E7, ~E8introdued 1974 by K. Saito in [80℄. Arnold's symbols are T3;3;3, T2;4;4, T2;3;6 orP8, X9, J10. Our exeptional E12, E13, E14 were originally denoted by K12, K13,K14, but in 1975 Arnold adopted himself the new notation E12, E13, E14. Forthe singularities whih Arnold denotes by Jk;0 we shall use Ek;0, beause our workshows that they �t into the E-series in the same way as Zk;0 �ts into the Z-seriesand Qk;0 into the Q-series.



6 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERThe distintion between the various ases in the theorem above is reeted byproperties of the quadrati form on the seond homology group of the Milnor �breof the orresponding omplex surfae singularity. Let � be the rank of the lattie,i.e. the Milnor number. One has � = �+ + �� + �0, where �0 is the rank of theradial and �+ the rank of a maximal positive de�nite sublattie. The result ofwork of several authors as summarized by Arnold is as follows.Theorem. Complex surfaes of embedding dimension 3 with �+ + �0 6 2 arelassi�ed as follows.(1) Those with (�+; �0) = (0; 0) are the simple singularities.(2a) Those with (�+; �0) = (0; 2) are the simply ellipti singularities.(2b) Those with (�+; �0) = (1; 1) are the usps Tp;q;r.(2) Those with (�+; �0) = (2; 0) and number of moduli equal to 1 are the 14exeptional 1-modular singularities.G. N. Tjurina and V. I. Arnold alled these singularities in ase (1) ellipti, inase (2a) paraboli and in ase (2b) hyperboli.1.5 The signature (�+; ��; �0) desribes only the real quadrati form. Atuallymuh more an be said about the Milnor latties of these singularities. A. M. Ga-brielov has desribed distinguished bases of vanishing yles for these singularities[40℄, [41℄. They may be haraterized by a triple of integers whih Arnold alledGabrielov numbers. From the arithmeti point of view, a very thorough inves-tigation of these latties was arried out by one of us in [17℄, supplemented byB. Stoppok [85℄. This was losely related to a desription of the base spae of thesemi-universal unfolding of exeptional 1-modular singularities in terms of arith-meti quotients of bounded symmetri domains [16℄.These investigations gave us reasons to fous on a partiular part of the deforma-tion hierarhy of 1-modular singularities, whih was alled \boundary layer" in [16℄.Today we see this as a layer of transition from spherial to Lorentz geometry. If weadd the ellipti singularities, we get the following pattern of 12 singularities:E12 Z11 Q10 exeptional layer,T2;3;7 T2;4;5 T3;3;4 hyperboli layer,~E8 ~E7 ~E6 paraboli layer,E8 E7 E6 ellipti layer.The singularities of the three unimodular layers may be haraterized as follows:(a) Every non-simple singularity deforms into a singularity of theparaboli layer.(b) Every non-simple non-paraboli singularity deforms into a sin-gularity of the hyperboli layer.() Every non-simple, non-paraboli, non-hyperboli singularitydeforms into a singularity of the exeptional layer.The deformation relations of singularities above the boundary layer are very om-pliated, also with respet to singularities in the boundary layer and below [12℄,[13℄, [15℄, [42℄. But within the boundary layer the situation is simple: the onlydeformation relations are those of going downward in the vertial olumns. Wetake this as an indiation that these three \stems" with \roots" in E8, E7, E6 andontinuation by Arnold's series E, Z, Q are very partiular objets whih deservespeial attention.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 71.6 In 1973, Arnold had published the lassi�ation of unimodal ritial points offuntions [2℄. Some of his normal forms for the exeptional 1-modular singularitieshave a long history. The form for E12 ours already in 1878 in Klein's paper �Uberdie Transformationen siebenter Ordnung der elliptishen Funktionen [50℄ p. 652.The equation for E13 ours in Vorlesungen �uber die Theorie der automorphenFuntionen by Frike and Klein, [38℄, volume II, p. 652 and is related to the simplegroup of order 360, [36℄. The equation for E14 was found in 1880 by Klein's studentW. Dyk in his dissertation, [30℄, [29℄.The normal form of Arnold for the quasi-homogeneous singularity E12 in threevariables is x3 + y7 + z2:Mathematial objets related to this form were important as examples preeding thedevelopment of a general theory of automorphi funtions by Klein and Poinar�e.The same objets have been the starting point of the work of I. V. Dolgahev towhih Arnold was referring when he spoke about the wonderful oinidenes withLobathevsky triangles and automorphi funtions.We onsider PSU(1; 1) as group of automorphisms of the unit disk D . In this 3-dimensional Lie group, we onsider disrete o-ompat subgroups �. In partiular,we onsider triangle groups �(p; q; r) belonging to hyperboli triangles with angles�p ; �q and �r ; where 1p + 1q + 1r < 1:The smallest triangle is the one with (p; q; r) = (2; 3; 7). In � = �(2; 3; 7) thereis a unique largest normal subgroup �0. For a suitable representation of � as anarithmeti group, the group �0 an be desribed as a ertain ongruene subgroup.The quotient �=�0 is the simple group G168 of order 168. This is the seond smallestsimple group of omposite order. It omes next after the iosahedral group G60.There are isomorphisms G60 �= PSL(2; F 5) and G168 �= PSL(2; F 7). The analogybetween these two ases has been noted by Klein.The group �0 ats on D without �xed points. It has a fundamental domain whihis a regular hyperboli 14-gon onsisting of 2 � 168 hyperboli triangles with angles�=2, �=3, �=7. This is the Haupt�gur of Felix Klein [50℄, p. 126. The surfae �0nDis a Riemann surfae of genus g = 3 with an automorphism group of the maximalpossible order 84(g � 1).The surfae X = �0nD is non-hyperellipti of genus g > 2. Therefore it has aanonial embedding X � C Pg�1 into the projetive spae whih belongs to thespae C g dual to the spae of holomorphi 1-forms. This anonial urve in C P2is the Klein quarti given by the homogeneous equationx30x1 + x31x2 + x32x0 = 0:The �nite group G168 ats linearly on the spae of holomorphi 1-forms. Thereforeit ats on C 3 and on C P2 leaving invariant X � C P2 and the one CX � C 3.Calulations of invariants by Klein and Gordan imply:�C [x0; x1; x2℄=(x30x1 + x31x2 + x32x0)�G168 �= C [x; y; z℄Æ(x3 + y7 + z2):This algebrai result an be interpreted geometrially as follows: The aÆne alge-brai surfae de�ned by the equationx3 + y7 + z2 = 0



8 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERis the quotient of the one CX over the anonial urveX by the groupG168 = �=�0.This was generalized in 1974 by I. V. Dolgahev [23℄. Dolgahev introdued thenotion of a quotient-onial singularity. Let X � C Pn�1 be a smooth projetivelynormal urve. This means that the one CX � C n over C is a normal aÆne surfaewith an isolated singular point. Let G � GL(n; C ) be a �nite group leaving CXinvariant. The singularity of the quotient surfae CX=G orresponding to the vertexof the one is alled a quotient-onial singularity. If X � C Pg�1 is a anonialurve and G a subgroup of Aut(X), the resulting quotient onial singularity isalled anonial of type (X;G).For any hyperboli triangle group � one an �nd normal subgroups �0 atingfreely on D , Mennike [54℄. Dolgahev proved that the anonial quotient onialsingularity of type (�0nD;�=�0) depends only on �. So there is a unique anonialtriangle singularity for eah hyperboli triangle group �. Dolgahev haraterizedthese triangle singularities by their resolution graph. He proved the following the-orem.Theorem. There are exatly 14 anonial triangle singularities whih an be em-bedded in C 3. They are the omplex surfae singularities orresponding to the 141-modular exeptional quasi-homogeneous normal forms of Arnold.We note in passing that most of these triangles our in the work of Frike andKlein when they desribe arithmeti triangle groups. A omplete enumeration ofall arithmeti triangle groups was given by K. Takeuhi [86℄.1.7 The results whih we are going to present in this paper are to be seen withinthe ontext desribed in this introdution.In setion 2 we reall work of Dolgahev desribing the links of all Gorensteinquasi-homogeneous surfae singularities as quotients �nG of a 3-dimensional simplyonneted Lie groupG by a disrete o-ompat subgroup. The groupsG that ourare SU(2), fSU(1; 1) and the Heisenberg group. We desribe the groups � � fSU(1; 1)orresponding to Arnold's singularities Ek, Zk, Qk and E3;0, Z1;0, Q2;0.In setion 3 we onsider more generally disrete subgroups � � fSU(1; 1) of�nite level. The level is the index of � \ Z in the entre Z of fSU(1; 1). Disreteo-ompat subgroups are of �nite level by a general result of Andr�e Weil [92℄on disrete o-ompat subgroups of onneted semi-simple Lie groups withoutompat omponents. We desribe a onstrution of fundamental domains for alldisrete subgroups of �nite level with a �xed point in D of order larger than thelevel. This fundamental domain is a polyhedron in the Lorentz manifold fSU(1; 1)with totally geodesi faes. It is modeled on a polyhedron in Lorentz 3-spae.In setion 4 these fundamental domains are determined expliitely for the in�niteseries Ek, Zk, Qk.Setion 5 is devoted to the desription of fundamental domains for E3;0, Z1;0,Q2;0. Although these ases have been analyzed ompletely, we annot present alldetails in this exposition.Setion 6 desribes fundamental domains for the subgroups � of the Heisenberggroup orresponding to ~E6, ~E7, ~E8.The results are illustrated by tables 1{13. Tables 5{8 orrespond to setion 4,tables 9{12 to setion 5 and table 13 to setion 6. Tables 1{4 o�er a synopsis of thedi�erent ases. They reveal a oherent ombinatorial pattern for eah of Arnold'sseries E, Z, Q united with the three stems of the boundary layer. In partiular



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 9table 1 shows the transition from the lassial ellipti layer to the exeptional layervia the paraboli layer. The tables show that the polyhedra in Lorentz 3-spaewhih we onstrut are true analogues of the three lassial uniform polyhedra inEulidean 3-spae whih belong to the binary groups T, O, I of the tetrahedron,otahedron and iosahedron.1.8 The work presented in this paper has evolved during a period of more than 12years. It began with the thesis of Thomas Fisher [35℄. Fisher found the beautifulonstrution of fundamental domains for anonial quotient-oni singularities andalulated the �rst three ases E12, Z11, Q10. His work was arried on by A. K�ass,U. Neush�afer, F. Rothenh�ausler and S. Sheidt [48℄. Up to now their joint paperwith L. Balke [11℄ published in Topology has been the only publiation on this kindof work whih has appeared in a journal. Further progress was made in [74℄ by theseond author. At last, the �nal onstrution presented in setion 3 was found byA. Pratoussevith [75℄. The analysis of Ek , Zk, Qk in setion 4 is also her work.The analysis of E3;0, Z1;0, Q2;0 in setion 5 is the work of F. Rothenh�ausler [78℄.The observations on ~E6, ~E7, ~E8 are due to E. Brieskorn and were made many yearsago in disussions with Thomas Fisher.We wish to thank Ludwig Balke and Claus Hertling for disussions with themon our work in progress. We would like to thank Ilya Dogolazky for his help inproduing the �gures. We also thank the referee for pointing out that any lattie ina semi-simple Lie group without ompat fators intersets its enter in a subgroupof �nite index.2. Link spaes of quasi-homogeneous singularities2.1 Let R be the ring C [x1; : : : ; xn℄ of polynomials in n variables with omplexoeÆients. Let q = (q1; : : : ; qn) be a system of n positive integers, alled weights.Then R is a positively graded C -algebra Rq if we de�ne xi to be homogeneous ofdegree qi. A monomial xi11 � � �xinn has degree d = i1q1 + � � �+ inqn. The monomialsof degree d form a basis for the vetor spae Rd of homogeneous polynomials ofdegree d. This terminology is used in ommutative algebra. When we deal withsingularities, we have to onsider many di�erent systems of weights. We shall thenall suh polynomials quasi-homogeneous or weighted homogeneous of degree d withweights (q1; : : : ; qn).An ideal I � Rq is homogeneous if it is generated by homogeneous elements. AnaÆne algebrai variety V � C n is quasi-homogeneous with weights (q1; : : : ; qn) if itsde�ning ideal I in Rq is homogeneous. Its aÆne oordinate ring Rq=I is a �nitelygenerated positively graded C -algebra.To a system of weights we assoiate a C �-ation on C n:t(z1; : : : ; zn) := (tq1z; : : : ; tqnzn):A variety V � C n is invariant with respet to this ation i� the de�ning ideal inRq is homogeneous. There is a ontravariant equivalene between omplex aÆnealgebrai varieties with good C �-ation and �nitely generated positively gradedC -algebras.Let (X; x) be a omplex analyti singularity, i.e. the germ of a omplex spaeX at a point x. We all (X; x) quasi-homogeneous if there is an isomorphism(X; x) �= (V; 0), where V � C n is an aÆne variety whih is quasi-homogeneous forsome system of weights and 0 2 C n is the origin. There may be several possible
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..........................................................................................................................................................................................................................Figure 1: Quasi-homogeneous singularities in mathematissystems of weights. However, the following result about uniqueness was proved bySaito [79℄. Let (X; x) be an isolated quasi-homogeneous hypersurfae singularityand (X; x) �= (V; 0), where (V; 0) is an aÆne hypersurfae de�ned by a quasi-homogeneous polynomial of degree d with weights q1; : : : ; qn. The weights an behosen so that (qi; d) = 1 and 2qi 6 d. Then up to permutations the weights areuniquely determined.2.2 Quasi-homogeneous singularities are interesting objets. Two-dimensional qua-sihomogeneous singularities are even more interesting, beause they are at the en-tre of a net of relations between di�erent �elds of mathematis, as shown by �gure 1.We annot explain all relations between these �elds, but we want to mention thosewhih plae our work in its proper ontext.The relations between automorphi forms, algebrai geometry and the theory ofinvariants existed from the beginning of the theory of automorphi funtions andare obvious in the writings of Frike and Klein, [37℄, [38℄, [52℄.The relation between algebrai geometry and the topology of manifolds whih wehave in mind is also very old. It goes bak to the turn of the entury around 1900.The relation is established as follows. Let V � C n be an m-dimensional omplexalgebrai variety with an isolated singularity at the origin. Let B2n" be the 2n-ballof radius " with entre 0. The boundary of the ball is a (2n � 1)-sphere S2n�1" .Consider the intersetionsV" = V \B2n" and M" = V \ S2n�1" :For " suÆiently small M" is a ompat oriented di�erentiable manifold of dimen-sion 2m � 1 smoothly embedded in S2n�1" . The di�eomorphism type of the pair(S2n�1" ;M2m�1" ), " small, depends only on the singularity (V; 0). Moreover, there isa homeomorphism between the pair (B"; V") and the pair (B"; CM"), where CM"is the one over M" with vertex 0. When V is analytially irreduible at 0, M"is onneted. Otherwise, it will have several omponents whih may be linked.Therefore, the boundary M" of the neighbourhood V" of 0 is also alled the link ofthe singularity (V; 0).



