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Abstract. We describe all connected components of the space of hyperbolic
Gorenstein quasi-homogeneous surface singularities. We prove that any con-
nected component is homeomorphic to a quotient of Rd by a discrete group.

1. Introduction

In this paper we study moduli spaces of hyperbolic Gorenstein quasi-homoge-
neous surface singularities (GQHSS). A normal isolated singularity of dimension n
is Gorenstein if and only if there is a nowhere vanishing n-form on a punctured
neighbourhood of the singular point. GQHSS can be spherical, Euclidean or hyper-
bolic. In this paper we are going to study the largest class, the class of hyperbolic
GQHSS. See a remark at the end of the paper for more information about the other
two classes of GQHSS.

A Riemann orbifold is a quotient H/Γ of the hyperbolic plane H by a Fuch-
sian group Γ. According to the work of Dolgachev [Dol83b] hyperbolic GQHSS of
levelm are in 1-to-1 correspondence with m-th roots of tangent bundles of Riemann
orbifolds, i.e. with (singular) complex line bundles on Riemann orbifolds such that
their m-th tensor power coincides with the tangent bundle. We find conditions
for the existence of GQHSS of level m with orbifolds of given signature. We then
consider the space of all GQHSS of level m with orbifolds of given signature and
genus g > 0. We show that the space is connected if g = 0 or if g > 1 and m is
odd and that the space has two connected components if g > 1 and m is even. We
also determine the number of connected components in the case g = 1. Moreover
we prove that any component is homeomorphic to a quotient of Rd by a discrete
group action.

The main technical tool is the following: We assign (Theorem 5.9) to a hyper-
bolic GQHSS of level m with corresponding orbifold P a function on the space of
homotopy classes of simple contours on P with values in Z/mZ, the associated
higher m-Arf function.

The higher m-Arf functions are described by simple geometric properties:
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Figure 1: σ̂(ab) = σ̂(a) + σ̂(b) − 1

Definition: Let P be a Riemann orbifold and p ∈ P . We denote by π0(P, p) the
set of all non-trivial elements of the orbifold fundamental group π(P, p) that can
be represented by simple contours. A (higher) m-Arf function is a function

σ : π0(P, p) → Z/mZ

satisfying the following conditions

1. σ(bab−1) = σ(a) for any elements a, b ∈ π0(P, p),
2. σ(a−1) = −σ(a) for any element a ∈ π0(P, p) that is not of order 2,
3. σ(ab) = σ(a)+σ(b) for any elements a and b which can be represented by a pair

of simple contours in P intersecting in exactly one point p with 〈a, b〉 6= 0,
4. σ(ab) = σ(a)+σ(b)−1 for any elements a, b ∈ π0(P, p) such that the element ab

is in π0(P, p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with 〈a, b〉 = 0 and placed in a
neighbourhood of the point p as shown in Figure 1.

5. For any elliptic element c of order p we have p · σ(c) + 1 ≡ 0 mod m.

In order to be able to state our main results we need to give some definitions and
notation. For the detailed discussion of the notion of the signature and standard
bases of a Fuchsian group see section 4.2.

Definition: Let Γ be a Fuchsian group of signature (g : p1, . . . , pr) and let P =
H/Γ be the corresponding orbifold. Let σ : π0(P, p) → Z/mZ be a higher m-Arf
function. We define the Arf invariant δ = δ(P, σ) of σ as follows: If g > 1 and m is
even then we set δ = 0 if there is a standard basis {a1, b1, . . . , ag, bg, cg+1, . . . , cn}
of the orbifold fundamental group π(P, p) such that

g∑

i=1

(1 − σ(ai))(1 − σ(bi)) ≡ 0 mod 2

and we set δ = 1 otherwise. If g > 1 and m is odd then we set δ = 0. If g = 0 then
we set δ = 0. If g = 1 then we set

δ = gcd(m, p1 − 1, . . . , pr − 1, σ(a1), σ(b1)),

where {a1, b1, c2, . . . , cr+1} is a standard basis of the orbifold fundamental group
π(P, p). The type of the higher m-Arf function (P, σ) is the tuple (g, p1, . . . , pr, δ),
where δ is the Arf invariant of σ defined above.

Definition: We denote by Sm(t) = Sm(g, p1, . . . , pr, δ) the set of all GQHSS of
level m such that the associated higher Arf function is of type t = (g, p1, . . . , pr, δ).
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The following Theorem summarizes the main results:

Theorem:

1) Two hyperbolic GQHSS are in the same connected component of the space of
all hyperbolic GQHSS if and only if they are of the same type. In other words,
the connected components of the space of all hyperbolic GQHSS are those sets
Sm(t) that are not empty.

2) The set Sm(t) is not empty if and only if t = (g, p1, . . . , pr, δ) has the following
properties:
(a) The orders p1, . . . , pr are prime with m and satisfy the condition

(p1 · · · pr) ·

(
r∑

i=1

1

pi
− (2g − 2) − r

)
≡ 0 modm.

(b) If g > 1 and m is odd then δ = 0.
(c) If g = 1 then δ is a divisor of gcd(m, p1 − 1, . . . , pr − 1).
(d) If g = 0 then δ = 0.

3) Any connected component Sm(t) of the space of all hyperbolic GQHSS of
level m and signature (g : p1, . . . , pr) is homeomorphic to a quotient of the
space R6g−6+2r by a discrete action of a certain subgroup of the modular group
(see section 6.3 for details).

The paper is organised as follows: In section 2 we explore the connection between
hyperbolic GQHSS, roots of tangent bundles of orbifolds and lifts of Fuchsian groups
into the coverings Gm of G = PSL(2,R) (see Definition 2.2). In section 3 we study
algebraic properties of the covering groups Gm. We describe level functions induced
by a decomposition of the covering Gm into sheets and choosing a numeration of
the sheets and study properties of these functions. In section 4 we study lifts of
Fuchsian groups intoGm. In section 5 we define (higher)m-Arf functions. We prove
that there is a 1-1-correspondence between the set of m-Arf functions and the set
of functions associated to the lifts of Fuchsian groups into Gm via the numeration
of the covering sheets. Hence these two sets are also in 1-1-correspondence with
the set of all hyperbolic GQHSS of level m. Moreover we show using the explicit
description of the generalised Dehn generators of the group of homotopy classes
of surface autohomeomorphisms that the set of all m-Arf functions on an orbifold
has a structure of an affine space. In the last section we find topological invariants
of higher Arf functions and prove that they describe the connected components
of the moduli space. Furthermore we show using a version of Theorem of Fricke
and Klein [Nat78], [Zie81] that any connected component is homeomorphic to a

quotient of Rd by a discrete group action.

Part of this work was done during the stays at Max-Planck-Institute in Bonn and
at IHES. We are grateful to the both institutions for their hospitality and support.
We would like to thank E.B. Vinberg and V. Turaev for useful discussions related
to this work.

2. Gorenstein singularities and lifts of Fuchsian groups

2.1. Singularities and automorphy factors. In this section we recall the results
of Dolgachev, Milnor, Neumann and Pinkham [Dol75, Dol77, Mil75, Neu77, Pin77]
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on the graded affine coordinate rings, which correspond to quasi-homogeneous sur-
face singularities.

Definition 2.1. A negative unramified automorphy factor (U,Γ, L) is a complex
line bundle L over a simply connected Riemann surface U together with a discrete
co-compact subgroup Γ ⊂ Aut(U) acting compatibly on U and on the line bundle L,
such that the following two conditions are satisfied:

1) The action of Γ is free on L∗, the complement of the zero-section in L.

2) Let Γ̃ ⊳ Γ be a normal subgroup of finite index, which acts freely on U , and

let E → P be the complex line bundle E = L/Γ̃ over the compact Riemann

surface P = U/Γ̃. Then E is a negative line bundle, i.e. the self-intersection
number E ·E is negative.

A simply connected Riemann surface U can be C P1, C, or H, the real hyper-
bolic plane. We call the corresponding automorphy factor and the corresponding
singularity spherical , Euclidean, resp. hyperbolic.

Remark. There always exists a normal freely acting subgroup of Γ of finite in-
dex [Dol83b]. In the hyperbolic case the existence follows from the theorem of
Fox-Bundgaard-Nielsen. If the second assumption in the last definition holds for
some normal freely acting subgroup of finite index, then it holds for any such sub-
group, see [Dol83b].

The simplest examples of such complex line bundles with group actions are the
cotangent bundle of the complex projective line U = C P1 and the tangent bundle
of the hyperbolic plane U = H equipped with the canonical action of a subgroup
Γ ⊂ Aut(U).

Let (U,Γ, L) be a negative unramified automorphy factor and Γ̃ a normal sub-

group of Γ as above. Since the bundle E = L/Γ̃ is negative, one can contract
the zero section of E to get a complex surface with one isolated singularity cor-
responding to the zero section. There is a canonical action of the group Γ/Γ̃ on
this surface. The quotient is a complex surface X(U,Γ, L) with an isolated singular
point o(U,Γ, L), which depends only on the automorphy factor (U,Γ, L).

The following theorem summarizes the results of Dolgachev, Milnor, Neumann
and Pinkham:

Theorem 2.1. The surface X(U,Γ, L) associated to a negative unramified au-
tomorphy factor (U,Γ, L) is a quasi-homogeneous affine algebraic surface with a
normal isolated singularity. Its affine coordinate ring is the graded C-algebra of
generalised Γ-invariant automorphic forms

A =
⊕

m>0

H0(U,L−m)Γ.

All normal isolated quasi-homogeneous surface singularities (X,x) are obtained in
this way, and the automorphy factors with (X(U,Γ, L), o(U,Γ, L)) isomorphic to
(X,x) are uniquely determined by (X,x) up to isomorphism.

We now recall the definition of Gorenstein singularities and the characterization of
the corresponding automorphy factors.

A normal isolated singularity of dimension n is Gorenstein if and only if there is
a nowhere vanishing n-form on a punctured neighbourhood of the singular point.
For example all isolated singularities of complete intersections are Gorenstein.
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In [Dol83b] Dolgachev proved the following theorem obtained independently by
W. Neumann (see also [Dol83a]).

Theorem 2.2. A quasi-homogeneous surface singularity is Gorenstein if and only
if for the corresponding automorphy factor (U,Γ, L) there is an integer m (called
the level or the exponent of the automorphy factor) such that the m-th tensor power
Lm is Γ-equvariantly isomorphic to the tangent bundle TU of the surface U .

