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Supplementary Methods:
Calculation of genetic diversity

Variant calls were retrieved from the final phase (phase 3) of the 1000 Genomes Project
(http://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/) (Auton et al. 2015).
Genetic Diversity (GD), which was calculated from the 1000 Genomes Project global
population data, refers to the nucleotide diversity between genes. The normalised (by
length) minor allele frequency (MAF) of SNPs in each gene was used to represent GD (see
below). Because GRCh37 is the reference genome used by the 1000 Genomes Project phase
3 variants, GRCh37 was used as the reference genome for genetic variants mapping. We
calculated GD for genic regions including introns, given that most genetic associations are
found in non-coding regions and intronic regions specifically (Freedman et al. 2011). As the
regions in upstream and downstream often contain regulatory elements which could affect
functions of the gene, the flanking regions 1000bp upstream and downstream of each gene,
which tends to be under strong LD, were also included when mapping variants to genes and
calculating GD . The start and stop positions of genic and flanking regions were retrieved
from GRCh37 using Ensembl BioMart. Then, the genetic variants from the 1000 Genomes
Project were mapped to genes containing genic and flanking regions. The calculation of GD
was performed as follows:

1. Consider a cohort consisting of n individuals, for a given SNP at position i, the total
number of minor alleles (representing nucleotide changes) at position i in the
population is:

n X MAF;

2. If there are m SNPs located in the genic region and two flank regions, the total
number of minor alleles within the genic and flank regions can be calculated by:

m
Z n X MAF
i=0

3. Asnis aconstant, the above formula can be simplified as:

m
Z MAF
i=0

4. Then the normalised minor alleles in every 1000bp DNA is:

1000 X Y™, MAF

lengthgenic + lengthupstream + lengthdownstream

In total, 54,849 genes were obtained from the GRCh37 assembly, including protein coding
gene, lincRNA, antisense, misc_RNA, snRNA, pseudogene. See Dataset S1 for the full dataset,
including GD values.



Nucleotide diversity (rt) data

Data on nucleotide diversity (1) per gene was obtained for the whole genic region of
protein-coding genes from PopHuman, a genomics browser based on the 1000 Genomes
Project (Casillas et al. 2018). To focus on individual populations, Tt was obtained from three
populations: Utah residents with Northern and Western European ancestry (CEU), Han
Chinese in Beijing, China (CHB) and Yoruba in Ibadan, Nigeria (YRI).

Counting the number of traits reported in the GWAS-Catalog per gene

Data files were downloaded from the GWAS-Catalog website on 31/01/2018 (MacArthur et
al. 2017). Then, in each entry, the reported SNPs were mapped to genes (with 1000bp in
each upstream and downstream flanks, as for the GD calculations) in the GRCh37 assembly
using rsIDs. SNPs mapping to two or more adjacent genes are counted separately. Through
this method, connections between studied traits and genes (where reported SNPs located in)
were recovered. By counting the number of unique Mapped Traits that are associated with
any given gene, the corresponding number of associated traits of a gene was obtained.

Statistical analyses

Non-parametric tests were employed for the statistical analyses. The Mann—Whitney U-test
was used to compare different groups of genes (e.g., genes with GWAS hits versus genes
without GWAS hits). Correlation analyses were performed using Kendall's rank correlation
(similar results were obtained using Spearman's rank-order correlation). Statistical analyses
were performed using SPSS version 22 (IBM), R version 3.4.2 (R Core Team 2017) and
RStudio version 1.1.383 (RStudio Team 2015).



Supplementary Results:

We estimated genetic diversity for each human gene based on the number of alternative
alleles using data from the 1000 Genomes Project (Auton et al. 2015), normalized by gene
length (see Supplementary Methods). We then counted the number of GWAS hits from the
GWAS catalog (MacArthur et al. 2017) and analyzed the relationship between the number
of GWAS hits and genetic diversity. As expected, genes with GWAS hits tend to be longer
(Supplementary Table 1) and there is a correlation between gene size and number of GWAS
hits (Kendall’s tau = 0.392 for protein-coding genes; tau = 0.260 for non-coding genes; p-
value < 0.001 for both). In a way, this means that genetic association studies will be biased
towards finding associations in larger genes, presumably because these have more genetic
variants, even though larger genes will not a priori be the most important biologically.
Larger genes also tend to have a slightly higher genetic diversity (Kendall’s tau = 0.057 for
protein-coding genes; tau = 0.034 for non-coding genes; p-value < 0.001 for both), we
speculate because perhaps longer genes have a slightly lower chance of mutations being
deleterious. Importantly, we found that genes with GWAS hits have a greater genetic
diversity (Supplementary Figure 1). Indeed, genes with a greater genetic diversity have more
GWAS hits (Kendall’s tau = 0.106 for protein-coding genes; tau = 0.073 for non-coding genes;
p-value < 0.001 for both), an effect that is still observed when accounting for the potentially
confounding effects of gene length (p-value < 0.001). The differences observed are not huge
(Supplementary Figure 1; Supplementary Table 2), but given that most genetic variants are
thought to be neutral (Kimura 1983), this is to be expected.