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 11For varieties V of omplex dimension 1 and 2 these onstrutions go bak toW. Wirtinger, P. Heegard and H. Tietze and are losely related to the early historyof knot theory, M. Epple [34℄, hapter 8. Around 1960 work of D. Mumford [63℄ andF. Hirzebruh [47℄ showed that there is a lose link between singularities of om-plex surfaes and the topology of 3-manifolds established by the link onstrution.Further developments desribed in [18℄ led to interesting relations between links ofhigher dimensional quasi-homogeneous singularities and di�erential topology [14℄,[47℄, [55℄, [44℄. For example onsider the link M2n�3 of the quasi-homogeneousaÆne hypersurfae singularity given by the E8-equationx31 + x52 + x23 + � � �+ x2n = 0:The urve M1 � S3 is the (3; 5)-torus knot. M3 � S5 is the link of the iosahedralsingularity. So M3 is the spherial dodeahedral spae obtained from a spherialdodeahedron by identifying opposite faes by a srew motion with angle �=5, andsoM3 an be identi�ed with the famous Poinar�e homology sphere, [91℄. For n = 4,the link spae M5 is a knotted 5-sphere in S7. Finally, the link spae M7 in S9is the exoti 7-sphere of Milnor, whih Hirzebruh onstruted as boundary of an8-manifold obtained by glueing 8 opies of the tangent dis bundle of S4 aordingto the Coxeter-Dynkin diagram E8.The results mentioned above led to investigations on the topology of quasi-homogeneous singularities suh as [44℄, [57℄, [56℄, [65℄, [68℄, [88℄. At the same time,together with other developments, they led to the �rst systemati treatment ofquasi-homogeneous surfae singularities as objets of algebrai geometry by P. Orlikand Ph. Wagreih [72℄, [71℄.2.3 The links of quasi-homogeneous singularities arry additional strutures. Onestruture is obvious. When M is the link of an isolated singularity of a quasi-homogeneous variety V with good C � ation, this ation indues an ation ofS1 � C � on M . A losely related struture is the orbit deomposition of M as-soiated to the ation of S1. This is a �bration of M by irles whih may haveexeptional �bres, if the ation of S1 has nontrivial isotropy groups. Suh �brationsare alled Seifert �bre spaes, sine they were �rst studied in 1933 by H. Seifert as anadditional struture on 3-manifolds [83℄. Sine then this extra struture was used asa ondition whih makes the topology of 3-manifolds more aessible. Around 1967investigations on the topology of Seifert �bre spaes suh as [70℄ and losely relatedwork on S1-ations on 3-manifolds suh as [69℄ merged with the new results quotedabove and led to systemati investigations on quasi-homogeneous singularities.2.4 Two-dimensional quasi-homogeneous singularities are partiular beause theorresponding graded aÆne oordinate rings an be identi�ed with graded rings ofgeneralized automorphi forms. This was found in 1975{1977 by Dolgahev, Milnor,Neumann and Pinkham, [24℄, [25℄, [56℄, [65℄, [73℄. Let us reall their results.De�nition. A negative unrami�ed automorphy fator (U;L; ��) is a omplex linebundle L on the simply onneted Riemann surfae U , U = C P1 or C or D , togetherwith a disrete o-ompat subgroup �� � Aut(U) ating ompatibly on U and theline bundle L, suh that the following two onditions are satis�ed:(i) The ation of �� is free on L0, the omplement of the zero-setion of L.



12 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLER(ii) Let ��0 / �� be a normal subgroup of �nite index whih ats freely on U , andlet L0 ! Y be the omplex line bundle L0 = ��0nL over the ompat Riemannsurfae Y = ��0nU . Then L0 is a negative line bundle.Sine L0 is negative, one an ontrat the zero-setion of L0 and get a omplexsurfae with an isolated singularity orresponding to the zero-setion. There isa anonial ation of the �nite group ��=��0 on this surfae. The quotient is aomplex surfae X(L; ��) with an isolated singular point 0, whih depends only onthe automorphy fator (U;L; ��).Theorem. The surfae X(L; ��) assoiated to a negative unrami�ed automorphyfator (U;L; ��) is a quasi-homogeneous aÆne algebrai surfae with a normal iso-lated singularity. Its aÆne oordinate ring is the graded C -algebra of generalized��-invariant automorphi formsA = Mm>0H0(U;L�m)��:All normal isolated quasi-homogeneous surfae singularities (X; x) are obtained inthis way, and the automorphy fators with (X(L; ��); 0) isomorphi to (X; x) areuniquely determined by (X; x) up to isomorphism.2.5 In a sense it is an abuse of language to all an element of H0(U;L�m)�� a gen-eralized automorphi form. It is an automorphi form of integral weight m inthe lassial sense when U = D and L = TD , the tangent bundle of D , on whih�� � Aut(D ) ats in the anonial way. As a generalization whih is loser to thelassial ase one may introdue automorphi forms with frational weight. Thiswas done by Milnor in [56℄. An elegant way of de�ning suh forms is the followingde�nition of Dolgahev [27℄.De�nition. A Gorenstein automorphy fator is an unrami�ed negative automor-phy fator (U;L; ��) suh that there is an integer k and an isomorphism of ��-bundlesLk and TU , where TU is the tangent bundle of U . Moreover, for U = C the group�� must be ontained in the translation subgroup of Aut(C ). The integer k is alledthe exponent or the level of the automorphy fator.Possible values of the exponent are k = �1 or �2 for U = C P1, whereas k = 0 forU = C and k > 0 for U = D .The name Gorenstein for these automorphy fators was hosen beause of theirrelation with Gorenstein singularities. A Gorenstein singularity is a singularitywhose loal ring is a Gorenstein loal ring. We shall not give the de�nitions of thisnotion oming from ommutative algebra. Instead, we give the de�nition used byDolgahev. An isolated singularity of dimension n is a Gorenstein singularity if itsloal ring is a Cohen-Maaulay ring and if there is a nowhere vanishing holomorphin-form on a puntured neighbourhood of x. All isolated singularities of ompleteintersetions are Gorenstein singularities. In partiular, the theory applies to thesurfaes in C 3 whih we are going to study. In [27℄ Dolgahev proved the followingtheorem obtained independently by W. Neumann (see also [26℄).Theorem. The quasi-homogeneous surfae singularity (X(L; ��); 0) assoiated toa negative unrami�ed automorphy fator (U;L; ��) is a Gorenstein singularity i�(U;L; ��) is a Gorenstein automorphy fator.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 132.6 The next problem is to determine the Gorenstein automorphy fators for agiven ��, if they exist. The following proposition proved in [74℄ is an answer for �� �Aut(D ).Theorem. Let �� � PSU(1; 1) be a disrete o-ompat subgroup with signature(g;�1; : : : ; �r). Let b = 2(g � 1) + r. There exists a Gorenstein automorphy fator(D ; L; ��) of level k > 0 i� k satis�es the following divisibility onditions:(i) (k; �i) = 1 for all i = 1; : : : ; r;(ii) k divides [�1; : : : ; �r℄ � (b� rXi=1 ��1i ).If these onditions are satis�ed, there exist exatly k2g Gorenstein automorphy fa-tors for ��. In partiular, there is a unique one if g = 0.2.7 The aÆne oordinate ring of a quasi-homogeneous aÆne algebrai surfae hastwo alternative desriptions. On one hand it is a graded C -algebra R=I , where R isa polynomial ring and I an ideal generated by quasi-homogeneous polynomials withertain degrees for a given system of weights (q1; : : : ; qn). On the other hand, it is agraded C -algebra of automorphi forms for a ertain disrete group �� with a ertainsignature (g;�1; : : : ; �r). Comparison of these two desriptions leads to relationsbetween the two sets of data. Suh arguments were used by Ph. Wagreih andother authors to desribe and lassify ertain algebras of automorphi forms withfew generators, [84℄, [89℄, [90℄. Reently K. M�ohring has used similar arguments andK. Saito's paper [79℄ for proving a theorem whih allows to alulate the signatureand the level of the Gorenstein automorphy fators from the weights and degreefor all isolated quasi-homogeneous surfae singularities of embedding dimension 3.Theorem. Let V � C 3 be a quasi-homogeneous aÆne surfae with an isolated sin-gularity. Let (q1; q2; q3) be the weights and d the degree of a polynomial de�ning V .Let k be the level and (g;�1; : : : ; �r) be the signature of the Gorenstein automorphyfator assoiated to V . These data are related as follows.(1) k = d� q1 � q2 � q3,(2) f�1; : : : ; �rg is ontained in the union of the two disjoint sets fqi j qi - dg andf(qi; qj) 6= 1 j i < jg. The �s in the �rst set our with multipliity one. The�s in the seond set our with multipliity mij , where mij + 1 is the numberof solutions of the equation xqi + yqj = d by nonnegative integers x, y.(3) The genus g is determined by the relationq1q2q3 � �2g � 2 + r � rXi=1 ��1i � = k � d:Remark. Put "i = 0 if qi j d and "i = 1 otherwise. Then M�ohring proves:mij = (d� "iqj � "jqi)Æ[qi; qj ℄:2.8 Using his theorem quoted in 2.7 M�ohring has alulated the exponents andsignatures of the automorphy fators for all quasi-homogeneous polynomials in threevariables in the well-known lasses I{VII. In partiular, table 19 in [58℄ gives thesedata for Arnold's series E, Z, Q, W , S, U . The results for E, Z, Q are as follows.Theorem. The Gorenstein automorphy fators (U;L; ��) for the series E, Z, Qare of hyperboli type, i.e. U = D and �� � PSU(1; 1). Let k be the exponent and(g;�1; : : : ; �r) the signature of ��. These data are given in the following two tables.