Let (U,Γ, L) be an automorphy factor of level m, which corresponds to a Goren-
stein singularity. The isomorphism Lm ∼= TU induces an isomorphism Em ∼= TP .
A simple computation with Chern numbers shows that the possible values of the
exponent are m = −1 or m = −2 for U = C P1, whereas m = 0 for U = C and m
is a positive integer for U = H.

2.2. Hyperbolic automorphy factors and lifts of Fuchsian groups. We con-

sider the universal cover G̃ = P̃SL(2,R) of the Lie group

G = PSL(2,R) = SL(2,R)/{±1},

the group of orientation-preserving isometries of the hyperbolic plane. Here our
model of the hyperbolic plane is the upper half-plane H = {z ∈ C

∣∣ Im(z) > 0}

and the action of an element [
(
a b
c d

)
] ∈ PSL(2,R) on H is by

z 7→
az + b

cz + d
.

As topological space G = PSL(2,R) is homeomorphic to the open solid torus
S1 ×C, its fundamental group is infinite cyclic. Therefore for each natural number
m there is a unique connected m-fold covering

Gm = G̃/(m · Z(G̃))

of G, where G̃ is the universal covering of G and Z(G̃) is the centre of G̃. The

centre Z(G̃) of G̃ coincides with the pre-image of the identity element of G under

the covering map G̃→ G. For m = 2 we obtain G2 = SL(2,R).

Here is another description of the covering groups Gm of G which fixes a group
structure. Let Hol(H,C∗) be the set of all holomorphic functions H → C∗.

Proposition 2.3. The m-fold covering group Gm of G can be described as

{(g, δ) ∈ G× Hol(H,C∗)
∣∣ δm(z) = g′(z) for all z ∈ H}

with multiplication (g2, δ2) · (g1, δ1) = (g2 · g1, (δ2 ◦ g1) · δ1).

Proof. Let X be the subspace of G × Hol(H,C∗) in question. One can check that
the space X is connected and that the map X → G given by (γ, δ) 7→ γ is an
m-fold covering of G. Hence the coverings X → G and Gm → G are isomorphic.
One can check that the operation described above defines a group structure on X
and that the covering map X → G is a homomorphism with respect to this group
structure. �

Remark. This description ofGm is inspired by the notion of automorphic differential
forms of fractional degree, introduced by J. Milnor in [Mil75]. For a more detailed
discussion see [LV80], section 1.8.
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Definition 2.2. A lift of the Fuchsian group Γ into Gm is a subgroup Γ∗ of Gm
such that the restriction of the covering map Gm → G to Γ∗ is an isomorphism
Γ∗ → Γ.

Using the description of the m-fold covering group Gm of G in Proposition 2.3
we obtain the following result:

Proposition 2.4. There is a 1-1-correspondence between the lifts of Γ into Gm
and hyperbolic Gorenstein automorphy factors of level m associated to the Fuchsian
group Γ.

Proof. Theorem 2.2 implies that a hyperbolic Gorenstein automorphy factor of
level m (associated to a Fuchsian group Γ) is an action of the Fuchsian group Γ on
the trivial complex line bundle H × C over the hyperbolic plane H given by

g · (z, t) = (g(z), δg(z) · t),

where δg : H → C∗ is a holomorphic function, for any g ∈ Γ we have δmg = g′ and
for any g1, g2 ∈ Γ we have δg2·g1 = (δg2 ◦ g1) · δg1 . Comparing this description of
hyperbolic Gorenstein automorphy factors with Proposition 2.3 yields the result.

�

3. Level functions on covering groups of PSL(2,R)

3.1. Classification of elements in G = PSL(2,R) and its covering groups.

Elements of G can be classified with respect to the fixed point behavior of their
action on H. An element is called hyperbolic if it has two fixed points, which lie on
the boundary ∂H = R ∪{∞} of H. One of the fixed points of a hyperbolic element
is attracting, the other fixed point is repelling. The axis ℓ(g) of a hyperbolic
element g is the geodesic between the fixed points of g, oriented from the repelling
fixed point to the attracting fixed point. The element g preserves the geodesic
ℓ(g). We call a hyperbolic element with attracting fixed point α and repelling fixed
point β positive if α < β. The shift parameter of a hyperbolic element g is the
minimal displacement infx∈H d(x, g(x)). An element is called parabolic if it has
one fixed point, which is on the boundary ∂H. We call a parabolic element g with
fixed point α positive if g(x) > x for all x ∈ R\{α}. An element that is neither
hyperbolic nor parabolic is called elliptic. It has one fixed point that is in H. Given
a base-point x ∈ H and a real number ϕ, let ρx(ϕ) ∈ G denote the rotation through
angle ϕ counter-clockwise about the point x. Any elliptic element is of the form
ρx(ϕ), where x is the fixed point. Thus we obtain a 2π-periodic homomorphism

ρx : R → G (with respect to the additive structure on R). Elements of G̃ resp. Gm
can be classified with respect to the fixed point behavior of action on H of their
image in G. We say that an element of G̃ resp. Gm is hyperbolic, parabolic resp.
elliptic if its image in G has this property.

3.2. Central elements in covering groups of G = PSL(2,R). The homo-

morphism ρx : R → G lifts to a unique homomorphism rx : R → G̃ into the
universal covering group. Since ρx(2πℓ) = id for ℓ ∈ Z, it follows that the

lifted element rx(2πℓ) belongs to the centre Z(G̃) of G̃. Note that the element

rx(2πℓ) depends continuously on x. But the centre of G̃ is discrete, so this ele-
ment must remain constant, thus rx(2πℓ) does not depend on x. We obtain that

Z(G̃) = {rx(2πℓ)
∣∣ ℓ ∈ Z}. Let u = rx(2π) for some (and hence for any) x in H.
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The element u is one of the two generators of the centre of G̃ since any other element
of the centre is of the form rx(2πℓ) = (rx(2π))ℓ = uℓ.

3.3. Definition of a level function. Let ∆ be the set of all elliptic elements
of order 2 in G. Let Ξ be the complement in G of the set ∆. The space G is
homeomorphic to the open solid torus S1 × C. In [JN85] Jankins and Neumann
give an explicit homeomorphism (see [JN85], Apendix). The image of the set ∆
under this homeomorphism is {∗}×C. From this description it follows in particular

that the subset Ξ is simply connected. The pre-image Ξ̃ of the subset Ξ in G̃ consists
of infinitely many connected components, each of them is homeomorphic to Ξ. Each
connected component of the subset Ξ̃ contains one and only one pre-image of the
identity element of G, i.e. one and only one element of the centre of G̃.

Definition 3.1. If an element of G̃ is contained in the same connected component
of the set Ξ̃ as the central element uk, k ∈ Z, we say that the element is at the
level k and set the level function s on this element to be equal to k. For pre-images
of elliptic elements of order 2 we set s(rx(ξ)) = k for ξ = π + 2πk.

Remark. For elliptic elements we have s(rx(ξ)) = k ⇐⇒ ξ ∈ (−π+ 2πk, π+ 2πk].

Definition 3.2. We define the level function sm on elements of Gm by

sm(C mod (m · Z(G̃))) = s(C) mod m for C ∈ G̃.

(All equations involving sm are to be understood as equations in Z/mZ.)

Definition 3.3. The canonical lift of an element C̄ in G into G̃ is an element C̃
in G̃ such that π(C̃) = C̄ and s(C̃) = 0. The canonical lift of an element C̄ in G

into Gm is an element C̃ in Gm such that π(C̃) = C̄ and sm(C̃) = 0.

3.4. Properties of the level function. In this subsection we study the behavior
of the level function sm under inversion (Lemma 3.1), conjugation (Lemma 3.2)
and multiplication in some special cases (Lemma 3.3). We shall obtain further
statements about the behavior of the level function under multiplication in Corol-
lary 4.7.

In this section we shall repeatedly use the following fact: Connected components
of the set Ξ̃ are separated from each other by connected components of the set ∆̃ of
all pre-images of (elliptic) elements of order 2. If a path γ in G̃ avoids all pre-images

of elements of order 2, i.e. avoids ∆̃, then it means that the path γ remains in the
same component of the set Ξ̃ and therefore the level function s is constant along γ.

Lemma 3.1. The equation s(A−1) = −s(A) is satisfied for any element A in G̃ with
exception of pre-images of elliptic elements of order 2. The equation sm(A−1) =
−sm(A) is satisfied for any element A in Gm with exception of pre-images of elliptic
elements of order 2.

Proof. We shall prove the statement about the level function s on G̃, the statement
about the level function sm onGm follows immediately. Let A ∈ G̃ and let k = s(A),

then A is in the same connected component of Ξ̃ as uk. Let γ be the path in Ξ̃
that connects A with uk. Let the path δ be given by δ(t) = (γ(t))−1. The path δ

connects A−1 with u−k. Since the path γ remains in the same component of Ξ̃,
it avoids ∆̃. Consequently, the path δ also avoids ∆̃, i.e. it remains in the same
component of Ξ̃. Thus the element A−1 is in the same connected component of Ξ̃
as u−k, i.e. s(A−1) = −k = −s(A). �
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Lemma 3.2. For any elements A and B in G̃ we have s(BAB−1) = s(A). For
any elements A and B in Gm we have sm(BAB−1) = sm(A).

Proof. We shall prove the statement about the level function s on G̃, the statement
about the level function sm on Gm follows immediately. An element B ∈ G̃ can
be connected to the unit element in G̃ via a path β. The path γ given by γ(t) =

β(t) ·A · (β(t))−1 connects the elements A and B ·A ·B−1. If A is not in ∆̃ then any

conjugate γ(t) of A is not in ∆̃, hence the path γ remains in the same component

of the set Ξ̃. If A is in ∆̃ then any conjugate γ(t) of A is also in ∆̃, hence the path γ

remains in the same component of the set ∆̃. In both cases s is constant along γ,
in particular s(B ·A ·B−1) = s(A). �

Lemma 3.3. If the axes of two hyperbolic elements A and B in G̃ intersect then
s(AB) = s(A) + s(B). If the axes of two hyperbolic elements A and B in Gm
intersect then sm(AB) = sm(A) + sm(B).

