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ABSTRACT

Motivation: Numerous microarray studies of aging have been con-
ducted, yet given the noisy nature of gene expression changes
with age, elucidating the transcriptional features of aging and how
these relate to physiological, biochemical and pathological changes
remains a critical problem.
Results: We performed a meta-analysis of age-related gene ex-
pression profiles using 27 datasets from mice, rats and humans.
Our results reveal several common signatures of aging, including
56 genes consistently overexpressed with age, the most significant
of which was APOD, and 17 genes underexpressed with age.
We characterized the biological processes associated with these
signatures and found that age-related gene expression changes
most notably involve an overexpression of inflammation and immune
response genes and of genes associated with the lysosome. An
underexpression of collagen genes and of genes associated with
energy metabolism, particularly mitochondrial genes, as well as
alterations in the expression of genes related to apoptosis, cell
cycle and cellular senescence biomarkers, were also observed.
By employing a new method that emphasizes sensitivity, our
work further reveals previously unknown transcriptional changes
with age in many genes, processes and functions. We suggest
these molecular signatures reflect a combination of degenerative
processes but also transcriptional responses to the process of aging.
Overall, our results help to understand how transcriptional changes
relate to the process of aging and could serve as targets for future
studies.
Availability: http://genomics.senescence.info/uarrays/signatures.html
Contact: jp@senescence.info
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Changes in gene expression are associated with numerous biological
processes, cellular responses and disease states. The availability
of microarrays has made it possible to study gene expression in
a high-throughput fashion and gather insights about biology and
disease. In recent years, a massive amount of microarray studies have
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been conducted. To compile and organize the numerous datasets
generated, resources like the Gene Expression Omnibus (GEO)
(Barrett et al., 2007) have been established. The availability of
microarray data from multiple experiments opens up new research
opportunities. By eliminating idiosyncrasies of individual platforms
and enhancing the signal-to-noise ratio, comparing profiles across
platforms and species may reveal conserved molecular signatures
that would otherwise be obscure in single datasets (Moreau et al.,
2003; Ramasamy et al., 2008). Indeed, meta-analyses of gene
expression profiles integrating multiple microarray studies have
been particularly useful to identify conserved genetic signatures of
cancer (Rhodes et al., 2004).

Aging is major biological process and a risk factor for many
diseases. To gain new insights into the process of aging and identify
potentially important genes and biomarkers, many microarray
studies have been conducted in several species, including humans,
either by comparing young and old tissues (Edwards et al., 2007; Ida
et al., 2003) or by comparing samples across the lifespan (Lu et al.,
2004; Rodwell et al., 2004). To collect and store the large body of
gene expression data in aging, a database of gene expression aging
studies was recently assembled entitled Gene Aging Nexus (GAN)
(Pan et al., 2007). Aging gene expression studies, however, have
been typically noisy with often few genes found to be differentially
expressed with age and of these even fewer found to overlap different
tissues (Weindruch et al., 2002) and species (McElwee et al., 2007).
Therefore, elucidating the transcriptional features of aging and how
these relate to physiological, biochemical and pathological changes
with age remains a critical problem.

Considering the number of aging gene expression studies
conducted to date in different tissues and organisms, it may be
possible to employ combinatorial approaches to identify common
molecular signatures of the normal aging process. Because the
underlying molecular mechanisms of aging remain a subject of
debate, however, the mere existence of transcriptional programs
driving aging is a contentious issue, and whether independent
transcriptional programs can drive aging in different tissues is
unknown. Previous results suggest that most genes differentially
expressed with age in a given tissue are not genes specifically
expressed in that tissue (Rodwell et al., 2004), suggesting that only
a small fraction of transcriptional responses are tissue-specific and
hence that molecular signatures of aging might overlap different
tissues. Nonetheless, molecular signatures of aging can be subject to
different interpretations rather than as an active program of aging.
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For example, they may represent compensatory mechanisms (de
Magalhaes and Toussaint, 2004).

