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A recent paper by Deelen et al. (2014)
in Human Molecular Genetics

reports the largest genome-wide associa-
tion study of human longevity to date.
While impressive, there is a remarkable
lack of association of genes known to
considerably extend lifespan in rodents
with human longevity, both in this latest
study and in genetic association studies
in general. Here, I discuss several possible
explanations, such as intrinsic limitations
in longevity association studies and the
complex genetic architecture of longev-
ity. Yet one hypothesis is that the lack of
correlation between longevity-associated
genes in model organisms and genes asso-
ciated with human longevity is, at least
partly, due to intrinsic limitations and
biases in animal studies. In particular,
most studies in model organisms are con-
ducted in strains of limited genetic diver-
sity which are then not applicable to
human populations. This has important
implications and, together with other
recent results demonstrating strain-spe-
cific longevity effects in rodents due to
caloric restriction, it questions our capac-
ity to translate the exciting findings from
the genetics of aging to human therapies.

The recent work by Deelen et al.1 is the
largest genome-wide association study
(GWAS) for human longevity to date with
over 20000 long-lived individuals between
meta-analysis and validation. Apart from
the well-known association on the
TOMM40/APOE/APOC1 locus, Deelen
et al. also found a new association on chro-
mosome 5q33.3 which might be due to a
long noncoding RNA (lincRNA). This is
an exciting finding for many reasons: The

5q33.3 locus appears to be associated with
survival beyond 90 y and, while associated
with blood pressure in middle age, at older
ages additional processes appear to influ-
ence its relation to longevity. The fact that
this is a lincRNA is also exciting given the
recent interest and the regulatory functions
of these non-coding genes of which we
know so little about. Changes in expression
with age in lincRNAs of unknown function
have also been observed in the rat brain
using RNA-seq.2 Therefore, functional
studies are warranted of this relatively new
layer of genomic regulation.

A new locus associated with longevity is
an important breakthrough, but equally
striking are the loci not associated with
longevity. According to the GenAge data-
base of aging-related genes,3 >1,000 genes
have been associated with longevity and/
or aging in model organisms, including
>100 in mice of which 51 have life-
extending effects. None of these was asso-
ciated with longevity in this latest, large
study. This does not come as a surprise
since recent large-scale studies of human
longevity have invariably been restricted
to finding statistically significant associa-
tions in the TOMM40/APOE/APOC1
locus.4,5 Even when using more relaxed
significance criteria, results are disappoint-
ing: For example, in the 281 genetic var-
iants Sebastiani et al.4 found to
discriminate between centenarians and
controls, 4 genes associated with a shorter
lifespan in mice are present (APOE,
LMNA, SOCS2 and SOD2), yet not a sin-
gle gene was found by Sebastiani et al.
with known life-extending effects in mice.
Although candidate gene studies have
found a few associations related to specific
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longevity-associated genes such as IGF1R6

and FOXO3A,7 these have not been vali-
dated in the larger GWAS1,4 or by and
large in other populations.5 So of the 51
genes associated with life-extension in
mice, why have these not been convinc-
ingly associated with human longevity?

There are several possible explanations.
Missing heritability has been observed in
other complex traits and diseases.8 Even for
highly heritable traits like height, many
genes with small effects are usually found.8

As such, many genes with small effect sizes
might contribute to human longevity and
these are difficult to detect even in large
studies. Nonetheless, because, for instance,
in the case of height over 50% of the pheno-
type can be explained by common variants,8

our progress in understanding the genetic
determinants of human longevity has argu-
ably been disappointing even compared to
other complex traits. As Deelen et al. point
out, human longevity association studies
have intrinsic limitations, such as the lack
of appropriate controls in that among the
younger individuals used as controls many
will turn out to also be long-lived and the
relatively modest heritability of longevity
(»25% whereas the heritability of, say,
height is »80%). Another hypothesis is
that common genetic variants in human
populations in genes associated with aging
in model organisms are not functionally rel-
evant in context of longevity. Most aging-
related genes in mice were derived from
knockouts or overexpression manipulations
that have strong molecular effects on the
gene in question that may not have com-
mon equivalents in the general human pop-
ulation. That said, and while it is plausible
that human genome resequencing studies
will reveal new loci with strong longevity
effects, the few studies conducted thus far
in human cohorts with mutations in genes
associated with longevity in model organ-
isms do not suggest strong effects on lon-
gevity. For example, disruption of the
growth hormone receptor (GHR) in mice
extends lifespan >40 %,9 yet GHR defi-
ciency in humans does not result in reduced
mortality, even if it appears to protect from
cancer.10