Proof. Let ℓA resp. ℓB be the axes of A resp. B. Let x be the intersection point of ℓA
and ℓB. Any hyperbolic transformation with the axis ℓA is a product of a rotation
by π at some point y 6= x on ℓA and a rotation by π at the point x. Similarly any
hyperbolic transformation with the axis ℓB is a product of a rotation by π at the
point x and a rotation by π at some point z 6= x on ℓB. Hence the product of any
hyperbolic transformation with the axis ℓA and any hyperbolic transformation with
the axis ℓB is a product of a rotation by π at a point y 6= x on ℓA and a rotation
by π at a point z 6= x on ℓB, i.e. it is a hyperbolic transformation with an axis
going through the points y and z. Thus the product of two hyperbolic elements
with distinct but intersecting axes is always a hyperbolic element.

We shall prove the statement about the level function s on G̃, the statement
about the level function sm on Gm follows immediately. Assume without loss of
generality that the elements A,B ∈ G̃ satisfy the conditions s(A) = s(B) = 0.
We want to show that s(AB) = 0. Let us deform the elements A and B. If we
are decreasing the shift parameters while keeping the same axes, then the product
tends to the identity element. On the other hand we have just explained that the
product remains hyperbolic, i.e. stays in Ξ̃. Therefore the value of s on the product
remains constant, i.e. s(AB) = s(id) = 0. �

4. Level functions on lifts of Fuchsian groups

4.1. Lifting elliptic cyclic subgroups. A lift of the Fuchsian group Γ into Gm
is a subgroup Γ∗ of Gm such that the restriction of the covering map Gm → G to
Γ∗ is an isomorphism Γ∗ → Γ. In this subsection we shall discuss the lifts of cyclic
Fuchsian groups generated by an elliptic element.

Lemma 4.1. Let Γ be an elliptic cyclic Fuchsian group of order p. The group Γ is
generated by an element γ = ρx(2π/p) for some x ∈ H.

1) Let us assume that p and m are relatively prime. Then the lift Γ∗ of Γ into Gm
exists and is unique. There is a unique element n ∈ Z/mZ such that p ·n+1 ≡ 0
modulo m. The lift Γ∗ is generated by the pre-image γ̃ of γ = ρx(2π/p) in Gm
such that sm(γ̃) = n.

2) If p and m are not relatively prime, then the group Γ cannot be lifted into Gm.
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Proof. To lift Γ into Gm we have to find an element γ̃ in the pre-image of γ
in Gm such that γ̃p = 1. The pre-image of γ in Gm can be described as the coset
{un · rx(2π/p)

∣∣ n ∈ Z/mZ}. For the element rx(2π/p) we obtain (rx(2π/p))
p =

rx(2π) = u. Hence for an element un · rx(2π/p) we obtain

(un · rx(2π/p))
p = unp(rx(2π/p))

p = unp+1.

Therefore (un · rx(2π/p))
p = 1 if and only if n · p + 1 ≡ 0 mod m. There exists

an n ∈ Z/mZ with n · p + 1 ≡ 0 mod m if and only if the numbers p and m are
relatively prime. Hence for not relatively prime p and m it is impossible to lift Γ
into Gm. For relatively prime p and m there is a unique lift of Γ into Gm generated
by un · rx(2π/p) with n · p+ 1 ≡ 0 mod m. �

4.2. Finitely generated Fuchsian groups. In this section we are going to de-
scribe finitely generated (co-compact) Fuchsian groups using standard sets of gen-
erators. The following definitions follow [Zie81]:

Definition 4.1. A Riemann factor surface or Riemann orbifold (P,Q) of signature

(g; lh, lp, le : p1, . . . , ple)

is a topological surface P of genus g with lh holes and lp punctures and a set Q =
{(x1, p1), . . . , (xle , ple)} of points xi in P equipped with orders pi such that pi ∈ Z,
pi > 2 and xi 6= xj for i 6= j. The set Q is called the marking of the Riemann
orbifold (P,Q).

Definition 4.2. Let (P,Q = {(x1, p1), . . . , (xle , ple)}) be a Riemann orbifold. Two
curves γ0 and γ1 which do not pass through exceptional points xi ∈ Q are called
Q-homotopic if γ0 can be deformed into γ1 by a finite sequence of the following
processes:

(a) Homotopic deformations with fixed starting point such that during the defor-
mation no exceptional point is encountered.

(b) Omitting a subcurve of γi which does not contain the starting point of γi and
is of the form δ±pi , where δ is a curve on P which bounds a disk that contains
exactly one exceptional point xi in the interior.

(c) Inserting into γi a subcurve which does not contain the starting point of γi and
is of the form δ±pi , where δ is a curve on P which bounds a disk that contains
exactly one exceptional point xi in the interior.

Two curves γ0 and γ1 which do not pass through exceptional points xi ∈ Q are
called freely Q-homotopic if the base point may be moved during the deformations.

Definition 4.3. Let (P,Q = {(x1, p1), . . . , (xle , ple)}) be a Riemann orbifold and
let p be in P\Q. Then the set of Q-homotopy classes of curves starting and ending
in p forms a group. This group is called the Q-fundamental group or the orbifold
fundamental group and denoted by πQ(P, p) or πorb(P, p) or simply π(P, p).

Definition 4.4. Let Γ be a Fuchsian group. The quotient P = H/Γ is a surface
and the projection Ψ : H → P is a branched cover. Let Q consist of the branching
points and the corresponding orders. Then (P,Q) is a Riemann orbifold. We say
that the Riemann orbifold (P,Q) is defined by Γ.

Proposition 4.2. Let Γ be a Fuchsian group, (P,Q) the corresponding Riemann
orbifold and p ∈ P\Q. Then π(P, p) ∼= Γ.
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Figure 2: Canonical system of curves

Definition 4.5. A canonical system of curves on a Riemann orbifold (P,Q =
{(x1, p1), . . . , (xle , ple)}) of signature (g; lh, lp, le : p1, . . . , ple) is a set of simply
closed curves

{ã1, b̃1, . . . , ãg, b̃g, c̃g+1, . . . , c̃n}

based at a point p ∈ P , where n = g + lh + lp + le, with the following properties:

1) The contour c̃g+i encloses a hole in P for i = 1, . . . , lh, a puncture for i =
lh + 1, . . . , lh + lp and the marking point xi for i = lh + lp + 1, . . . , n− g.

2) Any two curves only intersect at the point p.
3) In a neighbourhood of the point p, the curves are placed as is shown in Figure 2.
4) The system of curves cuts the surface P into lh+lp+le+1 connected components

of which lp + le are homeomorphic to a disc with a hole, lh + 1 are discs. The
last disc has boundary

ã1b̃1ã
−1
1 b̃−1

1 . . . ãg b̃gã
−1
g b̃−1

g c̃g . . . c̃n.

If {ã1, b̃1, . . . , ãg, b̃g, c̃g+1, . . . , c̃n} is a canonical system of curves, then we call the
corresponding set {a1, b1, . . . , ag, bg, cg+1, . . . , cn} of elements in the orbifold funda-
mental group π(P, p) a standard basis or a standard set of generators of π(P, p).

Definition 4.6. A sequential set of signature (0; lh, lp, le : p1, . . . , ple) with lh+ lp+
le = 3 is a triple of elements (C1, C2, C3) in G such that the element Ci is hyperbolic
for i = 1, . . . , lh, parabolic for i = lh + 1, . . . , lh + lp and elliptic of order pi−lh−lp
for i = lh+ lp+1, . . . , lh+ lp+ le = 3, their product is C1 ·C2 ·C3 = 1, and for some
element A ∈ G the elements {C′

i = ACiA
−1}i=1,2,3 are positive, have finite fixed

points and satisfy C′
1 < C′

2 < C′
3. (Figure 3 illustrates the position of the axes of

the elements C′
i for a sequential set of signature (0; 3, 0, 0), i.e. when all elements

are hyperbolic.)

Definition 4.7. A sequential set of signature (0; lh, lp, le : p1, . . . , ple) is a tuple of
elements (C1, . . . , Clh+lp+le) in G such that the element Ci is hyperbolic for i =
1, . . . , lh, parabolic for i = lh + 1, . . . , lh + lp and elliptic of order pi−lh−lp for i =
lh + lp + 1, . . . , lh + lp + le, and for any i ∈ {2, . . . , lh + lp + le − 1} the triple
(C1 · · ·Ci−1, Ci, Ci+1 · · ·Clh+lp+le) is a sequential set.

Definition 4.8. A sequential set of signature (g; lh, lp, le : p1, . . . , ple) is a tuple of
elements

(A1, . . . , Ag, B1, . . . , Bg, Cg+1, . . . , Cg+lh+lp+le)
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Figure 3: Axes of a sequential set of signature (0; 3, 0, 0)

in G such that the elements A1, . . . , Ag, B1, . . . , Bg are hyperbolic, the element Cg+i
is hyperbolic for i = 1, . . . , lh, parabolic for i = lh + 1, . . . , lh + lp and elliptic of
order pi−lh−lp for i = lh + lp + 1, . . . , lh + lp + le, and the tuple

(A1, B1A
−1
1 B−1

1 , . . . , Ag, BgA
−1
g B−1

g , Cg+1, . . . , Cg+lh+lp+le)

is a sequential set of signature (0; 2g + lh, lp, le : p1, . . . , ple).

The relation between sequential sets, standard bases, canonical systems of curves
and Fuchsian groups was studied in [Nat72]. Details for the case of Fuchsian groups
with elliptic elements can be found in [Zie81]. We recall here the results:

Theorem 4.3. Let V be a sequential set of signature (g; lh, lp, le : p1, . . . , ple).
For i = 1, . . . , le let yi ∈ H be the fixed point of the corresponding elliptic element
of order pi in V . Let P = H/Γ and let Ψ : H → P be the natural projection.
Let Q = {(Ψ(y1), p1), . . . , (Ψ(yle), ple)}. Then the sequential set V generates a
Fuchsian group Γ such that the Riemann factor surface (P = H/Γ, Q) is of signature
(g; lh, lp, le : p1, . . . , ple). The natural projection Ψ : H → P maps the sequential set
V to a canonical system of curves on the factor surface (P,Q).