In this work, our goal was to identify common molecular
signatures of aging. Such signatures, which we define as
distinguishing features of molecular changes with age, may be
associated with and play a biological role in the physiological
decline that characterizes aging. We obtained data from 27 publicly
available studies in mice, rats and humans from GAN and GEO, and
performed a meta-analysis of age-related gene expression profiles.
Many methods exist for the statistical and functional annotation of
microarray data (Hong and Breitling, 2008; Ramasamy et al., 2008;
Slonim, 2002; Verducci et al., 2006). Herein, we developed a simple
methodology to compare age-related gene expression data across
platforms and species that in order to cope with the noisy nature
of age-related gene expression profiles emphasizes sensitivity. Our
results reveal several signatures of aging most notably involving
an activation of inflammation/immune response genes and an
underexpression of mitochondrial genes. We interpret our signatures
in the context of known physiological and biochemical age-related
alterations. Our results further reveal many previously unknown
transcriptional changes with age in genes, processes and functions
that could serve as targets for future studies and help to paint a better
picture of how transcriptional changes relate to the process of aging
at different levels.

2 METHODS

2.1 Data selection and processing
Microarray data was primarily downloaded from GAN version 2.0
(http://gan.usc.edu/) (Pan et al., 2007), a repository of gene expression
data in aging with a few datasets also downloaded from GEO
(http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2007). This gene
expression data is already normalized with background subtracted (Pan
et al., 2007). All experiments reporting age-related expression profiles in
mammals were downloaded, including studies comparing young and old
samples and studies reporting gene expression profiles at more than two age
groups. The vast majority of datasets consisted of single-channel intensity
data from Affymetrix microarrays. One study was performed using spotted
cDNA microarrays (Ida et al., 2003), but was also included since the signal
intensity from the young and old pairs of specimens compared in the original
report were available.

Only age-related data from healthy, adult, non-treated specimens was
analyzed and data from specific diseases, treatments and mutants were
excluded. For example, in caloric restriction studies we only took data from
young and old controls, not from the calorie-restricted animals. Experiments
with less than three samples for either young or old specimens (but including
pooled samples examined using the same microarray) were excluded. Since
aging gene expression profiles can be detected early in adult life (Lu et al.,
2004; McCarroll et al., 2004), all datasets with more than two adult time
points were included, even if the oldest animals were middle-aged. Studies
in which data was obtained from a set of genes selected in a highly biased
fashion (e.g. custom-arrays featuring only genes associated with a given
pathway) were excluded. Although we cannot perform a comprehensive
evaluation of the quality of each experiment, a meta-analysis is in its essence
a technique to eliminate poor quality data.

Overall, 12 experiments from mice, 11 from rats and 4 from humans
were analyzed (Supplementary Table S1), comprising almost 5 million gene
expression measurements from over 400 individual samples. As described
(Pan et al., 2007), genes in different platforms are linked by their UniGene
IDs. In GEO, gene annotation is derived from the Entrez Gene and UniGene
databases using sequence identifiers (Barrett et al., 2007). If more than 30%

of measurements for a given probe contained nulls or missing values, the
probe was excluded. Otherwise, null values were replaced by the probe’s
average (row average method) and probes targeting the same gene were
averaged.

2.2 Detecting genes with age-related expression profiles
To avoid the problems of comparing microarray data obtained using different
platforms and experimental systems (e.g. in the number and type of samples),
we discarded effect sizes and instead employed a meta-profiling method that
compares statistical measures obtained from each dataset, a variant of the
value counting procedure initially applied to study cancer (Rhodes et al.,
2002, 2004). A flow diagram of our method is available as Supplementary
Figure S1.

For each dataset, we first tested the hypothesis that the expression of
a given gene is associated with age. Data were log2-transformed and we
performed a linear regression for each gene using the equation:

Yij =β0j +β1jAgei +εij (1)

where Yij is the signal intensity of gene j in sample i, Agei is the age of the
specimen from which sample i was obtained, and εij is the error term. The
coefficients β0 and β1 were estimated by least squares.