A more disconcerting interpretation is
that the lack of correlation between longev-
ity-associated genes from model organisms
and genes associated with human longevity

is, at least partly, due to intrinsic limitations
and biases in animal studies. Model organ-
isms have contributed tremendously to
research on aging and most translational
research on aging is based on genetic discov-
eries in these,11 but they also have major
drawbacks.12,13 One key weakness is that,
by and large, longevity studies in model
organisms are performed on strains of lim-
ited genetic diversity. The roundworm C.
elegans, for example, has proven to be the
most popular model system in the genetics
of aging with>700 genes in GenAge, yet it
is remarkable that nearly all of these studies
have been conducted in the N2 strain.
Mouse studies usually employ specific
strains with C57BL/6 as a popular choice in
longevity studies, yet all strains have their
own particular phenotypes and diseases.
Indeed, strain-specific effects of longevity-
associated genes are known. For example,
Ames dwarf mice due to a mutation in
Prop1 are considerably long-lived,14 yet the
effects of deletion of Prop1 are strongly
influenced by genetic background and in
some cases can result in respiratory distress
symptoms and even neonatal death.15

The reduced genetic and environmen-
tal diversity of model systems also fails to
capture pleiotropic effects of aging-related
pathways. For example, low IGF1 signal-
ing has been consistently associated with
life-extension in rodents and with cancer
protection,16 and indeed Ames dwarf
mice have low circulating IGF1 levels, yet
low IGF1 can also be detrimental having
been associated with, for instance, sarco-
penia and cognitive dysfunction.17,18 In
humans, findings are contradictory con-
cerning the association between IGF1 lev-
els and survival.19,20 Beneficial effects of
low IGF1 on human survival seem to be
mostly observed in individuals susceptible
to malignancy,20 and it is noteworthy that
traditional mouse strains like C57BL/6
die primarily of cancer.

The fact that the life-extending effects
of caloric restriction (CR) in mice are
strain-specific21 adds weight to the idea
that having a whole field based on find-
ings that come primarily from clones is
problematic. Not surprisingly, when
wild-derived, genetically heterogeneous
mice are put on CR very modest effects are
observed, appearing to be beneficial to
some animals but not to others.22 Recent

results from rhesus monkeys23,24 showing
much more modest effects of CR than
observed in mice or rats further emphasize
concerns regarding studies in short-lived
models of limited or no genetic diversity.
Of course this touches on another potential
problem which is that pathways that
extend lifespan in short-lived organisms
may not work the same way in long-lived
ones, a problem pointed out long ago by
researchers in the field.25

This discussion has important practical
implications because if the gene manipula-
tions identified in model organisms to
modulate aging and extend longevity are
only beneficial to a small percentage of
individuals, then this questions our capac-
ity to translate findings from the biology
and genetics of aging. I do not think that
this excludes potential applications con-
cerning age-related diseases, particularly
cancer,16 but it suggests that systematic
biases in animal longevity studies could
considerably decrease our ability to trans-
late the extraordinary findings in model
organisms to extend human life and pre-
serve health, arguably the goal of bioger-
ontology. The NIH interventions testing
program employs genetically heteroge-
neous mice to minimize such effects,26

but given costs and funding climate vali-
dation of the impressive results on the
genetics of aging in additional mouse
strains is unlikely to be pursued in the
foreseeable future. Therefore, of the 51
gene manipulations extending lifespan in
mice, how many would still extend life-
span in genetically heterogeneous mice
and by how much? How many would be
detrimental? When considering potential
applications of the genetics of aging one
should keep in mind that these have not
been replicated in humans and that even
in model organisms these are derived from
a very small selection of clones that do not
represent the whole species.
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