Theorem 4.4. Let Γ be a Fuchsian group such that the factor surface P = H/Γ
is of signature (g; lh, lp, le : p1, . . . , ple) with lh + lp + le = n. Let p be a point in P
which does not belong to the marking. Let Ψ : H → P be the natural projection.
Choose q ∈ Ψ−1(p) and let Φ : Γ → π(P, p) be the induced isomorphism. Let

v = {ã1, b̃1, . . . , ãg, b̃g, c̃g+1, . . . , c̃n}

be a canonical system of curves on P , then

V = Φ−1(v) = {Φ−1(a1),Φ
−1(b1), . . . ,Φ

−1(ag),Φ
−1(bg),Φ

−1(cg+1), . . . ,Φ
−1(cn)}

is a sequential set of signature (g; lh, lp, le : p1, . . . , ple).

4.3. Lifting Fuchsian groups of genus 0.

Lemma 4.5. Let (0; lh, lp, le : p1, . . . , ple) with lh + lp + le = n be the signature of

the sequential set (C̄1, . . . , C̄n). For i = 1, . . . , n let C̃i be the canonical lift of C̄i
into G̃ resp. Gm. Let u be the generator of the centre Z(G̃) resp. Z(Gm). The
element u is given by the element rx(π) resp. its projection into Gm. Then the

elements C̃1, . . . , C̃n satisfy the following relations: C̃pi

lh+lp+i = u for i = 1, . . . , le
and

C̃1 · · · · C̃n = un−2.
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Proof. A canonical lift C̃lh+lp+i of an elliptic element C̄lh+lp+i is of the form

rx(2π/pi) for some x. Hence C̃pi

lh+lp+i = (rx(2π/pi))
pi = rx(2π) = u. We will

now use a geometric approach by Milnor [Mil75]. Let Π be the canonical funda-
mental polygon for the group generated by the elements C̄1, . . . , C̄n such that the
generators C̄i can be described as products C̄i = σiσi+1 of reflexions σ1, . . . , σn in
the edges of the polygon Π (suitably numbered). Then σ2

i = id, and therefore

C̄1 · · · C̄n = (σ1σ2)(σ2σ3) · · · (σn−1σn)(σnσ1) = id .

Lifting the elements C̄i to their canonical lifts C̃i in G̃, it follows that the prod-
uct C̃1 · · · C̃n belongs to the centre Z(G̃). As we vary the polygon Π continuously,

this central element must also vary continuously. But Z(G̃) is a discrete group, so

C̃1 · · · C̃n must remain constant. In particular we can shrink the polygon Π down
towards a point x. In the course of this continuous deformation of the fundamental
polygon Π the hyperbolic and parabolic elements of the sequential set will become
elliptic. As we continue shrinking the polygon Π towards the point x, the angles of
the polygon tend to the angles β1, . . . , βn of some Euclidean n-sided polygon. Thus
the element C̃i ∈ G̃ tends towards the limit rx(2βi), while the product C̃1 · · · C̃n
tends towards the product

rx(2β1) · · · rx(2βn) = rx(2β1 + · · · + 2βn).

Therefore, using the formula β1 + · · · + βn = (n− 2)π for the sum of the angles of

a Euclidean n-sided polygon, we see that the constant product C̃1 · · · C̃n must be
equal to

rx(2(n− 2)π) = un−2.

Thus C̃pi

lh+lp+i = u and C̃1 · · · C̃n = un−2. Projecting into Gm we get the corre-

sponding statement in Gm. �

Lemma 4.6. Let (C1, . . . , Cn) be an n-tuple of elements in Gm such that their
images (C̄1, . . . , C̄n) in G form a sequential set of signature (0; lh, lp, le : p1, . . . , ple)
with lh + lp + le = n. Then C1 · · ·Cn = e if and only if

sm(C1) + · · · + sm(Cn) ≡ −(n− 2)mod m.

Proof. For i = 1, . . . , n let C̃i be the canonical lift of C̄i into Gm. The elements Ci
can be written in the form Ci = C̃i · u

sm(Ci), therefore

C1 · · ·Cn = (C̃1 · · · C̃n) · usm(C1)+···+sm(Cn).

Using Lemma 4.5 we obtain C1 · · ·Cn = un−2+sm(C1)+···+sm(Cn). The productC1 · · ·Cn
is equal to e if and only if the exponent of u in the last equation is divisible by m,
i.e. if

sm(C1) + · · · + sm(Cn) ≡ −(n− 2)mod m. �

Corollary 4.7. Let (C1, C2, C3) be a triple of elements in Gm with C1 ·C2 ·C3 = e.
Let C̄i be the image of the element Ci in G. Let (C̄1, C̄2, C̄3) be a sequential set of
signature (0; lh, lp, le : p1, . . . , ple) with lh + lp + le = 3. Then

sm(C1 · C2) = sm(C1) + sm(C2) + 1 if the element C3 is not of order 2,

sm(C1 · C2) = −sm(C1) − sm(C2) − 1 if the element C3 is of order 2.
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Proof. According to Lemma 4.6 the elements Ci satisfy

sm(C1) + sm(C2) + sm(C3) ≡ −1 mod m.

On the other hand C1C2C3 = e implies C1C2 = C−1
3 , hence

sm(C1C2) = sm(C−1
3 ) = −sm(C3) = sm(C1) + sm(C2) + 1

if the element C3 is not of order 2 and

sm(C1C2) = sm(C−1
3 ) = sm(C3) = −sm(C1) − sm(C2) − 1

if the element C3 is of order 2. �

4.4. Lifting sets of generators of Fuchsian groups.

Lemma 4.8. Let Γ be a Fuchsian group of signature (g; lh, lp, le : p1, . . . , ple) gen-
erated by the sequential set V̄ = {Ā1, B̄1, . . . , Āg, B̄g, C̄g+1, . . . , C̄n}, where n =
g + lh + lp + le. Let V = {A1, B1, . . . , Ag, Bg, Cg+1, . . . , Cn} be a set of lifts of the
elements of the sequential set V̄ into Gm, i.e. the image of Ai, Bi resp. Cj in G is
Āi, B̄i resp. C̄j. Then the subgroup Γ∗ of Gm generated by V is a lift of Γ into Gm
if and only if

[A1, B1] · · · [Ag, Bg] · Cg+1 · · ·Cn = e, Cpi

g+lh+lp+i = e for i = 1, . . . , le.

Proof. For any choice of the set of lifts V the restriction of the covering map Gm →
G to the group Γ∗ generated by V is a homomorphism with image Γ. If the
conditions of the lemma hold true, then the group Γ∗ satisfies the same relations
as the group Γ, hence this homomorphism is injective. �

Lemma 4.9. Let {A1, B1, . . . , Ag, Bg, Cg+1, . . . , Cn} be a tuple of elements in Gm
such that the images {Ā1, B̄1, . . . , Āg, B̄g, C̄g+1, . . . , C̄n} in G form a sequential set
of signature (g; lh, lp, le : p1, . . . , ple) with g + lh + lp + le = n. Then

g∏

i=1

[Ai, Bi] ·

n∏

j=g+1

Cj = e ⇐⇒

n∑

j=g+1

sm(Cj) ≡ (2 − 2g) − (n− g)mod m.

(in the case n = g this means 2 − 2g ≡ 0 mod m) and for any i = 1, . . . , le

Cpi

g+lh+lp+i = e ⇐⇒ pi · sm(Cg+lh+lp+i) + 1 ≡ 0 mod m.

Proof. The case g = 0 was discussed in Lemma 4.6. We shall now reduce the
general case to the case g = 0. By definition of sequential sets the set

(Ā1, B̄1Ā
−1
1 B̄−1

1 , . . . , Āg, B̄gĀ
−1
g B̄−1

g , C̄g+1, . . . , C̄n)

is a sequential set of signature (0; 2g + lh, lp, le), hence
g∏

i=1

[Ai, Bi] ·

n∏

i=g+1

Ci =

g∏

i=1

(Ai · BiA
−1
i B−1

i ) ·

n∏

i=g+1

Ci = e

if and only if
g∑

i=1

(sm(Ai) + sm(BiA
−1
i B−1

i )) +

n∑

i=g+1

sm(Ci) ≡ −(2g + (n− g) − 2)

≡ (2 − 2g) − (n− g)mod m.

Invariance of the level function sm under conjugation (Lemma 3.2) implies that

sm(BiA
−1
i B−1

i ) = sm(A−1
i ).
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Since Ai is not an element of order 2, sm(A−1
i ) = −sm(Ai), and hence

sm(Ai) + sm(BiA
−1
i B−1

i ) = sm(Ai) − sm(Ai) = 0.

The last statement of the lemma follows from Lemma 4.1. �

Proposition 4.10. Let Γ be a Fuchsian group of signature (g : p1, . . . , pr). Let
V̄ = {Ā1, B̄1, . . . , Āg, B̄g, C̄g+1, . . . , C̄n} be a sequential set that generates Γ. Then
there exist lifts of Γ into Gm if and only if the signature (g : p1, . . . , pr) satisfies the
following liftability conditions: gcd(pi,m) = 1 for i = 1, . . . , r and

(p1 · · · pr) ·

(
r∑

i=1

1

pi
− (2g − 2) − r

)
≡ 0 modm.

Moreover, if the liftability conditions are satisfied then any set of lifts {Ai, Bi}
of {Āi, B̄i} into Gm can be extended in a unique way to a set {Ai, Bi, Cj} of lifts
of {Āi, B̄i, C̄j} that generates a lift of Γ into Gm, hence there are m2g different lifts
of Γ into Gm.

Proof. In this proof all congruences will be modulom. Let us first assume that there
exists a lift of Γ into Gm. Let {Ai, Bi, Cj} be a set of lifts of V̄ as in Lemmas 4.8
and 4.9. Let ni = sm(Cg+i). Then according to Lemma 4.9 we have pi · ni + 1 ≡ 0
for i = 1, . . . , r and

(2g − 2) + r +
r∑

i=1

ni ≡ 0.

The congruence pi · ni + 1 ≡ 0 implies that pi is prime with m for i = 1, . . . , r.
Furthermore, since

(p1 · · · pr) · ni ≡
p1 · · · pr
pi

· (pi · ni) ≡
p1 · · · pr
pi

· (−1) ≡ −(p1 · · · pr) ·
1

pi
,

we obtain that

(p1 · · · pr) ·

(
r∑

i=1

1

pi
− (2g − 2) − r

)
≡ −(p1 · · · pr) ·

(
r∑

i=1

ni + (2g − 2) + r

)
≡ 0.