14 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERIn the �rst table the signature is given by (�1; �2; �3), sine r = 3 and g = 0 forall En, Zn, Qn. Type n mod 4 k (�1; �2; �3)0 (n� 10)=2 (2; 3; k + 6)En 2 (n� 10)=4 (3; 3; k + 3)1; 3 (n� 10)=3 (2; 4; k + 4)3 (n� 9)=2 (2; 3; 2k + 6)Zn 1 (n� 9)=4 (3; 3; 2k + 3)0; 2 (n� 9)=3 (2; 4; 2k + 4)2 (n� 8)=2 (2; 3; 3k + 6)Qn 0 (n� 8)=4 (3; 3; 3k + 3)1; 3 (n� 8)=3 (2; 4; 3k + 4)Type n mod 2 k (g;�1; : : : ; �r)En;0 1 n� 2 (0; 2; 2; 2; n)0 (n� 2)=2 (1;n=2)Zn;0 1 n (0; 2; 2; 2; 2(n+ 1))0 n=2 (1;n+ 1)Qn;0 0 n� 1 (0; 2; 2; 2; 3n� 1)1 (n� 1)=2 (1; (3n� 1)=2)The groups whih belong to En, Zn, Qn are triangle groups �(�1; �2; �3). They willbe investigated in setion 4. The groups for E3;0, Z1;0 and Q2;0 are the \quadranglegroups" �(2; 2; 2; p), where p = 3; 4; 5. They will be the subjet of setion 5.2.9 Dolgahev's paper [27℄ shows how to pass from Gorenstein automorphy fators(U;L; ��) to quotients ~�nG of 3-dimensional Lie groups G by disrete o-ompatsubgroups ~�. This is done ase by ase for U = C P1, C and D . We reall thearguments for the ase U = D .(1) The universal overing group fSU(1; 1) of PSU(1; 1) has an in�nite ylientre Z. For eah natural number k there is a unique yli overingGk ! G1 of G1 = PSU(1; 1) de�ned by Gk = fSU(1; 1)=kZ.(2) For any omplex line bundle and any natural number k there is a anonialrami�ed overing map L! Lk de�ned by v 7! v
� � �
v. The restrition tothe omplements of the 0-setions is a yli unrami�ed overingL0 ! Lk0 ofdegree k. Let Lk have a hermitian metri. Then there is a hermitian metrion L, suh that we get an unrami�ed overing map for the orrespondingunit irle bundles: SL �! SLk:(3) The group G1 = Aut(D ) ats anonially on the irle bundle STD of unittangent vetors in the tangent bundle TD . The ation is simply transitive.Choosing a basepoint v0 2 TD ;0 we get a G1-invariant bijetion G1 !STD , where G1 ats on itself by left translations. This is an S1-bundleisomorphism, whereG1 is �bred by the osets of the isotropy group of 0 2 D .



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 15(4) Now let (D ; L; ��) be a Gorenstein automorphy fator of level k. Then thereis a ��-equivariant bundle isomorphism Lk �= TD . This indues a hermitianmetri on Lk and a ��-equivariant isomorphism of S1-bundles STD �= SLk.Altogether we get a ��-invariant isomorphism of S1-bundles ' : G1 ! SLk.This an be lifted to the k-fold yli overings:Gk ����! SL����! ����!G1 ����!' SLkThe bijetion  is determined up to multipliation with a root of unity. Sowe get a well de�ned ation of �� on Gk overing the ation of �� on G1 by lefttranslation. The ��-orbit of the unit element in Gk is a disrete o-ompatsubgroup ~� of Gk. The overing map ~�! �� is an isomorphism identifyingthe ations of ~� and �� on Gk, where ~� ats by left multipliation. We all~� a lifting of ��.This leads to the following theorem proved by Dolgahev in [27℄ (see also the relatedearlier results of J. Milnor [56℄, W. Neumann [65℄, [66℄, and F. Raymond andA. T. Vasqez [76℄ quoted by Dolgahev).Theorem. To every Gorenstein automorphy fator (D ; L; ��) of level k orrespondsa lifting ~� � Gk of �� � G1. The link of the Gorenstein quasi-homogeneous surfaesingularity (X(L; ��); 0) identi�es with ~�nGk. Conversely every lifting ~� � Gkof �� � G1 gives rise to a Gorenstein automorphy fator (D ; L; ��) of level k.The disrete groups ~� � Gk obtained as liftings of disrete o-ompat groups in G1are those disrete o-ompat subgroups of Gk whih do not interset the entreof Gk. We may also desribe them as follows. Let � � fSU(1; 1) be a disreteo-ompat subgroup of level k. The image ~� of � in Gk is a lifting of the image ��of � in G1. Therefore we may rephrase the results quoted above as follows.Corollary. The links of quasi-homogeneous Gorenstein surfae singularities of hy-perboli type identify with quotient spaes �nfSU(1; 1), where � is a disrete o-ompat subgroup in the simply onneted 3-dimensional Lie group fSU(1; 1).By \hyperboli type" we mean that the singularity omes from an automorphyfator (D ; L; ��) for the hyperboli plane D .2.10 In view of the results quoted above it is interesting to disuss the relationsbetween quasi-homogeneous singularities and di�erential geometry. The links ofquasi-homogeneous surfae singularities may be given di�erent kinds of geometristrutures.One struture that always exists on links of isolated singularities is the CR-stru-ture obtained immediately from the onstrution of the link. This CR-struturedetermines the omplex analyti singularity. 3-dimensional ompat loally homo-geneous nondegenerate CR-manifolds (i.e. CR-spae forms) have been lassi�edby F. Ehlers, J. Sherk and W. D. Neumann [33℄. They also lassi�ed the normalomplex surfae singularities whose link is a CR-spae form: Dolgahev's quasi-homogeneous Gorenstein singularities, usp singularities, and quotients of them byinvolutions.



16 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERAnother possibility is to ask for a geometri struture on the link of a surfae sin-gularity in the sense that it should arry a loally homogeneous Riemannian metri.This leads to the well-known 8 geometries of Thurston. W. Neumann has disussedthe question whih of these geometri strutures our on links of surfae singu-larities [67℄. In partiular he proved the following theorem. We onsider a losedorientable 3-manifoldM endowed with a geometri struture whih admits a Seifert�bration with negative Euler number, and we exlude lens spaes. Then there is aone-to-one orrespondene between isometry lasses of suh strutures on M andbiholomorphi equivalene lasses of quasi-homogeneous surfae singularities withlink homeomorphi to M .For Gorenstein quasi-homogeneous singularities there is a third possibility. In thehyperboli ase their links identify with quotients �nfSU(1; 1), and so they areLorentz spae forms. Here we do not restrit the notion of spae form to Rie-mannian spae forms. A spae form is any omplete pseudo-Riemannian manifoldwith onstant urvature. The group fSU(1; 1) has a Lorentz metri of onstanturvature oming from the Killing form. So the links of quasi-homogeneous Goren-stein surfae singularities are losed 3-dimensional Lorentz spae forms. Closed3-dimensional Lorentz spae forms have been haraterized by R. S. Kulkarni andF. Raymond [53℄. Suh spae forms are orientable Seifert �bre spaes with hyper-boli base and nonzero Euler number. Of ourse, the relation with Seifert �brationsis very important. However, we want to plead for another perspetive whih hasa long tradition in the ase of spherial and hyperboli spae forms, but has notbeen explored in the realm of Lorentz spae forms. We propose to represent suhspae forms �nfSU(1; 1) by onstruting a polyhedral totally geodesi fundamentaldomain F for � in the Lorentz manifold fSU(1; 1) together with the orrespondingpairing of faes. The onstrution given in setion 3 shows that this is possible, andthe examples analyzed in setion 4 and 5 show that this ombination of di�erentialand ombinatorial geometry reveals subtle features of the theory of representationsof disrete groups in fSU(1; 1) and is related to the struture of series of singularitiesas de�ned by Arnold.3. The onstrution of fundamental domains3.1 In this setion we shall onstrut fundamental domains for a large lass ofdisrete subgroups � of fSU(1; 1). The Lorentz geometry of fSU(1; 1) is not as simpleas the spherial geometry of SU(2). Therefore, the onstrution annot be as simpleas in the spherial ase. So the beautiful onstrution of fundamental domains forsubgroups of level 1 disovered by Thomas Fisher was something really new. Weshall generalize this onstrution to subgroups of fSU(1; 1) of any �nite level k.There is one feature of Fisher's onstrution whih is similar to the onstrutionin the spherial ase as presented in setion 1.2. The spherial fundamental domainswere not onstruted diretly in the 3-sphere SU(2). They were obtained from a4-dimensional polytope onstruted in the ambient Eulidean 4-spae. The bound-ary of this polytope was projeted onto the sphere by entral projetion from theorigin, where we view Eulidean 4-spae as a one over SU(2) with vertex at theorigin. In Fisher's onstrution SU(1; 1) is embedded as a Lorentz manifold ina 4-dimensional linear spae with a at pseudo-metri of signature (2; 2). Fisheronstruts a 4-dimensional polytope in the one over SU(1; 1). The boundary of



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 17this polytope is projeted onto SU(1; 1), and the fundamental domains are the pro-jetions of the faes. The new idea of Fisher was the remarkable onstrution ofthe 4-dimensional polytope.Sine we want to generalize the onstrution to arbitrary levels, we pass to theuniversal over. This will be done in setions 3.2 to 3.4 for SU(1; 1) as well as itsone. Setions 3.5 to 3.6 ontain some elements of the onstrution. Finally theonstrution itself is presented in 3.7 and visualized in 3.8.3.2 We onsider the omplex vetor spae C 2 with the standard hermitian formof signature (1; 1). The real part is a symmetri real bilinear form of signature(n+; n�) = (2; 2). The assoiated quadrati form isq(z1; z2) = z1�z1 � z2�z2:The group SU(1; 1) ats on C 2 preserving q. The ation is free on the omplementof the isotropi one. Let L0 be the omponent ontaining v0 = (0; 1), i.e.L0 = �(z1; z2) 2 C 2 j z1�z1 < z2�z2	:There is a anonial bijetive map from SU(1; 1) to its orbitG = SU(1; 1)v0 = �(z1; z2) 2 C 2 j z1�z1 � z2�z2 = �1	 � L0:The spae G with the pseudo-metri indued from the pseudo-metri on C 2 is aomplete homogeneous Lorentz manifold of signature (n+; n�) = (2; 1) with on-stant urvature �1, in other words G is a pseudo-hyperboli spae. The mapSU(1; 1) ! G is equivariant with respet to the ation of SU(1; 1) on G and theation on itself by left translation. The pseudo-metri indued on SU(1; 1) agreeswith the biinvariant metri de�ned by the Killing form up to multipliation with asalar fator 8. Heneforth we identify SU(1; 1) with G.The group SU(1; 1) ats on the hermitian hyperboli spae D by frational lineartransformations z 7�! az + bz + d ;where � a b d � is a matrix in SU(1; 1), i.e.  = �b, a = �d and ad� b = 1. The isotropygroup of 0 2 D is S�U(1)�U(1)�. We denote the orresponding group in G by H .Then we have anonial identi�ations of homogeneous spaesSU(1; 1)ÆS�U(1)� U(1)� = G=H = D ;where the map G ! G=H is given by (z1; z2) 7! z1=z2. There is a orrespondingmap on L0 de�ned by (z1; z2) 7! z1=z2L0 �! D :This is a prinipal C �-bundle, where the ation of � 2 C � is de�ned by�(z1; z2) := (��1z1; ��1z2):The assoiated omplex line bundle is denoted byL �! D :The group SU(1; 1) ats on this bundle. In order to identify the ation, we trivializeL mapping L0 to D � C � by (z1; z2) 7! (z1z�12 ; z�12 ). This indues the followingation of SU(1; 1) on D � C �:(z; v) 7�! �az + bz + d ; 1z + dv� :