Similar results were obtained using nucleotide diversity (), another measure of DNA
polymorphisms (Nei 1987), and in individual populations. After merging it to the number of
traits associated with each gene, we obtained a dataset with 21,020 genes. The analyses for
GD reported above were repeated using t from CEU, CHB and YRI with very similar results.
For all three populations, genes with a greater m have more GWAS hits (Kendall’s tau for
CEU =0.127; tau for CHB = 0.114; tau for YRI = 0.087; p-value < 0.001 for all three); the
correlation between 1t and number of GWAS hits in a gene is still statistically significant after
accounting for the effects of gene length (p-value < 0.001 for all three populations). Besides,
genes with GWAS hits (GHGs) have a greater it than genes without GWAS hits (non-GHG):
GHGs = 0.0006781 vs non-GHG = 0.0005552 for CEU; GHGs = 0.0006222 vs non-GHG =
0.0005142 for CHB; GHGs = 0.00088535 vs non-GHG = 0.0007907 for YRI (using a Mann-
Whitney test, differences are highly statistically significant at p-value < 0.001 for all
populations).

Overall, these results demonstrate that genes with greater diversity have a higher
probability of being associated with human phenotypes. Given that the power to detect a
genetic association increases with the allelic frequency (Hong & Park 2012), our results are
in line with theoretical expectations and crucially show that GWAS hits are biased towards
particular types of genes.



Supplementary Table 1: Gene length in GWAS-hit genes (GHGs) vs non-GWAS-hit genes
(non-GHG).

Gene class n Min. Median Mean Max.
Genome- 54849 2008 4913 32270 | 2306638
Wide

GHGs 11869 2047 47011 100576 | 2306638
non-GHGs 42980 2008 3291 13408 1231306
Protein- 8196 2186 59864 118152 | 2306638
coding GHGs

Protein-

coding non- 11234 2059 16368 30762 1231306
GHGs

Non-coding 3673 2047 19777 61357 1538213
GHGs

Non-coding 31759 2008 2688 7266 456257
non-GHGs

Supplementary Table 2. GD in GWAS-hit genes (GHGs) vs non-GWAS-hit genes (non-GHG).

Gene class n Min. Median Mean Max.
Genome-Wide | 54849 |0 0.000923 | 0.001098 | 0.033518
All GHGs 11869 | 0.000024 | 0.001009 | 0.001158 | 0.033518
All non-GHGs 42980 | O 0.000885 | 0.001075 | 0.019021
Protein-coding

GHGs 8196 0.000061 | 0.000976 | 0.001073 | 0.031054
Protein-coding

non-GHGs 11234 |0 0.000846 | 0.000972 | 0.013428
Non-coding

GHGs 3673 0.000024 | 0.001087 | 0.001347 | 0.033518
Non-coding

non-GHGs 31759 |O 0.000903 | 0.001112 | 0.019021




Supplementary Figure 1. Density plot of genetic diversity of genes with hits in GWAS (pink; n
=11,869) and genes without GWAS hits (green; n = 42,980). Only genetic diversity <0.005
were displayed. The difference between the genetic diversity of genes with hits in GWAS
(median = 0.001009) and genes without GWAS hits (median = 0.000885) is highly statistically
significant (p-value < 0.001; Mann-Whitney test). Please refer to Supplementary Table 2 for
further details of the genetic diversity of the two groups.
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Supplementary Figure 2. Comparison of GD between five major populations: AFR, African;

AMR, Ad Mixed American; EAS, East Asian; EUR, European; SAS, South Asian.
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