Statistical significance of the differential expression was estimated with
a two-tailed F-test to determine whether the slope of the curve is different
than zero, which herein would indicate an association between the expression
signal and age. Genes with a P-value below 0.05 were considered putatively
age dependent. Using this 0.05 cutoff, we obtained between 0.91% and 9.84%
of putative over- and underexpressed genes with age for each experiment
with, on average, 4.52% of genes overexpressed in each experiment
and 4.62% underexpressed. Admittedly, this is a relatively relaxed cutoff
threshold and, considering most experiments studied thousands of genes,
emphasizes sensitivity rather than specificity. In fact, 13 793 genes passed
our F-test at least once, which represents roughly half of all tested genes.
As described below, however, we were careful to correct for multiple
hypothesis testing when determining statistical significance of the combined
profiles to minimize false positives. Calculations were performed using the
R language (R Development Core Team, 2008).

Where possible, we compared our results with those originally published
with the datasets to verify that, in spite of our more relaxed threshold,
there was a considerable overlap between the results. In the case of the
human kidney dataset, we noticed a discrepancy between our results and
those reported by the authors (Rodwell et al., 2004), particularly for the
results obtained in kidney medulla, and thus we decided to use only the data
from kidney cortex. In the original report with this dataset, the cortex had
considerably more genes differentially expressed with age than the medulla
(Rodwell et al., 2004), so despite this procedure our results were still largely
representative of those initially reported for this dataset.

2.3 Identifying common signatures of aging
To identify genes consistently under- or overexpressed during aging, we tried
to find the genes with the largest number of putatively age-related signals
in our multiple datasets. To calculate the probability of observing an equal
or higher than number of under- or overexpressed gene occurrences, we
employed the cumulative binomial distribution:

P(X �k)=
n∑

j=k

(
n
j

)
pj(1−p)n−j (2)

where the probability P of a gene being overexpressed with age is 0.0452
and the probability of it being underexpressed with age is 0.0462 (as detailed
above), the number of occurrences (k) is the number of experiments in which
the gene is putatively under- or overexpressed and the number of trials (n)
is the number of experiments in which the gene’s expression was measured.

876

http://gan.usc.edu/
http://www.ncbi.nlm.nih.gov/geo/


Common signatures of aging

If available, we used HomoloGene (Wheeler et al., 2008) to obtain human
homologs of rodent genes and our results are, with rare exceptions, displayed
using the Entrez Gene ID of the human homolog and the corresponding
HUGO Gene Nomenclature Committee (HGNC) symbol.

Fisher’s inverse chi-square approach was used to serve as a comparison
with the value counting method. Succinctly, for each gene we calculated
the sums of the logarithm of the P-values across k studies for over- and
underexpression separately and compared this test statistic against a χ2-
distribution with 2k degrees of freedom, as described (Hong and Breitling,
2008; Ramasamy et al., 2008).

To identify enriched functional groups present in our top genes,
we employed the Database for Annotation, Visualization and Integrated
Discovery (DAVID) (Dennis et al., 2003). Because this analysis focused
on enriched functional categories rather than individual genes, we used a
more liberal cutoff threshold for selecting the top genes, as detailed below.
DAVID was run with default options.

We used Gene Ontology (GO) annotation, which describes how gene
products behave in a cellular context (Ashburner et al., 2000), to further
identify pathways, processes and functions significantly altered by aging.
To identify GO categories that tend to be associated with genes under-
or overexpressed with age, we used Equation (2), yet the number of
occurrences (k) and the number of trials (n) for each category, rather than
referring to a single gene, refer to all genes associated with that category. In
other words, for each of the 8293 GO categories present, we calculated
the number of times each gene associated with that category was over-
or underexpressed and then determined statistical significance using the
cumulative binomial distribution. We used GO annotation from each of the
species and then combined the results for all GO categories using the results
from the three species used. Our algorithm was implemented in the Perl
language.

In order to employ a set of profiles as diverse as possible, we tried to obtain
datasets from different tissues. In the few cases two or more experiments
from the same tissue and species were available, we only counted them as
one if the experiments yielded convergent results and discarded them if they
yielded divergent results (i.e. a given gene being underexpressed with age
in one experiment and overexpressed in another). In one instance regarding
human muscle datasets, we merged the results from two separate experiments
since these were conducted by the same group using the same methods and
platform (Welle et al., 2003, 2004).