18 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERThis identi�es the line bundle L2 as the omplex tangent bundle TD of the hermitiansymmetri spae D . The ation of SU(1; 1) indues the anonial ation of Aut(D ) =PSU(1; 1) on TD . The ation of PSU(1; 1) on the hermitian line bundle TD is simplytransitive on the unit irle bundle STD . Choosing a base point we may identifyPSU(1; 1) with STD . The double overing SU(1; 1) is identi�ed with the irlebundle G � L0 � L. We may view G as the boundary of a disk bundle in L whih isa neighbourhood of the zero setion. This is the reason why the loally homogeneousspaes �nfSU(1; 1) are links of quasi-homogeneous Gorenstein singularities. For aGorenstein automorphy fator (D ; L; ��) of level 1 or 2, the puntured singularityX(L; ��)r f0g equals ~�nL0, where ~� � SU(1; 1) is a lifting of �� for level 2, and theinverse image of �� for level 1. Note that we have a ommutative diagram of mapsL0 ����! ������!'G ����!� DThe map ' is the prinipal C �-bundle desribed above, � is the restrition of ' toG � L0 and  is the entral projetion given by (z1; z2) = �(z2�z2 � z1�z1)� 12 z1; (z2�z2 � z1�z1)� 12 z2�:The C �-ation on L0 indues ations of R+ � C � on L0 and of S1 � C � on G, sothat  is a prinipal R+-bundle and � is a prinipal S1-bundle.3.3 Now we shall onsider universal overings. In view of the identi�ation ofSU(1; 1) with G � L0, the universal overing fSU(1; 1) ! SU(1; 1) identi�es withthe universal overing ~G ! G. Denote by ~L0 the indued R+-bundle over ~G. Wehave a ommutative diagram ~L0 ����!� L0~ ����! ����!  ~G ����!�0 GThe maps ~ and  are the projetion maps of R+-bundles, and � and �0 areuniversal overing maps. ~L0 inherits a pseudo-Riemannian metri of signature(n+; n�) = (2; 2) from L0. Both bundles have anonial setions ~G � L0 and~G � ~L0. So we might desribe them by a anonial trivialization.However, we �nd it more onvenient to work with another desription of ~L0obtained as follows. L0 is ontained in�(z1; z2) j z2 6= 0	 = C � C �:We may view L0 as a bundle of puntured diss imbedded in the C �-bundle de�nedby the projetion m on the �rst fator. Consider the universal overing � : C �R �R+ ! C � C � de�ned by (z; �; r) 7! (z; rei�). The inverse image of L0 identi�eswith the universal overing � : ~L0 ! L0, where~L0 = �(z; �; r) 2 C � R � R+ j jzj < r	



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 19and �(z; �; r) = (z; rei�). Moreover ~G � ~L0 has the following desription~G = �(z; �; r) 2 C � R � R+ j r2 = 1 + jzj2	:The map ~ : ~L0 ! ~G is desribed as follows:~ (z; �; r) =  zpr2 � jzj2 ; � ; rpr2 � jzj2! :3.4 The universal over fSU(1; 1) of PSU(1; 1) = Aut(D ) ats on D . For x 2 Dthere is a unique 1-parameter subgroup�x : R �! fSU(1; 1)suh that �x(t) ats on D as rotation through angle t with entre x. It is easy tosee that �0 : R ! ~G is given by �0(2t) = (0;�t; 1):Moreover, multipliation by �0(2t) from the left is given by�0(2t)(z; �; r) = (eitz; �� t; r):The two generators of the in�nite yli entre Z of fSU(1; 1) are �0(�2�) =(0;��; 1) = �x(�2�) for all x 2 D .Let k be a natural number. The subgroup of index k in Z has generators(0;�k�; 1). Given a level k and a natural number p relatively prime to k, wede�ne d := k=p and rd := (0;��d; 1) = �0(2�k=p):The image of rd in PSU(1; 1) generates a yli group of order p.Now let � � fSU(1; 1) be a disrete subgroup of level k. Let �� be the image of �in PSU(1; 1). Assume that �� has a �xed point x 2 D of order p. We assume x = 0without loss of generality. Moreover, we make the following assumption whih isimportant for our onstrution: p > k:Beause of 2.6 we have (k; p) = 1. Therefore the isotropy group of 0 2 D in � isthe in�nite yli group generated by rd, d = k=p.We shall now start presenting the elements of the onstrution of a fundamentaldomain for �.3.5 The advantage of embedding the Lorentz manifold SU(1; 1) as a submanifold Gof L0 in the aÆne spae C 2 with its pseudo-metri omes from the fat that C 2is at. The maximal geodesis in C 2 are the real aÆne lines. The maximal to-tally geodesi submanifolds are the real aÆne linear subspaes. Their intersetionswith L0 are maximal totally geodesi submanifolds of L0. The maximal totallygeodesi submanifolds of G are the onneted omponents of the intersetions of Gwith real aÆne linear subspaes of C 2 ontaining the origin.We shall use the aÆne linear geometry in L0 � C 2 in order to de�ne ertaintotally geodesi hypersurfaes in ~L0 orresponding to aÆne tangent hyperplanes ofG in L0. Let g be any element g 2 ~G and �g its image �g = �(g) in G. The aÆnetangent hyperplane of G � L0 at �g is�E�g = �y 2 L0 j hg; yi = �1	



20 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERwhere h � ; � i is the real part of the hermitian form on C 2. The totally geodesihypersurfae �E�g deomposes L0 into two half-spaes, an \inner" half-spae�I�g = �y 2 L0 j hg; yi 6 �1	and an \outer" half-spae �H�g . The spaes �E�g and �I�g are simply onneted and evenontratible. Hene their preimages under � : ~G ! G onsist of in�nitely manyomponents, one of them ontaining g.De�nition. For g 2 ~G, the spaes Eg ; Ig ; Hg � ~L0 are de�ned as follows:(i) Eg is the omponent of ��1( �E�g) ontaining g.(ii) Ig is the omponent of ��1(�I�g) ontaining g.(iii) ~L0nEg has two onnetedness omponents. Ig is the losure of one of them.Hg is the losure of the other one. Eg = Ig \Hg is the ommon boundary.Note that Ig maps bijetively onto �I�g , whereas Hg is the union of ��1( �H�g) and��1(�I�g)nIg .In terms of the desription of ~L0 given in 3.3, the spaes de�ned above for anyg 2 G have the following onrete and simple desription for the unit elemente = (0; 0; 1) �I�e = �(z1; z2) 2 C 2 j Re(z2) > 1; jz1j < jz2j	;�E�e = �(z1; z2) 2 C 2 j Re(z2) = 1; jz1j < jz2j	:The boundary of �E�e is a rotational hyperboloid of one sheet deomposing the3-spae Re(z2) = 1 into two omponents, and �E�e is the omponent ontainingthe axis of rotation.The orresponding subsets of ~L0 are as follows:��1(�I�e) = �(z; �; r) 2 C � R � R+ j r os� > 1; jzj < r	;Ie = �(z; �; r) 2 C � R � R+ j r os� > 1; jzj < r; j�j < �=2	;Ee = �(z; �; r) 2 C � R � R+ j r os� = 1; jzj < r; j�j < �=2	:We may visualize these sets by means of a projetion to the (�; r)-half-plane R�R+.The ommon boundary Ee of Ie and He projets to the urve de�ned by j�j < �2and r = 1= os�. This urve deomposes the half-plane into two omponents. Theirlosures are Xe = �(�; r) 2 R � R+ j r 6 1= os� or j�j > �=2	Ye = �(�; r) 2 R � R+ j r > 1= os� and j�j < �=2	The ondition jzj < r de�nes He as an open disk bundle over Xe and Ie as adis bundle over Ye. If we onsider Ie and He as di�erentiable manifolds, they areobviously 4-dimensional half-spaes.The sets Ig and Hg assoiated to any other element g 2 ~G are obviously obtainedfrom Ie and He by the operation of ~G on ~L0, i.e. Hg = gHe et.3.6 Suppose we are given positive integers k and p without ommon divisor. Putd = k=p and onsider the in�nite yli subgroup �d � ~G generated by the elementrd = (0;��d; 1) as in setion 3.4. This group ats on ~G by left multipliation.Consider the set Q(d) := \g2�dHg:
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Figure 2: The image X(d) of Q(d) in the (r; �) half-planeHow does it look like? The generator rd ats as follows:rd(z; �; r) = (ei�dz; �� �d; r):It ats on the (�; r)-half-plane by the translation �d mapping (�; r) to (� � �d; r).In view of gHe = Hg , the images of the sets Hg , g 2 �d are the translates �nd (Xe)of the image Xe of He desribed in 3.5. Therefore we see that Q(d) is a dis bundleover the set X(d) := \n2Z�nd (Xe):Obviously, the nature of this set is very di�erent for the two ases d < 1 and d > 1.For instane, in the ase d < 1, the boundary is onneted, whereas for d > 1there are in�nitely many boundary omponents. Figure 2 shows the ase d < 1, i.e.p > k. The shaded area is the image X(d) of Q(d).The manifolds gQ(d) play a entral role in our onstrution. So it is importantthat the reader should understand the geometri nature of these objets. We havedesribed Q(d) as a dis bundle over the set X(d) in the (�; r)-half-plane R � R+.We may desribe Q(d) � ~L0 � C � R � R+ asQ(d) = (C �X(d)) \ L0:The reader should think of X(d) as a universal overing of a puntured planepolygon. Consider the following diagram of overing mapsR � R+ ����!�0 C �������!� ����! �00C �where �(�; r) = rei� and �0(�; r) = r1=kei�=k and �00(z) = zk. Consider the urve�(�X(d)). It is easy to see that this is a regular star polygon � 2pk 	 when k is oddand a regular star polygon � pk	 when k is even. Therefore the urve �0(�X(d))is a urvilinear 2p-gon overing the star polygon one or twie. Let P 0 � C andP = P (d) � C be the plane areas bounded by the urvilinear polygon �0(�X(d))and by the star polygon �(X(d)). The images of X(d) are the puntured plane



22 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERpolygons �0(X(d)) = P 0 n f0g and �(X(d)) = P n f0g. We think of the produtC � P 0 as a 4-dimensional 2p-gonal prism. C �X(d) is the universal overing ofthe piered prism C � (P 0 n f0g). The produt C � P � C 2 might be onsideredas a 4-dimensional \star prism". Its axis C � f0g does not meet L0 � C � C �.Therefore the universal overing � : ~L0 ! L0 maps Q(d) to the intersetion of L0with the star prism: �(Q(d)) = L0 \ (C � P (d)):3.7 Let � � fSU(1; 1) be a disrete subgroup of �nite level k. Its image �� inPSU(1; 1) is a disrete subgroup of Aut(D ). We assume that u 2 D is a �xed pointof �� of order p > k. Set d = k=p. The onstrution of a fundamental domain forthe ation of � on fSU(1; 1) depends on the hoie of u.Let �u � � be the isotropy subgroup of u and �(u) � D the �-orbit of u. Forx 2 �(u), let T (x) be the left oset of �uT (x) := �g 2 � j g(u) = x	:De�nition. Qx := \g2T (x)Hg:The Hg � ~L0 are the \half-spaes" onstruted in 3.5. Note that obviouslyQgu = gQu:The geometry of Qu has been desribed in 3.6. We assume without loss of generalityu = 0. Then Qu = Q(d);where d = k=p and Q(d) is the universal prismati set desribed in 3.6. So all Qxare obtained from suh a prismati set by the ation of � on ~L0.De�nition. P := [x2�(u)Qx:Now we an state the main result.Theorem. The boundary of P is invariant with respet to the ation of � on ~L0.For any g 2 � the subset Fg := Cl�P (Int�P (�Hg \ �P ))is a fundamental domain for the ation of � on �P . The projetion ~ : ~L0 ! ~Gindues a �-equivariant homeomorphism �P ! ~G. The imageFg := ~ (Fg)is a fundamental domain for the ation of � on ~G, the universal overing ofSU(1; 1). The family (Fg)g2� is a loally �nite �-equivariant tiling of ~G. Forevery pair of di�erent elements g; h 2 � the intersetion Fg \ Fh lies in a totallygeodesi submanifold of ~G. If � is o-ompat, then Fg and Fg are ompat.The proof is given in [75℄.3.8 The onstrution of the 4-dimensional polytope P and the �-equivariant tilingof its boundary �P by the fundamental domains Fg was done in the universalovering ~L0 of L0. It desends to the quotient of ~L0 by the subgroup of index kin the entre of ~G, but in general not to L0. However, the individual fundamental



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 23domains Fg and Fg have models �(Fg) and �(Fg) in L0 � C 2. Without loss ofgenerality we onsider only Fe, sine �(Fg) =  (�(Fe)) by radial projetion. Wealso assume that the �xed point is u = 0, so that Qgu = gQ(d).By de�nition Fe lies in �He = Ee. Reall that � : Ee ! �E�e is a homeomorphismonto a solid rotational hyperbola lying in the aÆne tangent spae of G = SU(1; 1)at the neutral element �e. Therefore � maps Fe bijetively onto a domain�(Fe) � �E�elying in that solid hyperbola. Moreover Fe is ontained in the intersetion of Eeand Q(d). Therefore the image �(Fe) lies in �(Ee \ Q(d)). This is a piee of thesolid hyperbola ut out by two parallel planes orthogonal to the rotational axis. Interms of oordinates z1 = x1 + iy1 and z2 = x2 + iy2 we have�(Ee \Q(d)) =�(z1; z2) 2 C 2 j x2 = 1; x21 + y21 � y22 < 1; jy2j 6 tan(�d=2)	:The set Fe is obtained from Ee \Q(d) by removing the interior of its intersetionwith the other prismati sets Qgu = gQ(d). Therefore �(Fe) is obtained from thepiee of the solid hyperbola �(Ee\Q(d)) by removing those parts of its intersetionswith the star prisms �(gQ(d)) that are images of Ee \Q(d) \ gQ(d).This shows that for a disrete o-ompat group � � fSU(1; 1) the image �(Fe)of the fundamental domain Fe is a ompat polyhedron with at faes in the three-dimensional at Lorentz spae tangent to G at �e. Thus we have inside the atLorentz spae su(1; 1) a polyhedral model for the urved fundamental domains Fg.This polyhedron represents the Lorentz spae form �nfSU(1; 1).Figure 3 shows how the polyhedron �(Fe) is arved from the solid hyperbola byremoving intersetions with prisms. The example shown in the �gure is a funda-mental domain for Arnold's exeptional singularity E14. The tables given in 2.8show that E14 has an automorphy fator of level k = 1 and signature (3; 3; 4). Thefundamental domain is onstruted for the �xed points of order 4. Beause of k = 1the star prisms are honest prisms, and the order 4 leads to prisms with an otagonalbase. Figure 3 is a slightly improved version of �gure 4 in [11℄.