Now let us assume that the liftability conditions are satisfied. We want to construct
a lift of Γ into Gm. Since pi is prime with m, we can choose ni ∈ Z/mZ such that
pi · ni + 1 ≡ 0 for i = 1, . . . , r. Then

(p1 · · · pr) · ni ≡ −(p1 · · · pr) ·
1

pi

and hence

(p1 · · · pr) ·

(
(2g − 2) + r +

r∑

i=1

ni

)
≡ (p1 · · · pr) ·

(
(2g − 2) + r −

r∑

i=1

1

pi

)
≡ 0.

Since p1 · · · pr is prime with m, we conclude that (2g − 2) + r +
r∑
i=1

ni ≡ 0,

i.e.
r∑
i=1

ni ≡ (2 − 2g) − r. Let V = {Ai, Bi, Cj} be any set of lifts of V̄ such

that sm(Cg+i) = ni for i = 1, . . . , r. We have pi · ni + 1 ≡ 0 for i = 1, . . . , r and
r∑
i=1

ni ≡ (2− 2g)− r, hence according to Lemma 4.9 the set V generates a lift of Γ

into Gm. Since Lemma 4.9 does not impose any conditions on the values sm(Ai)
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Figure 4: σ̂(ab) = σ̂(a) + σ̂(b) + 1

and sm(Bi) for i = 1, . . . , g, any of m2g choices of these 2g values leads to a different
lift of Γ into Gm. �

5. Higher Arf functions

In [NP09] we introduced the notion of a higher Arf function and used it to
study moduli spaces of higher spin bundles on Riemann surfaces. In this section we
will introduce higher Arf functions on orbifolds, and study their connection with
Gorenstein automorphy factors.

5.1. Definition of higher Arf functions on orbifolds. In this subsection we will
define higher Arf functions on orbifolds (compare with subsection 4.1 in [NP09]).

Let Γ be a Fuchsian group of signature (g; lh, lp, le : p1, . . . , ple) and P = H/Γ
the corresponding orbifold. Let p ∈ P . Let Ψ : H → P be the natural projection.
Choose q ∈ Ψ−1(p) and let Φ : Γ → π(P, p) be the induced isomorphism. Let Γ∗

be a lift of Γ in Gm.

Definition 5.1. Let us consider a function σ̂Γ∗ : π(P, p) → Z/mZ such that the
following diagram commutes

Γ
∼=

−−−−→ Γ∗

Φ

y
ysm|Γ∗

π(P, p)
σ̂Γ∗−−−−→ Z/mZ

Lemma 5.1. Let α, β and γ be simple contours in P intersecting pairwise in
exactly one point p. Let a, b and c be the corresponding elements of π(P, p). We
assume that a, b and c satisfy the relations a, b, c 6= 1 and abc = 1. Let 〈·, ·〉 be the
intersection form on π(P, p). Then for σ̂ = σ̂Γ∗

1. If the elements a and b can be represented by a pair of simple contours in P
intersecting in exactly one point p with 〈a, b〉 6= 0 then σ̂(ab) = σ̂(a) + σ̂(b).

2. If ab is in π0(P, p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with 〈a, b〉 = 0 and placed in a
neighbourhood of the point p as shown in Figure 4, then σ̂(ab) = σ̂(a) + σ̂(b) + 1
if the element ab is not of order 2 and σ̂(ab) = −σ̂(a)− σ̂(b)−1 if the element ab
is of order 2.

3. If ab is in π0(P, p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with 〈a, b〉 = 0 and placed in a
neighbourhood of the point p as shown in Figure 1, then σ̂(ab) = σ̂(a)+ σ̂(b)−1.

4. For any standard basis

v = {a1, b1, . . . , ag, bg, cg+1, . . . , cn}
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of π(P, p) we have
n∑

i=g+1

σ̂(ci) ≡ (2 − 2g) − (n− g)mod m.

5. For any elliptic element cg+lh+lp+i, i = 1, . . . , le, we have pi · σ̂(cg+lh+lp+i)+1 ≡
0 mod m.

Proof. According to Theorem 4.4 either the set

V = {Φ−1(a),Φ−1(b),Φ−1(c)}

or the set
V −1 = {Φ−1(a−1),Φ−1(b−1),Φ−1(c−1)}

is sequential. This sequential set can be of signature (0 : ∗, ∗, ∗) or (1 : ∗).

• If V is a sequential set of signature (1 : ∗), then according to Lemma 3.3 we
obtain

σ̂(ab) = σ̂(a) + σ̂(b).

• If V is a sequential set of signature (0 : ∗, ∗, ∗), then according to Corollary 4.7
we obtain

σ̂(ab) = σ̂(a) + σ̂(b) + 1 if ab is not of order 2,

σ̂(ab) = −σ̂(a) − σ̂(b) − 1 if ab is of order 2.

• If V −1 is a sequential set of signature (0 : ∗, ∗, ∗), then according to Corollary 4.7
we obtain,

σ̂(b−1a−1) = σ̂(a−1) + σ̂(b−1) + 1 if ab is not of order 2,

σ̂(b−1a−1) = −σ̂(a−1) − σ̂(b−1) − 1 if ab is of order 2.

Therefore for the element ab not of order 2 we obtain

σ̂(ab) = −σ̂((ab)−1) = −σ̂(b−1a−1) = −(σ̂(a−1) + σ̂(b−1) + 1)

= −σ̂(a−1) − σ̂(b−1) − 1 = σ̂(a) + σ̂(b) − 1

and for the element ab of order 2 we obtain

σ̂(ab) = σ̂((ab)−1) = σ̂(b−1a−1) = −σ̂(a−1) − σ̂(b−1) − 1 = σ̂(a) + σ̂(b) − 1.

To prove properties 4 and 5 of σ̂ we apply Lemma 4.9. �

We now formalize the properties of the function σ̂ in the following definition:

Definition 5.2. We denote by π0(P, p) the set of all non-trivial elements of π(P, p)
that can be represented by simple contours. An m-Arf function is a function

σ : π0(P, p) → Z/mZ

satisfying the following conditions

1. σ(bab−1) = σ(a) for any elements a, b ∈ π0(P, p),
2. σ(a−1) = −σ(a) for any element a ∈ π0(P, p) that is not of order 2,
3. σ(ab) = σ(a)+σ(b) for any elements a and b which can be represented by a pair

of simple contours in P intersecting in exactly one point p with 〈a, b〉 6= 0,
4. σ(ab) = σ(a)+σ(b)−1 for any elements a, b ∈ π0(P, p) such that the element ab

is in π0(P, p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with 〈a, b〉 = 0 and placed in a
neighbourhood of the point p as shown in Figure 1.
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5. For any elliptic element c of order p we have p · σ(c) + 1 ≡ 0 mod m.

The following property of m-Arf functions follows immediately from Properties 4
and 2 in Definition 5.2:

Proposition 5.2. Let a and b be elements of π0(P, p) such that the element ab
is in π0(P, p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with 〈a, b〉 = 0 and placed in a
neighbourhood of the point p as shown in Figure 4. Then

σ(c1c2) = σ(c1) + σ(c2) + 1 if c1c2 = c−1
3 is not of order 2,

σ(c1c2) = −σ(c1) − σ(c2) − 1 if c1c2 = c−1
3 is of order 2.

Lemma 5.3. Let Γ be a hyperbolic polygon group of signature (0 : p1, . . . , pr),
r > 3. Let {c1, . . . , cr} be a standard basis of Γ. Then the element c1c2 is not
elliptic.

Proof. Let Π be the canonical fundamental polygon for the group generated by the
elements c1, . . . , cr such that the generators ci can be described as products ci =
σiσi+1 of reflexions σ1, . . . , σr in the edges of the polygon Π (suitably numbered).
Then c1c2 = (σ1σ2)(σ2σ3) = σ1σ3. The product of two reflexions σ1σ3 is an elliptic
element if and only if the axes of the reflexions intersect in H. Since r > 3, the sides
of the polygon Π that correspond to the reflexions σ1 and σ3 are not next to each
other. Let us assume that the axes intersect and let Q be the hyperbolic polygon
enclosed between by the axes and the polygon Π. All angles of the polygon Π are
acute. One angle of the polygon Q is the angle between the intersecting axes, two
angles are larger than π/2, all other angles of Q are larger than π, hence the sum
of the angles of Q is larger that it should be for a hyperbolic polygon. �

Proposition 5.4. For any standard basis v = {a1, b1, . . . , ag, bg, cg+1, . . . , cn} of
π(P, p) with n = g + lh + lp + le we have

n∑

j=g+1

σ(cj) ≡ (2 − 2g) − (n− g)mod m.

Proof. We discuss the case g = 0 first, and then we reduce the general case to the
case g = 0.

• Let g = 0. We prove that the statement is true for lifts of sequential sets of
signature (0 : p1, . . . , pr) by induction on r. In the case r = 3 Proposition 5.2
implies

σ(c1c2) = σ(c1) + σ(c2) + 1 if c1c2 = c−1
3 is not of order 2,

σ(c1c2) = −σ(c1) − σ(c2) − 1 if c1c2 = c−1
3 is of order 2.

If the element c3 is not of order 2, then Property 2 of m-Arf functions implies
σ(c1c2) = σ(c−1

3 ) = −σ(c3). Combining σ(c1c2) = σ(c1)+σ(c2)+1 and σ(c1c2) =
−σ(c3), we obtain

σ(c1) + σ(c2) + σ(c3) = −1.

If the element c3 is of order 2, then σ(c1c2) = σ(c−1
3 ) = σ(c3). Combin-

ing σ(c1c2) = −σ(c1) − σ(c2) − 1 and σ(c1c2) = σ(c3), we obtain

σ(c1) + σ(c2) + σ(c3) = −1.
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Let us now assume that the statement is true for r 6 k− 1 and consider the case
r = k. By our assumption

σ(c1 · c2) + σ(c3) + · · · + σ(ck) = 2 − (k − 1) = (2 − k) + 1.

Moreover, according to Lemma 5.3 the element c1c2 cannot be of order 2. Hence
by Proposition 5.2 we have σ(c1c2) = σ(c1) + σ(c2) + 1. The last two equations
imply that σ(c1) + · · · + σ(ck) = 2 − k.