2.4 False discovery rate simulations
To estimate the number of false positives in both individual genes and
GO categories, we performed 1000 simulations using random permutations
and the exact same procedure described above. In other words, for each
dataset the gene identifiers corresponding to each expression profile were
randomly permutated using the Fisher–Yates shuffle algorithm, but the total
number of genes, the gene names and the expression profiles remained the
same. This allowed us to estimate, by chance, how many genes and GO
categories above a given threshold we were expected to find. Based on our
simulations, we calculated the false discovery rate (FDR) (Q), defined as
the number of expected false positives over the number of significant results
(Storey and Tibshirani, 2003), for each gene and GO category. We set our
significance threshold at Q < 0.1, which though admittedly arbitrary (Storey
and Tibshirani, 2003) has been used in similar studies (Rhodes et al., 2004).
Our full results are available as Supplementary Material and on our website
(http://genomics.senescence.info/uarrays/signatures.html) if others wish to
perform analyses with different criteria. For Q < 0.1 we set the cutoff P-
value at P < 0.0007 for overexpressed genes, P < 0.0002 for underexpressed
genes, P < 0.006 for GO categories overrepresented in overexpressed genes
and P < 0.003 for GO categories overrepresented in underexpressed genes.
For the FDR analysis using DAVID, we relaxed the threshold to Q < 0.5
which resulted in a cutoff P-value of P < 0.02 for overexpressed genes and
P < 0.009 for underexpressed genes. The simulations were performed using
the Perl language.

2.5 Comparing age-related gene expression signals
between datasets

Microarray data were obtained from different studies, under different
conditions. To minimize biases and idiosyncrasies of individual experiments
when comparing gene expression profiles, we normalized the log2 signals to
common young and old ages for each species: respectively, 25 and 75 years
in humans, 3 and 25 months for mice and 5 and 30 months for rats. In spite
of these differences in lifespan, it is reasonable to think that the process of
aging in humans and rodents shares at least some mechanisms, only timed
at different paces, and results in common molecular signatures. From the
regression coefficients, we calculated the log2 ratio of the expression signal
old/young using the abovementioned normalized ages. The meta-signature
using these values was rendered using TreeView (Eisen et al., 1998).

3 RESULTS

3.1 Identifying genes differentially expressed with age
Normalized microarray data, by and large single-channel intensity
data from Affymetrix microarrays, was downloaded primarily from
GAN but also GEO. After data selection (see Section 2), we
obtained 27 different experiments from mice, rats and humans
comprising almost 5 million gene expression measurements from
over 400 individual samples. One can imagine advantages to human-
only datasets, since there are likely differences in aging between
organisms and this is an area of great controversy (McCarroll et al.,
2004; McElwee et al., 2007; Zahn et al., 2007), but considering the
few microarray studies conducted in aging humans, and possible
advantages in meta-comparisons, we chose to expand our analysis
to primates plus rodents.

There are several meta-analysis methods for detecting
differentially expressed genes in microarray experiments (Hong
and Breitling, 2008; Moreau et al., 2003; Ramasamy et al., 2008).
To avoid the difficulties of comparing microarray data obtained
in considerable different conditions, we compared the statistical
parameters of differential expression obtained from the individual
datasets instead of comparing the gene expression signals between
the platforms, a value counting method previously employed in
the meta-analysis of cancer (Rhodes et al., 2002, 2004). Because
gene expression changes with aging tend to be more subtle than
in specific diseases (Pan et al., 2007), we employed a relatively
relaxed threshold with P < 0.05 to test whether the expression of
each gene in each experiment is associated with age (see Section 2).
Afterwards, to identify genes consistently differentially expressed
with age, we used the binomial distribution to test whether the
number of times a given gene is putatively under- or overexpressed
with age is higher than expected by chance, after adjusting our
P-values based on FDR analyses to select genes with a FDR (Q)
below 0.1 (see Section 2). A flow diagram of our meta-analysis
method is available as Supplementary Figure S1.