Figure 3: The onstrution in the ase E14



24 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLER4. Fundamental domains for Em, Zm, Qm4.1 Anybody who has ome to know the onstrution of fundamental domainsdesribed in the last setion will want to see examples. But if he tries to do someexamples, he is going to disover that there is a remarkable ontrast between theelegane of the general onstrution and the hard work required for the expliitdetermination of the fundamental domains for a given lass of disrete groups. Theexamples presented in this setion were alulated in [75℄ on more than hundredpages and ould not be done on less. The examples in the next setion were donein [78℄, and the analysis of those three examples needed about two hundred pageswithout preeding preparations.There is an obvious explanation for these diÆulties. The de�nition of the poly-tope P and the fundamental domain Fe given in 3.7 involves all prismati sets Qxfor the in�nitely many points x 2 �(u) in the orbit of the �xed point u of � hosenfor the onstrution. When � is o-ompat, only �nitely many Qx are needed inthe onstrution of Fe. However, there is no reasonable a priori estimate to tell usup to whih distane from u points x 2 �(u) have to be taken into aount. In fatin setion 5 we shall see an example where the number of essential prisms Qx variesin the Teihm�uller spae of � and goes to in�nity when we approah the boundary.4.2 The hoie of the examples presented in this paper was motivated by two kindsof experienes. One motivation has been desribed in the introdution. It is thebelief that the series E, Z, Q play a distinguished role. The seond motivationomes from the previous experiene with alulations of fundamental domains in[35℄, [48℄, [74℄. The authors of [35℄ and [48℄ alulated the fundamental domains ofthe Fisher onstrution for all 14 triangle groups of Arnold's 14 exeptional uni-modular quasi-homogeneous singularities and for all hoies of �xed points exeptthose of order two. Altogether, these are 27 examples of fundamental domains.The experiene with these examples shows two things. First, the hoie of the �xedpoint of highest order leads to the fundamental domain with the highest degree ofsymmetry. As we will shortly see, this is not too surprising. Seondly, the hoieof the �xed point of the highest order seems to be suitable for the arrangementof singularities in series. This assumption was on�rmed in [74℄ by the alulationof fundamental domains of the six triangle groups of level 2 whih orrespond tobimodular exeptional quasi-homogeneous singularities.We do believe that all these fundamental domains are interesting and that morealulations for other series both for highest order of the �xed points and lowerorders would lead to new insight into the nature of Arnold's series and the relationsbetween the series. However, we have deided to adhere to the priniple statedby Pappus of Alexandria quoted at the beginning of this paper. Pappus uses thispriniple when he introdues the Arhimedian polyhedra oming right after thePlatoni solids beause of their regularity. So we have hosen to alulate thefundamental domains for the series Em, Zm, Qm as well as for the three asesE3;0, Z1;0, Q2;0, and in all ases we have hosen the �xed point of highest order.In our opinion, the results on�rm our expetations. In partiular, the series ofpolyhedra for Em with m even, for Zm with m odd, and for Qm with m even, issimple, regular and beautiful. Other parts of the results are more subtle and willbe disussed later on.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 25Before we go on, the reader should ontemplate the �gures of tables 5{7 show-ing the fundamental domains for the series Em, Zm, Qm. We refer to the legendpreeding the tables for explanations onerning the drawing of the �gures. We em-phasize that the �gures are stritly aurate representations of preisely alulatedpolyhedra.4.3 The group � � ~G ats on ~G by left multipliation, and this ation extends toan ation on ~L0 by isometries. This indues an ation on P and on �P and �nallyan ation of � on the tiling (Fg)g2G whih is simply transitive. However, there maybe other isometries of ~L0 whih at on the tiling. Those of these isometries whihmap a partiular Fg onto itself will be alled symmetries of Fg. We are interestedin the group of these symmetries or subgroups of this group. It suÆes to desribethese symmetries for the linear model of Fe.The group ~G ats on itself by left multipliations and also by right multiplia-tions. Any isometry in the onneted omponent of the identity is a produt of aleft multipliation and a right multipliation. In partiular, we have the subgroup�G �= PSU(1; 1) of inner automorphisms and its adjoint representation on su(1; 1),the spae ontaining the linear model of the fundamental domain. The isometrygroup of ~G has four onneted omponents. They may be desribed as follows. Theelement " 2 Isom( ~G) is de�ned by "(g) = g�1. The isometry � 2 Isom( ~G) is theinvolutive automorphism de�ned by �(�(g)) = �(g). We haveIsom( ~G) = Isom( ~G)0 o f1; "; �; "�g;Isom+( ~G) = Isom( ~G)0 o f1; �g:The isometries of ~G lift to isometries of ~L0. The symmetry groups of our polyhedraFe will be dihedral groups of the formh�io h�i;where � is an inner automorphism of �nite order.Now let � � ~G be a disrete o-ompat subgroup of level k, suh that 0 2 D isa �xed point of order p for �� � PSU(1; 1), and let Fe be the fundamental domainfor � with this �xed point. As before, let �0 : R ! ~G be the 1-parameter subgroupsuh that �0(t) ats on D by the rotation � 7! eit�. Let �(t) 2 Isom( ~G)0 be theonjugation by �0(t). This isometry ats on ~Lo as follows:�(t)(z; �; r) = (eitz; �; r):The isometry �(2�=p) omes from onjugation with a generator of the isotropygroup �0. Thus �, �0, P , �P and Fe are invariant under �(2�=p). Thereforethe symmetry group of Fe ontains at least the yli group h�(2�=p)i of order p.However, there may be more rotational symmetry. Suppose for example that �� isa triangle group �(p; q; r), where 0 2 D is the �xed point of order p. If q = r, thenormalizer of �� in Aut(D ) = Isom+(D ) ontains the rotation by the angle �=p withentre 0, whereas the isotropy group ��0 is generated by the rotation by the angle2�=p. Therefore, in this ase the symmetry group of Fe ontains the yli group�(�=p) of order 2p.Other symmetries may our when there is a reetion in Isom(D ) whih nor-malizes �� and the isotropy group ��0. Without loss of generality we may assumethat the reetion is given by � 7! ��. When the signature of �� has genus 0, thegroup � � ~G is uniquely determined by �. In this ase it is obvious that �(�) = �



26 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERand �(�0) = �0. Therefore, in this ase, the involutive isometry � is a symmetryof the fundamental domain Fe. In partiular, these arguments apply to all trianglegroups, sine they are those normal subgroups of index 2 in the group generated byreetions in the sides of the triangles whih onsist of orientation preserving isome-tries. We assume without loss of generality that the triangle group is normalizedby the reetion � 7! �� .4.4 A disrete o-ompat subgroup � of level k in fSU(1; 1) suh that the im-age in PSU(1; 1) is a triangle group with signature (�1; �2; �3) will be denotedby �(�1; �2; �3)k . We assume without loss of generality that �1 6 �2 6 �3 andthat 0 2 D is a �xed point of order �3. When we onsider a fundamental domainFe of �, we always mean the fundamental domain for the �xed point 0. Moreover,we assume without loss of generality that � is normalized by �.De�nition. The symmetry index q(�) of � = �(�1; �2; �3)k is de�ned byq(�) = ( �3; if �1 < �2,2�3; if �1 = �2.In 2.8 we have given tables showing the groups �(�1; �2; �3)k orresponding tosingularities of the series Em, Zm, Qm. Whenever it is onvenient, we shall denotethese groups by the symbols Em, Zm, Qm.The following two tables list all singularities Em, Zm, Qm and show the symme-try index of their group �. In both tables n is a positive integer. In the table onthe left n is not divisible by 3. We shall say that singularities or groups listed onthe left are of type I and those on the right of type II.� q(�) � q(�)E10+2n n+ 6 E7+6n 2n+ 3Z9+2n 2n+ 6 Z6+6n 4n+ 2Q8+2n 3n+ 6 Q5+6n 6n+ 1Type I Type IITheorem. Let � = �(�1; �2; �3)k be the group orresponding to one of the sin-gularities of the series Em, Zm, Qm. The fundamental domain Fe of � has thesymmetry group Sym(Fe) = h�(2�=q(�)io h�i:This is a dihedral group of order 2q(�), where q(�) is the symmetry index of �.The inlusion h�ioh�i � Sym(Fe) is obvious. The arguments for the other inlusionare given in [11℄ Proposition 8 and [75℄, p. 41.4.5 The fundamental domains for the groups � of type I are suÆiently simple sothat we an desribe them in this expository paper. For those of type II we referto the �gures of the tables and to [75℄.There are two di�erent levels of preision in the desription of the fundamentalpolyhedra �(Fe). A preise desription has to determine suh a polyhedron as aertain subspae of the aÆne Lorentz spae. This may be done by giving all vertiesand the partially ordered struture of the faets. Or we may present the polyhedronby some onstrution beginning with half-spaes and applying the operations ofunion and intersetion. This is what we shall do.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 27The seond and lower level of preision is the purely ombinatorial desription ofthe partially ordered struture of the faets. There is a systemati way of desribingthese data for a group ating on a tiling, whih was developed by A. Dress. Notwithstanding the advantages of suh a systemati approah, we prefer a simpler andnaive desription of the ombinatorial struture whih is adequate for the tilingswhih we want to desribe. This approah is also suitable for the analysis of thetilings in the next setion, where the ombinatorial struture is not onstant on theTeihm�uller spae.We shall now indiate a preise onstrution for the model fundamental domainsof type I. These polyhedra live in the at Lorentz spae of signature (n+; n�) =(2; 1). However, suh a polyhedron has a distinguished rotational axis of symmetry.The diretion of this axis is negative de�nite, and the orthogonal omplement ispositive de�nite. Changing the sign of the pseudo-metri in the diretion of the axisof rotation transforms Lorentz spae into a well-de�ned Eulidean spae. In thisway, the model fundamental domain is transformed into a polyhedron in Eulideanspae with dihedral symmetry. We are going to give a onstrution, or rather twoonstrutions for suh polyhedra in R 3.Let �q be the rotation of R 3 around the z-axis by the angle 2�=q. Let � be therotation around the x-axis by the angle �. These rotations generate the dihedralgroup h�qi o h�i of order 2q. Let H+ be an half-spae bounded by a plane whihis not parallel to a oordinate axis, and let H� be the half-spae H� = �H+. Weassume that the wedge H+ \H� does not meet the z-axis. The wedge meets the(x; y)-plane in a ertain setor with some angle �. We assume that 0 < ��2�=q < �.Let ! be some positive real number. We de�ne the following subset of R 3:P (H; q; !) := �R 3 n q[i=1 �iq(H+ \H�)0� \ �R 2 � [�!; !℄�:This is a ompat polyhedron with symmetry group h�qi o h�i. We shall all it apolyhedron of type Ia. We an modify the onstrution replaing the wedge by ablunted wedge where the edge has been ut o� by a plane parallel to the edge andto the z-axis. We all polyhedra obtained by this modi�ed onstrution of type Ib.Muh of the labour in alulations of the fundamental domains onsists in re-duing their theoretial onstrution given in 3.7 to an expliit desription suh asthe one given in the following theorem.Theorem. Let � � fSU(1; 1) be a disrete o-ompat subgroup whih belongs toone of the series Em, Zm, Qm. Let q = q(�) be its symmetry index. Suppose that� is of type I. Then the fundamental domain for � is a polyhedron in Lorentz spaewhose symmetry group is a dihedral group of order 2q. It is of type Ia for the seriesEm and Qm and of type Ib for the series Zm.4.6 One we have obtained a desription of the fundamental domain Fe as in 4.5where the faes are identi�ed as omponents of intersetions Fe \ Fg , it is easy todedue the following desription of the ombinatorial struture.We shall desribe the identi�ation of faes of Fe by pairings of ags (f; e) and(f 0; e0), where f is a fae and e is an edge of the fae. Suh a pairing is enough todesribe the identi�ation of f and f 0, sine the identi�ation reverses the orienta-tion. When f1 and f2 are adjaent faes with ommon edge e = f1 \ f2, the ag(f1; e) will be denoted by (f1; f2).