• We now consider the general case. The set

(a1, b1a
−1
1 b−1

1 , . . . , ag, bga
−1
g b−1

g , cg+1, . . . , cg+lh+lp+le)

is a standard basis of an orbifold of signature (0 : 2g+lh, lp, le : p1, . . . , ple), hence

g∑

i=1

(σ(ai) + σ(bia
−1
i b−1

i )) +

g+lh+lp+le∑

i=g+1

σ(ci)

= 2 − (2g + lh + lp + le) = (2 − 2g) − (lh + lp + le).

Properties 1 and 2 of m-Arf functions imply that σ(bia
−1
i b−1

i ) = σ(a−1
i ) = −σ(ai)

and hence σ(ai) + σ(bia
−1
i b−1

i ) = 0. �

Definition 5.3. Let σ̂Γ∗ : π(P, p) → Z/mZ be the function associated to a lift
Γ∗ as in Definition 5.1, then the function σΓ∗ = σ̂Γ∗ |π0(P,p) is an m-Arf function
according to Lemmata 5.1, 3.1 and 3.2. We call the function σΓ∗ the m-Arf function
associated to the lift Γ∗.

5.2. Higher Arf functions and autohomeomorphisms of orbifolds. Let Γ
be a Fuchsian group of signature (g : p1, . . . , pr) and P = H/Γ the corresponding
orbifold. Let p ∈ P . Let Ψ : H → P be the natural projection. Choose q ∈ Ψ−1(p)
and let Φ : Γ → π0(P, p) be the induced isomorphism. Let Γ∗ be a lift of Γ in Gm.
Consider the following transformations of a standard basis

v = {a1, b1, . . . , ag, bg, cg+1, . . . , cg+r}

of π0(P, p) to another standard basis

v′ = {a′1, b
′
1, . . . , a

′
g, b

′
g, c

′
g+1 . . . , c

′
g+r} :
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1. a′1 = a1b1.

2. a′1 = (a1a2)a1(a1a2)
−1,

b′1 = (a1a2)a
−1
1 a−1

2 b1(a1a2)
−1,

a′2 = a1a2a
−1
1 ,

b′2 = b2a
−1
2 a−1

1 .

3. a′g = (b−1
g cg+1)b

−1
g (b−1

g cg+1)
−1,

b′g = (b−1
g cg+1bg)c

−1
g+1bgagb

−1
g (b−1

g cg+1bg)
−1,

c′g+1 = b−1
g cg+1bg.

4. a′k = ak+1, b′k = bk+1,

a′k+1 = (c−1
k+1ck)ak(c

−1
k+1ck)

−1,

b′k+1 = (c−1
k+1ck)bk(c

−1
k+1ck)

−1.

5. c′k = ck+1, c′k+1 = c−1
k+1ckck+1.

Here ci = [ai, bi] for i = 1, . . . , g, in 4 we consider k ∈ {1, . . . , g}, in 5 we consider
k ∈ {g+1, . . . , g+r} such that ord(ck) = ord(ck+1). If a′i, b

′
i resp. c′i is not described

explicitly, this means a′i = ai, b
′
i = bi resp. c′i = ci.

We will call these transformations generalised Dehn twists. Each generalised
Dehn twist induces a homotopy class of autohomeomorphisms of the orbifold P ,
which maps elliptic fixed points to elliptic fixed points of the same order. The group
of all homotopy classes of autohomeomorphisms of the orbifold P is generated by the
homotopy classes of generalised Dehn twists as described above (compare [Zie73]).

Now we will compute the values of an m-Arf function σ on the standard basis v′

from the values of σ on the standard basis v for each of the generalised Dehn twists
described above.

Lemma 5.5. Let σ : π0(P, p) → Z/mZ be an m-Arf function. Let D be a gener-
alised Dehn twist of the type described above. Suppose that D maps the standard
basis v = {a1, b1, . . . , ag, bg, cg+1, . . . , cg+r} into the standard basis

v′ = D(v) = {a′1, b
′
1, . . . , a

′
g, b

′
g, c

′
g+1, . . . , c

′
g+r}.

Let αi, βi, γi resp. α′
i, β

′
i, γ

′
i be the values of σ on the elements of v resp. v′. Then

for the Dehn twists of types 1–5 we obtain

1. α′
1 = α1 + β1.

2. β′
1 = β1 − α1 − α2 − 1, β′

2 = β2 − α2 − α1 − 1.

3. α′
g = −βg, β′

g = αg − γg+1 − 1.

4. α′
k = αk+1, β′

k = βk+1, α′
k+1 = αk, β′

k+1 = βk.

5. γ′k = γk+1, γ′k+1 = γk.

Proof. We assume that the Dehn twist D belongs to one of the types described
in the definition above. In the following computations we illustrate the position
of the contours on the surface with figures showing the position of the axes of the
corresponding elements in Γ. Let

{A1, B1, . . . , Ag, Bg, Cg+1, . . . , Cg+r}
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Figure 5: Axes of B1A
−1
1 and A−1
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Figure 6: Axis of BgAgB
−1
g and fixed point of C−1

g+1

be the sequential set corresponding to the standard basis v. In the first case ac-
cording to Property 3 of m-Arf functions we obtain

σ(a′1) = σ(a1b1) = σ(a1) + σ(b1).

In the second case according to Property 1 we obtain

σ(a′1) = σ((a1a2)a1(a1a2)
−1) = σ(a1),

σ(b′1) = σ((a1a2)a
−1
1 a−1

2 b1(a1a2)
−1) = σ(a−1

1 a−1
2 b1)

= σ(a1(a
−1
1 a−1

2 b1)a
−1
1 ) = σ(a−1

2 b1a
−1
1 ).

The mutual position of the axes of the elements A−1
2 and B1A

−1
1 is as in Figure 5,

hence Property 4 implies

σ(b′1) = σ(a−1
2 · (b1a

−1
1 )) = σ(a−1

2 ) + σ(b1a
−1
1 ) − 1.

According to Property 3 we have σ(b1a
−1
1 ) = σ(b1)+σ(a−1

1 ). Thus using Property 2
we obtain

σ(b′1) = σ(a−1
2 ) + σ(b1) + σ(a−1

1 ) − 1 = σ(b1) − σ(a1) − σ(a2) − 1.

Similarly we show that σ(a′2) = σ(a2) and σ(b′2) = σ(b2) − σ(a2) − σ(a1) − 1.

In the third case we obtain according to Properties 2 and 1

σ(a′g) = σ((b−1
g cg+1)b

−1
g (b−1

g cg+1)
−1) = σ(b−1

g ) = −σ(bg),

σ(b′g) = σ((b−1
g cg+1bg)c

−1
g+1bgagb

−1
g (b−1

g cg+1bg)
−1) = σ(c−1

g+1bgagb
−1
g ),

σ(c′g+1) = σ(b−1
g cg+1bg) = σ(cg+1).
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The actions of the elements C−1
g+1 and BgAgB

−1
g on H are illustrated in Figure 6.

According to Properties 4 and 1 we obtain

σ(b′g) = σ(c−1
g+1 · (bgagb

−1
g )) = σ(c−1

g+1) + σ(bgagb
−1
g ) − 1 = σ(c−1

g+1) + σ(ag) − 1.

In the forth and fifth case computations are easy, we only use Property 1 of m-Arf
functions. �

5.3. Correspondence between higher Arf functions and hyperbolic Goren-

stein automorphy factors. Let Γ be a Fuchsian group of signature (g : p1, . . . , pr)
and P = H/Γ the corresponding orbifold. Let p ∈ P . Let Ψ : H → P be the nat-
ural projection. Choose q ∈ Ψ−1(p) and let Φ : Γ → π0(P, p) be the induced
isomorphism.

Lemma 5.6. The difference σ1 − σ2 : π0(P, p) → Z/mZ of two Arf functions σ1

and σ2 induces a linear function ℓ : H1(P ; Z/mZ) → Z/mZ.

Proof. The proof is analogous to the proof of the corresponding statement for higher
Arf functions on Fuchsian groups without torsion (see Lemma 4.5 in [NP09]). The
main observation is the fact that according to Lemma 5.5 the action of the gen-
eralised Dehn twists on the tuples of values of a higher Arf function on elements
of a standard basis are by affine-linear maps, therefore the action on the tuples of
differences of values of two higher Arf functions is by linear maps. �

Corollary 5.7. The set ArfP,m of all m-Arf functions on π0(P, p) has a structure

of an affine space, i.e. the set {σ − σ0

∣∣ σ ∈ ArfP,m} is a free module over Z/mZ

for any σ0 ∈ ArfP,m.

Corollary 5.8. An m-Arf function is uniquely determined by its values on the
elements of some standard basis of π0(P, p).

Theorem 5.9. Let Γ be a Fuchsian group of signature (g : p1, . . . , pr) and P = H/Γ
the corresponding orbifold. Let p ∈ P . There is a 1-1-correspondence between

1) hyperbolic Gorenstein automorphy factors of level m associated to the Fuchsian
group Γ.

2) lifts of Γ into Gm.
3) m-Arf functions σ : π0(P, p) → Z/mZ.

Proof. According to Proposition 2.4 there is a 1-1-correspondence between hyper-
bolic Gorenstein automorphy factors of level m associated to the Fuchsian group Γ
and the lifts of Γ into Gm. In Definition 5.1 we attached to any lift Γ∗ of Γ into
Gm an m-Arf function σΓ∗ on P . On the other hand we can attach to any m-Arf
function σ a subset of Gm

Γ∗
σ = {g ∈ Gm

∣∣ π(g) ∈ Γ, sm(g) = σ(Φ(π(g)))},

where π : Gm → G is the covering map. It remains to prove that this subset of Gm
is actually a lift of Γ. Let

v = {a1, b1, . . . , ag, bg, cg+1, . . . , cg+r} = {d1, . . . , d2g+r}

be a standard basis of π(P, p) and let V̄ = {Φ−1(d1), . . . ,Φ
−1(d2g+r)} be the cor-

responding sequential set. Let {Dj}j=1,...,2g+r be a lift of the sequential set V̄ ,
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i.e. π(Dj) = Φ−1(dj), such that sm(Dj) = σ(dj). Then we obtain according to
Proposition 5.4 that

g+r∑

i=g+1

sm(Ci) =

g+r∑

i=g+1

σ(ci) ≡ (2 − 2g) − rmod m,

hence by Lemma 4.9 we obtain

g∏

i=1

[Ai, Bi] ·

g+r∏

i=g+1

Ci = e.