Overall, we identified 56 genes across the studies consistently
overexpressed with age, using a cutoff of P < 0.0007. Simulations
in which genes were randomly assigned to gene expression signals
in each experiment showed that five significant genes would be
expected by chance for a FDR below 10%. Therefore, the genes we
identified represent an intersection of genes that share an expression
profile significantly associated with aging (Fig. 1A). The gene with
the lowest P-value was APOD or apolipoprotein D, previously
associated with neurodegenerative diseases (Kalman et al., 2000).
In addition, numerous genes overexpressed with age play roles in
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Fig. 1. Meta-signature of top genes consistently differentially expressed with
age. (A) Genes consistently overexpressed with age. Fifteen datasets were
selected for the figure. Red indicates genes overexpressed with age with
the intensity proportional to the expression signal old/young adjusted for a
common age (see Section 2). Black to gray indicates genes underexpressed
with age. (B) Fourteen datasets were selected for the figure. Red indicates
genes underexpressed with age with the intensity proportional to the
expression signal young/old adjusted for a common age (see Section 2).
Black to gray indicates genes overexpressed with age. For both A and B,
white indicates either not studied or non-significant and genes are ordered
from most to least significant.

inflammation, such as CTSS, FCGR2B, IGJ, C3, C1QA and C1QB.
Other genes consistently overexpressed with age included lysozyme
(LYZ), clusterin (CLU), microsomal glutathione S-transferase 1
(MGST1), glutathione S-transferase A1 (GSTA1), S100 calcium
binding protein A4 (S100A4) and A6 (S100A6), and annexin A3
(ANXA3) and A5 (ANXA5).

We found only 17 genes consistently underexpressed with age
at a cutoff of P <0.0002 (from our simulations an average of
1.5 would be expected by chance). These results are shown in

Table 1. Top functional annotation clusters of significant differentially
expressed genes

Cluster Enrich.
score

No. of
annot.

No. of
genes

Overexpressed genes (n = 236 with Q<0.5)
Immune response, complement activation 6.88 41 86
Lysosome 6.48 7 16
Plasma, extracellular region 5.41 5 37
Signal, glycoprotein 4.55 6 80
Negative regulation of apoptosis 2.75 16 53

Underexpressed genes (n = 141 with Q<0.5)
Mitochondrion 5.49 52 70
Oxidative phosphorylation 3.57 79 82
Cytoplasm 3.19 5 108
Hydroxylysine, hydroxylation, collagen 2.83 43 47

Clusters from DAVID with an enrichment score above 2.5 are displayed. Cluster titles
were selected based on the broadest of the top annotations in the cluster.

Figure 1B and include four genes encoding mitochondrial proteins
(ATP5G3, NDUFB11, UQCRQ and UQCRFS1) and three collagen
genes (COL3A1, COL1A1 and COL4A5). The top gene was the
transferrin receptor TFRC.

Interestingly, nine genes overexpressed and four underexpressed
from our meta-signature have been validated experimentally,
mostly by direct measurement of mRNA levels by qRT-PCR
(Supplementary Table S2), which demonstrates that our method can
detect biologically meaningful results.

To further assess the power of our method, we compared the
results to those obtained with Fisher’s inverse chi-square approach.
Among the most significant genes, the overlap was considerable with
8 out of the 10 most significant genes using our method also being
statistically significant using Fisher’s inverse chi-square approach.
Although we obtained a larger number of significant genes using this
approach (112 versus 73), this was mostly due to single experiments
with a small number of samples having a biased weight on the test
statistic (Supplementary Tables S5 and S6).

3.2 Functional annotation clustering of top genes
To identify the biological processes associated with gene expression
changes with age, we first evaluated our top genes differentially
expressed with age using the functional annotation tools in DAVID,
a web-accessible set of tools that allow researchers to infer the
biological meaning behind large lists of genes (Dennis et al., 2003).
Because our focus was on enriched functional categories rather than
on individual genes, we employed a more liberal criterion to select
the genes for functional clustering, instead using a FDR of 50%
(i.e. Q < 0.5). Among the 236 genes overexpressed with age (118
would be expected by chance), the top cluster was related to immune
responses.Also noteworthy were clusters related to the lysosome and
apoptosis (Table 1).