28 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERLet Pq be a regular q-gonal prism. The retangular faes are numbered in yliorder. For eah of the types E, Z, Q de�ne Pq(E), Pq(Z), Pq(Q) as the prism Pqtogether with a subdivision of the retangular faes whih is equivariant with respetto the dihedral group of orientation preserving symmetries of Pq . The subdivisionof the j-th fae is desribed by �gure 4 together with a notation for the faes. Theq-gonal faes on top and bottom of the prism are denoted by d+ and d�.
ajbjType E aj bj jType Z bj jType QFigure 4: The subdivision of the j-th fae of the prism PqTheorem. Let � � fSU(1; 1) be a group of type I belonging to one of the seriesEm, Zm, Qm. Let q = q(�) be its symmetry index. The fundamental domainfor � onstruted in 3.7 has the same ombinatorial type as Pq(E), Pq(Z) andPq(Q) respetively. The fae identi�ation is equivariant with respet to the dihedralsymmetry of these prisms. It is given by the following table of pairs of ags.� q(�) pairingsE10+2n n+ 6 (aj ; bj) ! (bj�3; d+) (d+; bj) ! (d�; aj�n)Z9+2n 2n+ 6 (aj ; bj) ! (j�3; d+) (d+; bj) ! (d�; aj�n)(bj ; j) ! (bj�3�n; d+)Q8+2n 3n+ 6 (bj ; j) ! (j�3�n; d+) (d+; j) ! (d�; bj�n)These identi�ations of faes are illustrated on table 8.The results of 4.5 and 4.6 over 6 of the 9 ases in the �rst table in 2.8. The re-maining three ases with signature (2; 4; p) are onsiderably more ompliated. Wehave alulated fundamental domains for all these ases, as illustrated in tables 5{7,in [75℄. However, at present it is not proved for all p that these fundamental domainsoinide with those onstruted in 3.7. We are onvined that this is true.5. Fundamental domains for E3;0, Z1;0, Q2;05.1 The seond table in 2.8 shows that the automorphy fators for E3;0, Z1;0 andQ2;0 have level 1 and signature (0; 2; 2; 2; p), where p = 3, 4 and 5 respetively. Sinethe level is 1, it is enough to onsider Fuhsian groups of signature (0; 2; 2; 2; p) inPSU(1; 1) and their preimages in SU(1; 1). The onstrution of fundamental do-mains in SU(1; 1) an be arried out within the framework of the original onstru-tion of Thomas Fisher.We begin with a desription of the real analyti Teihm�uller spae of Fuhsiangroups with signature (0; 2; 2; 2; p). The essential idea is the use of Frike oordi-nates and goes bak to Frike [37℄, p. 335{341 and [38℄, p. 296{299.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 29Let �p be the group de�ned by the following presentation:�p := 
0; 1; 2; 3 j p0 = 21 = 22 = 23 = 0123 = 1�:The group of orientation preserving automorphisms of �p is de�ned asAut+(�p) := �' 2 Aut(�p) j 9� 2 � '(0) = �0��1	:The group of inner automorphisms is a subgroup, and the modular groups arede�ned as Mod+(�p) := Aut+(�p)= Inn(�p) �= PSL(2;Z)Mod (�p) := Aut (�p)= Inn(�p) �= PGL(2;Z)The representation spae R(�p) and the Teihm�uller spae T(�p) are de�ned asfollows:R(�p) := �d 2 Hom(�p;PSU(1; 1)) j d injetive and d(�) disrete	:T(�p) := Aut(PSU(1; 1)) n R(�p):The moduli spae and the redued moduli spae for Fuhsian groups with signature(0; 2; 2; 2; p) are the quotientsT(�p)=Mod+(�p) and T(�p)=Mod(�p):We shall onstrut an isomorphism� : T(�p) �! Tpof the real analyti Teihm�uller spae with a real analyti variety Tp whih is aonnetedness omponent of the real ubi hypersurfae Vp in R 3 given by thefollowing equation: t21 + t22 + t23 � t1t2t3 � 4 sin2(�=p) = 0:The ubi Vp has tetrahedral symmetry and has �ve onnetedness omponentsseparated by the planes ti = �2. The omponent Tp is de�ned as follows:Tp = �(t1; t2; t3) 2 Vp j t1; t2; t3 > 2	:We de�ne three speial elements Æi 2 �p as follows:Æ1 := 01; Æ2 := 20; Æ3 := 12:The oordinate funtions �i of the map � are the Frike oordinates de�ned by�i(d) = jtrae d(Æi)j; i = 1, 2, 3:The anonial ation of the modular group Mod(�p) on T(�p) is transferred to Tpvia �. The modular group ats on Tp as a group generated by reetions Si andS0i de�ned as follows: Let fi; j; kg = f1; 2; 3g. Then Si permutes the oordinates tjand tk, whereas S0i replaes ti by t0i = tjtk � ti:We want to onstrut a fundamental triangle �p � Tp suh that Mod(�p) is thegroup generated by the reetions in the sides of �p. The onstrution is illustratedby �gure 5.The �gure shows an image of Tp obtained by entral projetion from 0 2 R 3onto the projetive plane. The projetion maps Tp one to one onto the equilateraltriangle with sides zi = 0, where i = 1; 2; 3. The �xed point sets of the Si aremapped onto the straight lines biseting the angles of the triangle. The images
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z3 = 0
z 2= 0

z1 = 0

Figure 5: The image of Tp in the projetive planeof the �xed point sets of the S0i are three urves whih form a urvilinear trianglewith uspidal verties on the boundary. The bisetors subdivide the urvilineartriangle into six smaller triangles. The preimages of these triangles are the sixsubsets Xij � Tp de�ned as follows:Xij = �t 2 Tp j ti > tj > tk; tjtk > 2ti	:The reetions in the sides of Xij are Si; Sk and S0i. The shaded triangle in theFigure 5 is X12. We hoose �p = X12as a fundamental domain for the triangle groupMod(�p) = 
S1; S3; S01�:Mod+(�p) is the subgroup of index two preserving the orientation, and we mighthoose X12 [X21 as fundamental domain for this group.5.2 It suÆes to study the onstrution of the fundamental domain F (d) de�nedin subsetion 3.7 as F (d) = Fe(d(�p)) for representations d 2 R(�p) whih satisfythe following onditions:(i) 0 2 D is a �xed point of d(0), and d(0) is the rotation by the angle 2�=p.(ii) �(d) 2 �.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 31Let us all suh d normalized and redued, and let us denote the subset of theserepresentations by R(�p)�.We are going to need a preise desription of the elements in the preimagesd̂(�p) � SU(1; 1) of the groups d(�p) � PSU(1; 1). Consider the group ~�p presentedas follows: ~�p = 
r0; r1; r2; r3 j r2p0 = r41 = r42 = r43 = r0r1r2r3 = 1�:There is a natural way of lifting elements of �nite order in PSU(1; 1) to elements oftwie that order if we onsider these elements as ontained in 1-parameter groups ofrotations and lift these 1-parameter groups. In this way we get for any d 2 R(�p)�well-de�ned elements ri(d) 2 SU(1; 1) by lifting d(i). Note that r0(d) = r0 isonstant. There is an isomorphism~d : ~�p �! d̂(�p)de�ned by ~d(ri) = ri(d).5.3 We shall now begin with Fisher's onstrution of the fundamental domainsF (d) for d 2 R(�p)�. We reall two elements of that onstrution. Reall thatin 3.5 we have de�ned for any g 2 G = SU(1; 1) � L0 � C 2 a ertain \half-spae"�Ig � L0 bounded by the tangent hyperplane �Eg . Reall also from 3.8 that we haveonsidered a ertain intersetion Ee \Q(d) of a tangent spae and a prismati set.We have desribed the image Se := �(Ee \Q(d)) in the tangent spae �Ee of e 2 Gas a ertain piee of a solid rotational hyperbola. Using these elements we de�nethe following polyhedron in the tangent spae �Ee of G at eF0(d) = Se \ p�1\m=0 3\i=1 2p�1[n=p+1 �Irm0 ri(d)rn�m0 :This is not yet the Fisher domain F (d). But F (d) will be onstruted by inter-seting a �nite number of polyhedra of this type. In order to get them, we de�nethe following automorphism � 2 Aut+(�):�(0; 1; 2; 3) = (0; 12�11 ; 1; 3):The �rst main result is the following theorem.Theorem. For p = 3, 4, 5 and d 2 R(�p)� the following statements hold:(i) The Fisher fundamental domain F (d) for the Fuhsian group d(�p) of sig-nature (0; 2; 2; 2; p) an be desribed as followsF (d) = 1\�=�1F0(d Æ ���)(ii) This intersetion is �nite. ThereforeF (d) = �+(d)\�=��(d)F0(d Æ ���)with uniquely determined maximal ��(d) 2 Z and minimal �+(d) 2 Z.(iii) ��(d) 6 0 6 �+(d)(iv) ��(d) + �+(d) 2 f0; 1g(v) �(d) = �+(d)� ��(d) is lower semi-ontinuous on R(�p)�.



32 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERThe proof given in [78℄ is very omplex. To some extent it uses the analysis of theombinatorial struture in the individual ases p = 3, 4, 5. In the present expositionwe take this main theorem as a point of departure for the desription of the resultsin the individual ases whih will be given below.5.4 Note that the element � 2 Aut+(�p) de�ned in 5.3 ats on Tp as a generatorfor the in�nite yli isotropy group of Mod+(�p) at the uspidal vertex of �, sine�(d Æ �) = S01 � S3(�(d)). Therefore, for d 2 R(�p)�, the representations d Æ �n inthe main theorem have images �(d Æ �n) in the following set[n2Z(S01 � S3)n(X12 [X21):This is a neighbourhood of the usp in the Satake-Borel-Bailey topology.5.5 We shall now state the results of the analysis for the three ases p = 3, 4 and 5.There are ertain very interesting features whih are ommon to all three ases, butthere are also di�erenes so that we prefer to present the individual ases in theorder of inreasing omplexity. We shall deal with p = 3 in setion 5.6, while p = 5is done in 5.7 and p = 4 in 5.8. The results are illustrated on tables 10{12 for theindividual ases, table 9 for all three ases and on tables 2{4 in a synopsis of theresults of all three authors.The funtions �+, �� and � = �+ � �� de�ned in 5.3 indue orrespondingfuntions on �p whih we shall denote with the same symbols. � is a lower semi-ontinuous funtion � : �p ! N . For any nonnegative integer n we onsider theinterior of the orresponding preimage in �p,�(n)p := ��1(n)0:In all three ases the verties of the fundamental triangle �p will play a speial role.We shall denote the vertex with angle �=3 by v0, the one with angle �=2 by v1.They are the �xed points of Mod+(�p) in �p of order 3 and 2 respetively. Thesepoints orrespond to speial values of the j-invariant of the quasi-homogeneoussingularities. There are several possible normal forms for these singularities (seee.g. [13℄, p. 191). Consider the following ones:E3;0 : x3 + ax2y3 + xy6 + z2;Z1;0 : x3y + ax2y3 + xy5 + z2;Q2;0 : x3 + ax2y2 + xy4 + yz2:Then the j-invariant is j = 427 � (a2 � 3)3a2 � 4 :The values j = 0 and j = 1 are attained for a2 = 3 and a = 0. The pointv0 orresponds to j = 0, and v1 orresponds to j = 1. We shall therefore referto the fundamental domains of groups d(�p) with �(d) = v0 or �(d) = v1 asthe fundamental domains for j = 0 or j = 1. These fundamental domains aredistinguished by speial symmetries. Moreover, they are distinguished by a veryinteresting feature whih we shall observe in eah of the six ases p = 3, 4, 5 andj = 0, 1. Namely, eah of them �lls a well-de�ned gap in one of the six series Em,Zm, Qm of type I or of type II. If the reader has not yet notied these gaps, heshould look again at the tables of symmetry indies in 4.4 and ontemplate the