This and the fact that for any i = 1, . . . , r

pi · sm(Cg+i) + 1 = pi · σ(cg+i) + 1 ≡ 0 mod m

imply according to Lemma 4.8 that the subgroup Γ∗ of Gm generated by V is a
lift of Γ into Gm. Let us compare the corresponding Arf function σΓ∗ with the Arf
function σ. We have

σΓ∗(dj) = sm(Dj) = σ(dj)

for all j, i.e. the Arf functions σΓ∗ and σ coincide on the standard basis v. Thus by
Lemma 5.6 the Arf functions σΓ∗ and σ coincide on the whole π0(P, p). From the
definition of σΓ∗ and Γ∗

σ we see that this implies that Γ∗ = Γ∗
σ, hence Γ∗

σ is indeed
a lift of Γ into Gm. It is clear from the definitions that the mappings Γ∗ 7→ σΓ∗

and σ 7→ Γ∗
σ are inverse to each other. �

Corollary 5.10. Let P be a Riemann orbifold of signature (g : p1, . . . , pr). Let
v = {a1, b1, . . . , ag, bg, cg+1, . . . , cg+r} be a standard basis of π(P, p). An m-Arf
function on π0(P, p) exists if and only if the signature (g : p1, . . . , pr) satisfies
the liftability conditions described in Proposition 4.10. Moreover, if the liftability
conditions are satisfied then any possible tuple of 2g values in Z/mZ can be realised
in a unique way as a set of values on ai, bi of an m-Arf function on π0(P, p), hence
there are m2g different m-Arf functions on π0(P, p).

Proof. The statement follows immediately from Theorem 5.9 and Proposition 4.10.
�

6. Moduli spaces of Gorenstein singularities

We study the moduli space of Gorenstein quasi-homogeneous surface singularities
(GQHSS). Using Proposition 2.4, we define the moduli space of GQHSS of level m
as the space of conjugacy classes of subgroups Γ∗ in Gm such that the restriction of
the covering map Gm → G = PSL(2,R) to Γ∗ is an isomorphism between Γ∗ and
a Fuchsian group Γ. The projection Γ∗ 7→ Γ from the moduli space of GQHSS of
level m to the moduli space of Riemann orbifolds is a finite ramified covering.

6.1. Topological classification of higher Arf functions. There is a 1-1-cor-
respondence (see Theorem 5.9) between automorphy factors of level m and m-Arf
functions on π0(P, p). This correspondence allows us to reduce the problem of
finding the number of connected components of the moduli space of GQHSS of
level m to the problem of finding the number of orbits of the action of the group
of autohomeomorphisms on the set of m-Arf functions. We describe the orbit of
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an m-Arf function under the action of the group of homotopy classes of surface
autohomeomorphisms.

Let P be a Riemann orbifold of signature (g : p1, . . . , pr). Let p ∈ P .

Definition 6.1. Let σ : π0(P, p) → Z/mZ be an m-Arf function. We define the
Arf invariant δ = δ(P, σ) of σ as follows: If g > 1 and m is even then we set
δ = 0 if there is a standard basis {a1, b1, . . . , ag, bg, cg+1, . . . , cg+r} of the orbifold
fundamental group π(P, p) such that

g∑

i=1

(1 − σ(ai))(1 − σ(bi)) ≡ 0 mod 2

and we set δ = 1 otherwise. If g > 1 and m is odd then we set δ = 0. If g = 0 then
we set δ = 0. If g = 1 then we set

δ = gcd(m, p1 − 1, . . . , pr − 1, σ(a1), σ(b1)),

where {a1, b1, c2, . . . , cr+1} is a standard basis of the fundamental group π(P, p).

Remark. It is not hard to see that δ does not change under the transformations
described in Lemma 5.5, i.e. it is indeed an invariant of the Arf function.

Proof. Let D, v, v′, αi, βi, γi, α
′
i, β

′
i, γ

′
i be as in Lemma 5.5. Let us first consider

the case g > 1: For a Dehn twist of type 1 we have

(1 − α′
1)(1 − β′

1) = (1 − (α1 + β1))(1 − β1)

= (1 − α1)(1 − β1) − β1(1 − β1) ≡ (1 − α1)(1 − β1)mod 2.

For a Dehn twist of type 2 we have

(1 − α′
1)(1 − β′

1) + (1 − α′
2)(1 − β′

2)

= (1 − α1)(1 − β1 + α1 + α2 + 1) + (1 − α2)(1 − β2 + α1 + α2 + 1)

= (1 − α1)(1 − β1) + (1 − α2)(1 − β2) + (2 − (α1 + α2))((α1 + α2) + 1)

≡ (1 − α1)(1 − β1) + (1 − α2)(1 − β2)mod 2.

For a Dehn twist of type 3, since m is even and p1 · γg+1 + 1 ≡ 0 mod m, we have
that γg+1 is odd. Then γg+1 + 1 ≡ 0 mod 2 and 1 + βg ≡ 1 − βg mod 2 imply

(1 − α′
g)(1 − β′

g) = (1 + βg)(1 − αg + (γg+1 + 1))

≡ (1 + βg)(1 − αg) ≡ (1 − βg)(1 − αg)mod 2.

Dehn twists of type 4 do not change δ since they only permute (αk, βk) with
(αk+1, βk+1). Dehn twists of type 5 do not change δ since they only permute
γi.

Let us now consider the case g = 1: Dehn twists of types 2 and 4 involve
pairs ai, bi and aj , bj , i.e. they are not applicable in the case g = 1. Dehn twists of
type 5 do not change δ since they do not change αi, βi. For a Dehn twist of type 1
we obtain α′

1 = α1 + β1 and β′
1 = β1. Thus

gcd(α′
1, β

′
1) = gcd(α1 + β1, β1) = gcd(α1, β1)

and therefore gcd(m, p1 − 1, . . . , pr − 1, α′
1, β

′
1) = gcd(m, p1 − 1, . . . , pr − 1, α1, β1).

For a Dehn twist of type 3 we obtain α′
1 = −β1 and β′

1 = α1 − γ2 − 1. Let d be a
common divisor of m, p1 − 1, . . . , pr − 1, α1, β1, i.e

m ≡ α1 ≡ β1 ≡ 0 mod d, p1 ≡ · · · ≡ pr ≡ 1 mod d.
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We know that p1 ·γ2 +1 ≡ 0 mod m, but m ≡ 0 mod d, hence p1 ·γ2 +1 ≡ 0 mod d.
Since p1 ≡ 1 mod d, we obtain that γ2 +1 ≡ 0 mod d. Hence d is a common divisor
ofm, p1−1, . . . , pr−1, α′

1 = −β1, β
′
1 = α1−(γ2+1). Similarly every common divisor

of m, p1 − 1, . . . , pr − 1, α′
1, β

′
1 is a common divisor of m, p1 − 1, . . . , pr − 1, α1, β1.

Thus

gcd(m, p1 − 1, . . . , pr − 1, α′
1, β

′
1) = gcd(m, p1 − 1, . . . , pr − 1, α1, β1). �

Definition 6.2. By the type of the m-Arf function (P, σ) we mean the tuple

(g, p1, . . . , pr, δ),

where δ is the Arf invariant of σ defined above.

Lemma 6.1. Let σ : π0(P, p) → Z/mZ be an m-Arf function.

(a) If g > 1 then there is a standard basis v = {a1, b1, . . . , ag, bg, cg+1, . . . , cg+r} of
π(P, p) such that

(σ(a1), σ(b1), . . . , σ(ag), σ(bg)) = (0, ξ, 1, . . . , 1)

with ξ ∈ {0, 1}. If m is odd then the basis can be chosen in such a way that
ξ = 1, i.e. so that

(σ(a1), σ(b1), . . . , σ(ag), σ(bg)) = (0, 1, 1, . . . , 1)

(b) If g = 1 then there is a standard basis v = {a1, b1, c2, . . . , cg+1} of π(P, p) such
that (σ(a1), σ(b1)) = (δ, 0), where δ is the Arf invariant of σ.

Proof. The proof is along the lines of the proofs of Lemma 5.1 and Lemma 5.2
in [NP09]. Using generalised Dehn twists of types 1,2 and 4 we can show that a ba-
sis can be chosen in the desired way. The last step in the proof of Lemma 5.1
in [NP09] was to show that if m and σ(cg+i) were even then we could trans-
form a basis with (σ(a1), σ(b1), . . . , σ(ag), σ(bg)) = (0, 0, 1, . . . , 1) into a basis with
(σ(a1), σ(b1), . . . , σ(ag), σ(bg)) = (0, 1, 1, . . . , 1). However in the situation we are
considering now we know that σ(cg+i) satisfies the equation pi · σ(cg+i) + 1 ≡ 0
modulo m. Therefore if m is even then σ(cg+i) must be odd. Hence this last
reduction step is not possible in the case considered here. �

Theorem 6.2. A tuple t = (g, p1, . . . , pr, δ) is the type of a hyperbolic m-Arf func-
tion on a Riemann orbifold of signature (g : p1, . . . , pr) if and only if it satisfies the
following conditions:

(a) The liftability conditions: The orders p1, . . . , pr are prime with m and satisfy
the condition

(p1 · · · pr) ·

(
r∑

i=1

1

pi
− (2g − 2) − r

)
≡ 0 modm.

(b) If g > 1 then δ ∈ {0, 1}.
(c) If g > 1 and m is odd then δ = 0.
(d) If g = 1 then δ is a divisor of gcd(m, p1 − 1, . . . , pr − 1).
(e) If g = 0 then δ = 0.

Proof. Let us first assume that the tuple t is a type of a hyperbolic m-Arf function
on a orbifold of signature (g : p1, . . . , pr). Then according to Corollary 5.10 the sig-
nature (g : p1, . . . , pr) satisfies the liftability conditions. If g > 1 and m is odd then
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according to Lemma 6.1 there is a standard basis {a1, b1, . . . , ag, bg, cg+1, . . . , cg+r}
of π0(P, p) such that

(σ(a1), σ(b1), . . . , σ(ag), σ(bg)) = (0, 1, 1, . . . , 1),

hence δ(P, σ) = 0 by definition. If g = 1 then δ is a divisor of m, p1 − 1, . . . , pr − 1
by definition. If g = 0 then δ = 0 by definition.