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 33�gures on tables 5{7. Tables 2{4 show how the gaps are �lled. The fundamentaldomains for j = 0 and j = 1 �t perfetly with respet to ombinatorial struture,symmetry and identi�ation of faes.5.6 For p = 3 we an prove �� � 0. Thus �3 deomposes into the two opensubsets �(0)3 and �(1)3 and a urve C3 separating these regions. We have v0 2 �(0)3and v1 2 �(1)3 . The urve C3 is de�ned by the equation�t1 + t2 + t3 = 2:This deomposition �3 = �(0)3 [ C3 [�(1)3 is shown on table 9.Theorem. There are three ombinatorial types of fundamental domains F (d) forFuhsian groups d(�3). For d 2 R(�3)� the type of F (d) is onstant on �(0)3 , on C3and on �(1)3 .Figures 1{3 on table 10 show examples for the three ombinatorial types for p = 3.The numbers of the �gures are the same as those of the orresponding points of �3shown on table 9.Corollary. The fundamental domains for E3;0 �ll the gaps(i) for j = 0 between E14 and E18,(ii) for j = 1 between E13 and E19.The orollary is illustrated by table 2.5.7 For p = 5 we an prove �� � 0. Thus �5 deomposes into two open subsets�(0)5 and �(1)5 . They are separated by a urve C5 de�ned by the equation�t1t2t3 + t22t3 + t2t23 + t21 � t1t2 � t1t3�(1 + �)t2t3 + �t1 + �t2 + �t3 � � = 0;where � = (p5 � 1)=2. We have v0 2 �(0)5 and v1 2 �(1)5 . We must re�ne thisstrati�ation of �5 in order to get a strati�ation of �5 by the ombinatorial typeof fundamental domains. The domain �(0)5 is subdivided into two open domains�(0)05 and �(0)005 by a urve C 05 de�ned by the equation�t22 + t1t2 + �t2t3 � 2�t1 � t3 + 2� � = 0:The �gure at the right hand on table 9 shows that C 05 runs from the vertex v0 to theusp. The vertex v0 is not onsidered as a point of the urve. So we have de�neda deomposition of �5 into 6 disjoint strata:�5 = fv0g [�(0)05 [ C 05 [�(0)005 [ C5 [�(1)5 :We have marked one point on eah stratum, numbered in this order. Table 11shows the orresponding fundamental domains with the same numbering.Theorem. There are six ombinatorial types of fundamental domains F (d) forFuhsian groups d(�5). For d 2 R(�5)� the type of F (d) is onstant on the sixstrata of �5 de�ned above. In partiular, the ombinatorial type for j = 0 oursonly at the isolated point v0.Corollary. The fundamental domains for Q2;0 �ll the gaps(i) for j = 0 between Q12 and Q16,(ii) for j = 1 between Q11 and Q17.



34 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERThe orollary is illustrated by table 4.5.8 The analysis of the ase p = 4 led to a result whih we did not expet at all: theexistene of in�nitely many di�erent ombinatorial types of fundamental domainsfor Fuhsian groups with signature (0; 2; 2; 2; 4).For p = 4 it turns out that the lower semi-ontinuous map � : �4 ! N tothe nonnegative integers is surjetive. Therefore, one gets a deomposition intoin�nitely many open sets �(n)4 , n > 0. It turns out that anyone of these domains isadjaent to its suessor �(n+1)4 , and that there is a onneted urve C(n)4 separating�(n)4 and �(n+1)4 . The �rst of these urves C(0)4 is de�ned by the following equation:t2t3 � t1 � t2 � t3 +p2 = 0:This equation de�nes a urve C4 in all of T4, whih intersets �5 in C(0)4 . The otherurves C(n)4 are obtained from C4 by applying the reetions S3 and S01 by turns.Altogether we get an in�nite strati�ation�4 = �(0)4 [ C(0)4 [�(1)4 [ C(1)4 [�(2)4 [ C(2)4 [ : : :The strati�ation is illustrated by the �gure in the middle of table 9. We haveagain v0 2 �(0)4 , v1 2 �(1)4 .Theorem. There are in�nitely many ombinatorial types of fundamental domainsF (d) for Fuhsian groups d(�4). For d 2 R(�4)� the ombinatorial type is onstantas long as �(d) remains in one of the strata de�ned above.Table 12 shows four fundamental domains orresponding to four points in the �rstfour strata �(n)4 , n = 0, 1, 2, 3. The four points are shown on table 9.Corollary. The fundamental domains for Z1;0 �ll the gaps(i) for j = 0 between Z13 and Z17,(ii) for j = 1 between Z12 and Z18.The orollary is illustrated by table 3.6. Fundamental domains for ~E8, ~E7, ~E66.1 The results of Dolgahev quoted in setion 2 imply that the links of singularitiesof type ~E8, ~E7, ~E6 an be desribed as �nG, where G is the group of unipotentupper triangular 3� 3-matries and � is a disrete o-ompat subgroup. Prior tothis, Milnor had given suh a desription for the link as a di�erentiable manifold,where � � G \ SL(2;Z) was the ongruene subgroup modulo �, where � = 1; 2; 3for ~E8, ~E7, ~E6. However, Milnor's desription did not involve the moduli of thesesingularities, and Milnor onsidered his proof as \rather ad ho" and wrote \I do notknow whether there exists a more natural onstrution of these di�eomorphisms",[56℄.The approah of Dolgahev leads to more natural onstrutions. But if we want todesribe the quotient �nG by a fundamental domain, in ontrast to the spherialase SU(2) and to the Lorentz ase SU(1; 1) we do not have a natural pseudo-metri oming from the Lie group, and we do not have a general onstrutionsuh as the lassial onstrution in the spherial ase and the generalized Fisheronstrution developed by A. Pratoussevith. Nevertheless, we shall make an \adho" onstrution whih is �t to �ll the gap between the spherial ase and theLorentz ase.



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 356.2 By the work of K. Saito on simply ellipti singularities [80℄ it is known that thesingularities of type ~E8, ~E7, ~E6 are obtained by ontrating the zero setion of aline bundle over an ellipti urve with Chern lass ��, where � = 1; 2; 3. Therefore,the links of these singularities are the orresponding S1-bundles.Complex line bundles over omplex tori are desribed by the theorem of Appel-Humbert, Mumford [64℄, p. 20. The speialization to the ase of ellipti urves isas follows.Let H be the upper half-plane, � = �+ i� 2 H and �� the lattie Z+Z� � C .The omplex line bundles over the ellipti urve X� = C =�� are onstruted asfollows. We de�ne a hermitian form H on C byH(z; w) = k� (z �w):Let � = (�1; �2) 2 S1 � S1 a pair of omplex numbers of absolute value 1. Foru = m+ n� 2 �� , de�neeu(z) = �m1 �n2 � exp ��(ikmn+H(z; u) + 12 H(u; u))�:The lattie �� ats on C � C as follows:u(z; �) = (z + u; eu(z) � �):The projetion to the �rst fator de�nes a omplex line bundle Lk;�;� = C � C =��over X� with Chern number k. The theorem of Appel-Humbert says that anyomplex line bundle over X� is isomorphi to a unique Lk;�;�. Two bundles Lk;�;�and Lk;�;� di�er only by a translation. In our ase k = ��, where � = 1; 2; 3.The link of the singularity obtained by ontrating the zero setion identi�eswith Lk;�;�=R+, and this identi�es with C � S1=�� , where u = m + n� 2 �� atsas u(z; �) = (z + u; "u(z) � �) with"u(z) = �m1 �n2 � exp �i�(kmn+ ImH(z; u))�:We evaluate the sympleti form !(z; u) = ImH(z; u). For u = m + n� andz = � + �� with real �; � we have!(z; u) = �(n� �m�):6.3 We shall now pass to the universal overing C � R ! C � S1 mapping (z; t)to (z; ei�t). We de�ne a Heisenberg group struture on C � R by means of thesympleti form ! = ImH :(u; s) � (z; t) := (u+ z; s+ t+ !(z; u)):Let us denote C � R with this group struture depending on � and � by H�;� .We shall desribe the links of our singularities as quotients of H�;� by disretesubgroups. We desribe these disrete subgroups as representations of an abstratgroup �� isomorphi to the fundamental group of the link (� = 1; 2; 3):�� = 
a; b;  j aba�1b�1 = �; a = a; b = b�:Reall that in 6.2 we used � = (�1; �2) 2 S1 � S1 in our onstrution of a bundleover C =�� . Passing to the universal overing, we have to use instead a pair of realnumbers " = ("1; "2), where �� = ei�"� . Now we an de�ne a representation�" : �� �! H�;�as follows: �"(a) = (1; "1); �"(b) = (�; "2); �"() = (0; 2):



36 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERIt is easy to see that �" is injetive and that the image is a disrete o-ompatsubgroup �"(��) =: ��;�;" � H�;� :This disrete group operates onH�;� by left multipliation, and the following propo-sition follows immediately from the de�nitions and 6.2.Proposition. ��;�;"nH�;� identi�es with the link of the singularities obtained byontrating the zero setion in L��;�;�.6.4 The parameters (�; ") are points in a 4-dimensional spae of representations of��. We shall simplify the analysis by two di�erent redutions. The �rst redutionis to onsider only � in a fundamental domain � � H of the modular group. � isthe triangle de�ned by� := �� 2 H j � �� > 1; �1 6 � + �� 6 0	:The verties are v0 = e2�i=3 and v1 = i and the usp at in�nity. For � 2 �, weonsider the Dirihlet ell D� of 0 2 C 2 for the lattie �� . For � 2 � not on theimaginary axis D� is a hexagon. The adjaent Dirihlet ells belong to �1, �� and�(1 + �). When � tends to the imaginary axis, the Dirihlet ell degenerates intoa retangle. D� is a regular hexagon for v = v0 and a square for v = v1.Now onsider the prism D� � [�1; 1℄ � H�;� :It is obvious from the de�nition of ��;�;" that we may hoose this prism as afundamental domain for ��;�;" ating on H�;� by left multipliation. However,we have to subdivide the retangular faes in �D� � [�1; 1℄ if we want that theidenti�ations on the boundary of the prism maps faes to faes. The minimalsubdivisions satisfying this ondition are anonial, and we de�neP�;�;" = D� � [�1; 1℄as the prism with this subdivision of �D� � [�1; 1℄.The seond redution is guided by the priniple of highest symmetry statedin 4.2. We want that P�;�;" should have a dihedral symmetry group of order 12 for� = v0 and of order 8 for � = 1. For any � 2 �, the subdivision of a retangularfae of the prism in �D� � [0; 1℄ should be invariant under rotation of the faearound its enter by 180Æ. It is easy to see that these onditions are equivalent tothe ondition "1; "2 2 Z. Therefore, we assume without loss of generality"1; "2 2 f0; 1g:After this redution one has to analyze 12 = 3 � 4 families of fundamental domainsP�;�;", where � = 1, 2, 3 and " = ("1; "2) and � 2 �. This is an exerise in linearalgebra. In eah ase it is easy to determine the strati�ation of � by ombinatorialtypes and the most symmetri polytopes for the verties v0 and v1 of �. We shallbe ontent to state the result pertinent to the main theme of this artile. We de�ne"(�) = ((1; 1); for � = 1 and 3;(0; 0); for � = 2:Proposition. The six fundamental domains P�;�;"(�) with � = 1; 2; 3 for � = v0and � = v1 orrespond to the links of the simply ellipti singularities ~E8, ~E7, ~E6



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 37with j-invariants j = 0 and j = 1. They are the six fundamental domains shownon table 13.Corollary.(i) P1;�;(1;1) for j = 0 �ts between E8 and E12.(ii) P2;�;(0;0) for j = 0 �ts between E7 and Z11.(iii) P3;�;(1;1) for j = 0 �ts between E6 and Q10.The orollary is illustrated by table 1.7. Conluding Remarks7.1 We believe that the work of Vladimir Igorevih Arnold on series of singular-ities and our work on polyhedra representing Lorentz spae form for suh seriesforeshadow the existene of some struture as yet invisible. Therefore, we want toonlude with some remarks on open problems, history and future perspetives.As for open problems there are at least three problems resulting from our artile.Problem number one is the analysis of the series En;0, Zn;0, Qn;0. This may be aformidable task. At least we have done the three �rst ases. We may expet thatfundamental domains for these series �t into the gaps of the series En, Zn, Qn.Problem number two is the determination of the omplex struture of the Teih-m�uller spaes Tp. This is the unsolved problem of the aessory parameters.We wish we ould alulate the j-invariant of a quadrangle singularity from a givenpoint of Tp. For it is known that singularities with speial values of the j-invariantallow exoti deformations. First examples were given by F. Pham and C. T. C. Wall.Afterwards, there was extensive work on this done by our group, [12℄, [13℄, [42℄.For example the exoti deformations of E3;0, Z1;0 and Q2;0 into ombinations ofsimple singularities our exatly for j = 0 and j = 1:j = 0 j = 1E3;0 �!E6 +E8 E3;0 �!E7 +E7Z1;0 �!E8 +E5, E7 +E6 Z1;0 �!E7 +D6Q2;0 �!E8 + 2A2, E6 +E6 Q2;0 �!E7 +A5For the other three bimodular quadrangle singularities exoti deformations ouralso for other values of j (see [13℄, p. 56). For example W1;0 ! D13 ours forj = 53 � 10933212 � 112 :One may wonder about the meaning of these speial values of the j-funtion.Do they have anything to do with speial properties of our fundamental domains?The third problem is to understand the unexpeted phenomenon of in�nitelymany ombinatorial types for the signature (0; 2; 2; 2; 4) as opposed to �nitely manytypes for (0; 2; 2; 2; 3) and (0; 2; 2; 2; 5).7.2 In 1983 Arnold published a list of \Some open problems in the theory of sin-gularities" [9℄. In it Arnold posed the problem \A, D, E", whih onsists in �ndinga general lassi�ation theorem from whih one ould derive the solutions of themany di�erent problems in whih there appear \unexpetedly" the Dynkin dia-grams of type A, D, E. It seems to us that suh a problem raises questions aboutthe nature of our siene. The \unexpeted" ourrene of the same ombinatorial



38 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERstruture in solutions of di�erent problems may be due to the fat that in all theseproblems we are trying to lassify objets of a partiular simple nature and thatin all ases the onditions neessary for their onstrution or existene redue tothe same simple struture of some ombinatorial nature whih we do not yet see.However, this struture might be something very abstrat of a metamathematialnature. Frequently in the history of mathematis onrete individual objets ofa simple and regular nature appear many years before they �nd a plae in theframework of some general struture.It seems to us that this may still be the status of Arnold's series of singularities.As we have seen, �rst examples appeared 100 years before Arnold found his series.And yet Arnold himself has to say ([10℄, Vol. I, p. 243):After a series has been found, we an de�ne it. However a general de�nitionof a series of singularities is not known.7.3 There is no doubt that the series of quasi-homogeneous singularities de�ned byArnold are meaningful. Their meaning appears in the ontext of various mathemat-ial theories, as pointed out in 2.2. The work of many mathematiians has shownregular patterns within individual series or in the relations between series or om-mon to many of them. It would lead us to far to quote all these artiles. We wouldlike to mention only a few results of our group apart form those already quoted:The results of W. Ebeling [31℄ and Ebeling and C. T. C. Wall [32℄ on quadratiforms and monodromy groups of singularities and on Arnold's \strange duality"between Dolgahev numbers and Gabrielov numbers, the results of C. Hertlingon Torelli type theorems for Arnold's unimodular and bimodular singularities andother quasi-homogeneous singularities [45℄, [46℄, the results of Greuel, Hertling andP�ster on moduli spaes of semi-quasihomogeneous singularities [43℄, and the reentwork of K. M�ohring [58℄ on numerial invariants and series of quasi-homogeneoussingularities whih led to the disovery of a ertain regular pattern for the systemof several of Arnold's series and the introdution of new series whih �t into thispattern.7.4 The approah presented in this paper o�ers a new perspetive on regular pat-terns related to Arnold's series. Our regularity is that of a ombinatorial pattern,the ombinatoris and symmetry of the fundamental domain onstruted in perfetgenerality by Anna Pratoussevith. This pattern an be used as an instrument forthe exploration of relations between series of quasi-homogeneous Gorenstein surfaesingularities. At the same time it is an instrument for the exploration of relationsbetween series of losed Lorentz spae forms.Some aspets of this ombinatorial pattern are nie and simple, at least forsuÆiently simple examples. Other aspets show surprisingly subtle properties evenin the ase of simple examples suh as the Fuhsian group of signature (0; 2; 2; 2; 4).These subtle phenomena should not be ignored or rejeted beause of the ontrastbetween their omplexity and the apparent simpliity of the normal forms of suhsingularities.7.5 The remarks about the appearane of individual nie objets whih later be-ome examples of a general theory or onstrution applies to our onstrution too.When Thomas Fisher had found his onstrution, we disovered that one of ourombinatorial patterns had appeared many years before, albeit without any real-ization of a onnetion with Lorentz spae forms. However, there was some ontat



THE COMBINATORIAL GEOMETRY OF SINGULARITIES 39with two of the �elds mentioned before: spae forms and Seifert �bre spaes. Hereis the story, as we know it from a letter of H. Seifert, who got it from the diaryof W. Threlfall. In 1933 Seifert and Weber had published a joint paper entitled\Die beiden Dodekaederr�aume" [91℄. They onstruted a spherial spae form and ahyperboli spae form by identifying opposite faes of a dodeahedron by srew mo-tions with angles �=5 and 3�=5. In [83℄, p. 209 and [87℄, I, x 12 Seifert and Threlfallidenti�ed the spherial dodeahedral spae as the unique losed orientable Seifert�bre spae with �nite fundamental group di�erent from the sphere. Early in 1938a student who had written a masters thesis on spae groups asked Threlfall for atopi for a PhD-thesis. His name was H. Friedg�e. In January 1938 Seifert showedFriedg�e the position of the three exeptional �bres of multipliity 2, 3, 5 in thespherial dodeahedral spae. At the end of the year, Friedg�e presented his thesisentitled \Verallgemeinerung der Dodekaederr�aume". It was published in 1940 inMathematishe Zeitshrift [39℄.In his thesis Friedg�e examines an in�nite series of losed 3-manifolds obtained byidenti�ation of faes of ertain polyhedra. The polyhedra are not realized in someaÆne spae. The onstrution is purely topologial. In essene the polyhedra arethe same as our prisms with the subdivision of the retangular faes desribed in4.6, �gure 4, type E. And the identi�ation of faes is the same as the one shownon table 8 for the E-series, type I.Friedg�e alulates the fundamental group and homology of his manifolds andnoties the period 6 in his series. For those of his manifolds whih are homol-ogy spheres he onstruts a Seifert �bration with his bare hands and alulatesthe multipliities of the �bres. They are (2; 3; 6k � 1) and agree with the sig-nature (�1; �2; �3) for E4m in our table 2.8. This identi�es his manifolds withknot-manifolds obtained as overings of the sphere rami�ed over the trefoil knot.Finally, he noties that there are other shemes for the identi�ation of faes ofthe same polyhedra leading to other manifolds.7.6 A similar remark applies to the polyhedra whih we have found for the type IZ-series. In 1983/84 E. Moln�ar has given a ombinatorial onstrution of an in-�nite series of twie puntured ompat hyperboli manifolds obtained from suhpolyhedra [59℄, [60℄. Of ourse, his identi�ation sheme is di�erent from ours.There is a rih literature on ombinatorial onstrutions of hyperboli spaeforms. Combinatorial onstrutions for Lorentz spae forms seem to be rare. Butwe have found at least one suh onstrution, again by E. Moln�ar. It was foundaround 1988 and presented in a short note [61℄. Moln�ar onstruts a doubly in�niteseries of 3-manifolds by identi�ation of the faes of polyhedra obtained from atetrahedron by a subdivision of the faes depending on two natural numbers mand n. He laims that this is a Seifert �bre spae and that the orresponding 2-dimensional orbifold belongs to a triangle group with signature (2;m; n). So for1=2 + 1=m + 1=n < 1 the universal overing is fSL(2;R ). The ase of signature(2; 3; a), with a > 6 is treated in [62℄, setion 3. Again we see the appearane ofthe simplest possible ases. We do not see whether there is a relation between thatombinatorial onstrution and our onstrution of fundamental domains, whih isnot only ombinatorial but geometrial in the sense of Lorentz geometry.7.7 When we see all these di�erent ombinatorial onstrutions of in�nite series ofpolyhedra and spae forms of di�erent geometries related to \series" of presenta-tions and representations of disrete groups we may dream of a theory omprising



40 E. BRIESKORN, A. PRATOUSSEVITCH, AND F. ROTHENH�AUSLERthem all and giving us also a general notion of series of singularities. For the timebeing we are happy with what we have found. When we asked Seifert about themotivation for the thesis of Friedg�e, he replied:At that time we were delighted by every new three dimensional manifold.
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E8 ~E8 E12
E7 ~E7 Z11
E6 ~E6 Q10Table 1: Fundamental domains for the boundary layer singularities
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� � �~E8, j = 0 ~E8, j = 1

E12 E13 E14
E3;0, j = 0 E3;0, j = 1

E18 E19 E20Table 2: Fundamental domains for ~E8, E12, E13, E14, E3;0, E18, E19, E20
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~E7, j = 0 ~E7, j = 1
Z11 Z12 Z13

Z1;0, j = 0 Z1;0, j = 1
Z17 Z18 Z19Table 3: Fundamental domains for ~E7, Z11, Z12, Z13, Z1;0, Z17, Z18, Z19
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~E6, j = 0 ~E6, j = 1
Q10 Q11 Q12

Q2;0, j = 0 Q2;0, j = 1
Q16 Q17 Q18Table 4: Fundamental domains for ~E6, Q10, Q11, Q12, Q2;0, Q16, Q17, Q18
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E12 E13 E14�(7; 3; 2) �(5; 4; 2) �(4; 3; 3)
E18 E19 E20�(5; 3; 3)2 �(7; 4; 2)3 �(11; 3; 2)5
E24 E25 E26�(13; 3; 2)7 �(9; 4; 2)5 �(7; 3; 3)4
E30 E31 E32�(8; 3; 3)5 �(11; 4; 2)7 �(17; 3; 2)11Table 5: Fundamental domains for the beginning of the E-series
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Z11 Z12 Z13�(8; 3; 2) �(6; 4; 2) �(5; 3; 3)
Z17 Z18 Z19�(7; 3; 3)2 �(10; 4; 2)3 �(16; 3; 2)5
Z23 Z24 Z25�(20; 3; 2)7 �(14; 4; 2)5 �(11; 3; 3)4
Z29 Z30 Z31�(13; 3; 3)5 �(18; 4; 2)7 �(28; 3; 2)11Table 6: Fundamental domains for the beginning of the Z-series
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Q10 Q11 Q12�(9; 3; 2) �(7; 4; 2) �(6; 3; 3)
Q16 Q17 Q18�(9; 3; 3)2 �(13; 4; 2)3 �(21; 3; 2)5
Q22 Q23 Q24�(27; 3; 2)7 �(19; 4; 2)5 �(15; 3; 3)4
Q28 Q29 Q30�(18; 3; 3)5 �(25; 4; 2)7 �(39; 3; 2)11Table 7: Fundamental domains for the beginning of the Q-series
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........................ ........................ ........................ ........................aj
bj�3 bj

aj+3The ase E10+2n, i.e. � = �(k + 3; 3; 3)k or � = �(k + 6; 3; 2)k
........................ ........................ ................................................ ................................................aj

j�3 j
aj+3bj bj�3�n

The ase Z9+2n, i.e. � = �(2k + 3; 3; 3)k or � = �(2k + 6; 3; 2)k
........................ ................................................ ........................bj

j�3�n j
bj+3+nThe ase Q8+2n, i.e. � = �(3k + 3; 3; 3)k or � = �(3k + 6; 3; 2)kTable 8: Identi�ation sheme for E, Z, Q in the equianharmoni ase
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(2; 2; 2; 3) (2; 2; 2; 4) (2; 2; 2; 5)3 2 1��� 12

34

��

��

6 5 4 3 21������

Table 9: Strati�ation of the fundamental triangles for (2; 2; 2; p), where p = 3; 4; 5
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Figure 1

Figure 2

Figure 3Table 10: The three ombinatorial types of fundamental domains for E3;0
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Figure 1 Figure 2
Figure 3 Figure 4
Figure 5 Figure 6Table 11: The six ombinatorial types of fundamental domains for Q2;0
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Figure 1 Figure 2
Figure 3

Figure 4
Table 12: Four generi ombinatorial types of fundamental domains for Z1;0
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~E8 � � �

~E7
~E6equianharmoni ase harmoni ase(j = 0) (j = 1)Table 13: Fundamental domains for the simply ellipti singularities
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