Now let us assume that t = (g, p1, . . . , pr, δ) satisfies the conditions (a)-(e). Let P
be a Riemann orbifold of signature (g : p1, . . . , pr) and let

{a1, b1, . . . , ag, bg, cg+1, . . . , cg+r}

be a standard basis of π0(P, p). According to Corollary 5.10, any tuple of 2g
values in Z/mZ can be realised as a set of values on ai, bi of an m-Arf function
on π0(P, p). In particular if g > 1 then for any δ ∈ {0, 1} there exists an m-Arf
function σδ such that (σδ(a1), σ

δ(b1), . . . , σ
δ(ag), σ

δ(bg)) = (0, 1 − δ, 1, . . . , 1) and
if g = 1 then for any divisor δ of m, p1−1, . . . , pr−1 there exists an m-Arf function
σδ such that (σδ(a1), σ

δ(b1)) = (δ, 0). Let g > 1. If δ = 0 then the equation
δ(σ0) = 0 is satisfied by definition. If δ = 1 and m is even, it remains to prove that

δ(σ1) = 1. To this end we recall that
g∑
i=1

(1 − σ(ai))(1 − σ(bi))mod 2 is preserved

under the Dehn twists and hence is equal to 1 modulo 2 for any standard basis.
Now let g = 1. Then δ(σδ) = gcd(m, p1 − 1, . . . , pr − 1, δ, 0) = δ since δ is a divisor
of gcd(m, p1 − 1, . . . , pr − 1). �

6.2. Teichmüller spaces of Fuchsian groups. We recall the results on the mod-
uli spaces of Fuchsian groups from [Zie81]. Let Γg;p1,...,pr

be the group generated
by the elements v = {a1, b1, . . . , ag, bg, cg+1, . . . , cg+r} with defining relations

g∏

i=1

[ai, bi]

g+r∏

i=g+1

ci = 1, cp1g+1 = · · · = cpr

g+r = 1.

We denote by T̃g;p1,...,pr
the set of monomorphisms ψ : Γg;p1,...,pr

→ Aut(H) such
that

ψ(v) = {aψ1 , b
ψ
1 , . . . , a

ψ
g , b

ψ
g , c

ψ
g+1, . . . , c

ψ
g+r}

is a sequential set of signature (g; p1, . . . , pr). For (g; p1, . . . , pr) to be a signature

of a group of hyperbolic isometries, we have to assume that
r∑
i=1

1
pi
< r + (2g − 2).

The group Aut(H) acts on T̃g;p1,...,pr
by conjugation. We set

Tg;p1,...,pr
= T̃g;p1,...,pr

/Aut(H).

We parametrise the space T̃g;p1,...,pr
by the fixed points and shift parameters of

the elements of the sequential sets ψ(v). We use here the following analogue of a
version [Nat78], [Nat04] of the Theorem of Fricke and Klein [FK65]:

Theorem 6.3. The space Tg;p1,...,pr
is diffeomorphic to an open domain in

R6g−6+2r

which is homeomorphic to R6g−6+2r.
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For an element ψ : Γg;p1,...,pr
→ Aut(H) of T̃g;p1,...,pr

we write

M̃od
ψ

= M̃od
ψ

g;p1,...,pr
= {α ∈ Aut(Γg;p1,...,pr

)
∣∣ ψ ◦ α ∈ T̃g;p1,...,pr

}.

One can show that M̃od
ψ

does not depend on ψ, hence we write M̃od instead

of M̃od
ψ

. Let IM̃od be the subgroup of all inner automorphisms of Γg;p1,...,pr
and

let

Modg;p1,...,pr
= Mod = M̃od/IM̃od.

We now recall the description of the moduli space of Riemann orbifolds

Theorem 6.4. The group Mod = Modg;p1,...,pr
and the group of homotopy classes

of orientation preserving autohomeomorphisms of the orbifold of signature (g :
p1, . . . , pr) are naturally isomorphic. The group Modg;p1,...,pr

acts naturally on
Tg;p1,...,pr

by diffeomorphisms. This action is discrete. The quotient set

Tg;p1,...,pr
/Modg;p1,...,pr

can be identified naturally with the moduli space Mg;p1,...,pr
of Riemann orbifolds of

signature (g : p1, . . . , pr).

6.3. Connected components of the moduli space.

Definition 6.3. We denote by Sm(t) = Sm(g, p1, . . . , pr, δ) the set of all GQHSS
of level m and signature (g : p1, . . . , pr) such that the associated m-Arf function is
of type t = (g, p1, . . . , pr, δ).

Theorem 6.5. Let t = (g, p1, . . . , pr, δ) be a tuple that satisfies the conditions of
Theorem 6.2, i.e. the space Sm(t) is not empty. Then the space Sm(t) is homeomor-
phic to Tg;p1,...,pr

/Modmg;p1,...,pr
(t), where Tg;p1,...,pr

is homeomorphic to R6g−6+2r

and Modmg;p1,...,pr
(t) acts on Tg;p1,...,pr

as a subgroup of finite index in the group
Modg;p1,...,pr

.

Proof. Let us consider an element ψ of the space Tg;p1,...,pr
, i.e. a homomorphism

ψ : Γg;p1,...,pr
→ Aut(H). To the homomorphism ψ we attach an orbifold Pψ =

H/ψ(Γg;p1,...,pr
), a standard basis

vψ = ψ(v) = {aψ1 , b
ψ
1 , . . . , a

ψ
g , b

ψ
g , c

ψ
g+1, . . . , c

ψ
g+r}

of π(Pψ , p) and an m-Arf function σψ on this surface given by

(σψ(aψ1 ), σψ(bψ1 )) = (δ, 0) if g = 1,

(σψ(aψ1 ), σψ(bψ1 ), σψ(aψ2 ), σψ(bψ2 ), . . . , σψ(aψg ), σψ(bψg ))

= (0, 1 − δ, 1, . . . , 1) if g > 1.

By Theorem 5.9, the m-Arf function σψ on the orbifold Pψ corresponds to a lift of
ψ(Γg;p1,...,pr

) into Gm. This correspondence defines a map Tg;p1,...,pr
→ Sm(t). Ac-

cording to Theorem 6.2 this map is surjective. Let Modmg;p1,...,pr
(t) be the subgroup

of Aut(Pψ) = Modg;p1,...,pr
that preserves the m-Arf function σψ. For any point in

Sm(t) its pre-image in Tg;p1,...,pr
consists of an orbit of the subgroup Modmg;p1,...,pr

(t).
Thus

Sm(t) = Tg;p1,...,pr
/Modmg;p1,...,pr

(t). �
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Summarizing the results of Theorems 6.2 and 6.5 we obtain the following

Theorem 6.6.

1) Two hyperbolic GQHSS are in the same connected component of the space of all
hyperbolic GQHSS if and only if they are of the same type. In other words, the
connected components of the space of all hyperbolic GQHSS are those sets Sm(t)
that are not empty.

2) The set Sm(t) is not empty if and only if t = (g, p1, . . . , pr, δ) has the following
properties:
(a) The orders p1, . . . , pr are prime with m and satisfy the condition

(p1 · · · pr) ·

(
r∑

i=1

1

pi
− (2g − 2) − r

)
≡ 0 modm.

(b) If g > 1 and m is odd then δ = 0.
(c) If g = 1 then δ is a divisor of gcd(m, p1 − 1, . . . , pr − 1).
(d) If g = 0 then δ = 0.

3) Any connected component Sm(t) of the space of all hyperbolic GQHSS of level m
and signature (g : p1, . . . , pr) is homeomorphic to

R6g−6+2r/Modmg;p1,...,pr
(t),

where Modmg;p1,...,pr
(t) is a subgroup of finite index in the group Modg;p1,...,pr

and

acts discretely on R6g−6+2r.

7. Concluding Remarks

1) Higher Spin Structures on General Riemann Orbifolds: Combining the
results in this paper on moduli spaces of higher spin structures on compact
Riemann orbifolds with the results on moduli spaces of higher spin structures
on Riemann surfaces with holes and punctures in [NP09] we obtain a description
of moduli spaces of higher spin structures on Riemann orbifolds with holes and
punctures.

2) Q-Gorenstein singularities: A normal isolated singularity of dimension at
least 2 is Q-Gorenstein if there is a natural number r such that the divisor r ·KX
is defined on a punctured neighbourhood of the singular point by a function.
Here KX is the canonical divisor of X . According to [Pra07], hyperbolic Q-
Gorenstein quasi-homogeneous surface singularities are in 1-to-1 correspondence
with groups of the form C∗ × Γ∗, where C∗ is a lift of a finite cyclic group of
order r into Gm and Γ∗ is a lift of a Fuchsian group Γ into Gm. The lift of a
finite cyclic group is unique, hence hyperbolic Q-Gorenstein quasi-homogeneous
surface singularities are in 1-to-1 correspondence with lifts of a Fuchsian group
into Gm. Thus the moduli space of hyperbolic Q-Gorenstein quasi-homogeneous
surface singularities coincides with the moduli space of hyperbolic Gorenstein
quasi-homogeneous surface singularities as described in Theorem 6.6.

3) Spherical and Euclidean Automorphy Factors: For a spherical Goren-
stein automorphy factor (C P1,Γ, L) the group of automorphisms is Aut(U) =
Aut(C P1) = PSU(2). The finite subgroups of SU(2) are the cyclic groups, the
dihedral groups and the symmetry groups of the regular polyhedra, i.e. the tetra-
hedral, octahedral and icosahedral groups. The corresponding singularities are
Ak, Dk, E6, E7, E8. For a Euclidean Gorenstein automorphy factor (C,Γ, L)
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the group Γ is contained in the translation subgroup of Aut(C) and can be
identified with a sublattice Z · 1 + Z · τ of the additive group C, where τ ∈ C
and Im(τ) > 0, see [Dol83b]. The corresponding singularities are Ẽ6, Ẽ7, Ẽ8.

All GQHSS other than Ak, Dk, E6, E7, E8, Ẽ6, Ẽ7, Ẽ8 belong to the class of
hyperbolic GQHSS, which is studied in this paper.
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