For the 141 genes underexpressed with age at the more liberal
threshold (69 were expected by chance), the top clusters were mostly
related to mitochondria and oxidative phosphorylation as well as
collagen (Table 1).
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3.3 GO categories overrepresented in age-related
transcriptional profiles

To further identify and characterize the biological processes and
functions associated with gene expression changes with age,
we identified GO categories overrepresented among genes over-
or underexpressed with age. Instead of identifying categories
enriched in the genes with the strongest signal (as is common in
microarray studies and for which we used DAVID), in our meta-
analysis we counted the number of occurrences of all genes in
all experiments associated with a given GO category and, using
the binomial distribution, determined the probability of obtaining
an equal or higher number of putative under- or overexpressed
gene occurrences (see Section 2). At our FDR-adjusted cutoff
(P < 0.006 for Q < 0.1), we found 175 GO categories enriched
for genes overexpressed with age when 17 would be expected
by chance. The top categories were largely in accordance with
the functional annotation clusters obtained from the top genes,
such as categories related to immune response, like complement
activation (GO:0006958 and GO:0006956) and antigen processing
(GO:0019886 and GO:0002504), the lysosome (GO:0005764), and
apoptosis (GO:0006915) and anti-apoptosis (GO:0006916).

The results from our GO analysis not only reinforced
those obtained with DAVID but also allowed us to associate
many other potentially interesting functions and processes with
aging. GO categories overrepresented for overexpressed genes
included phagocytosis (GO:0050766 and GO:0006911), lysozyme
(GO:0003796), detoxification of copper ion (GO:0010273),
cadmium ion binding (GO:0046870), transcription repressor
activity (GO:0016564) and negative regulation of transcription
(GO:0045892), tau protein binding (GO:0048156), insulin-
like growth factor binding (GO:0005520), retinoid binding
(GO:0005501) and glutathione (GO:0004364 and GO:0006749).
Although interpreting these results is not straightforward as many
could represent adaptations to aging, others could play some
mechanistic role in aging and their potential utility to further studies
is discussed below.

We found 84 GO categories enriched for genes underexpressed
with age at a cutoff of P < 0.003 (eight would be expected by
chance). Again, the top categories were largely consistent with
the functional annotation clusters identified through DAVID
with several categories related to mitochondria (GO:0005759,
GO:0005743, GO:0005739, etc.), electron transport chain
(GO:0006120, GO:0005747, GO:0005746, etc.) and NADH
dehydrogenase activity (GO:0008137 and GO:0003954). There
were other categories related to energy metabolism such as
tricarboxylic acid cycle (GO:0006099), glycolysis (GO:0006096),
aerobic respiration (GO:0009060) and even the broader category
metabolic process (GO:0008152). Lastly, some categories were
related to collagen (GO:0005586, GO:0032964 and GO:0005581).

4 DISCUSSION
One major difference between cancer and aging microarray studies
is that while in cancer many genes tend to be differentially expressed
and the challenge is to identify the most important ones, few genes
tend to be differentially expressed with age and the challenge
is to identify significant ones. To address this, we modified the
meta-profiling algorithm previously successfully employed to study

cancer (Rhodes et al., 2002, 2004). Our method is a two-step
process that first evaluates—using a relaxed threshold to emphasize
sensitivity—whether genes are associated with age in individual
datasets and then constructs a meta-profile from the aggregate
datasets using the binomial distribution and setting cutoff thresholds
based on FDR simulations.

By integrating gene expression profiles from several studies we
were able to identify genes that tend to be consistently over- or
underexpressed with age, a meta-signature of aging in mammals.
These genes overlapped with those obtained using Fisher’s inverse
chi-square approach and though some are novel, others have been
validated by direct methods, showing that our method is adequate
for dealing with the idiosyncrasies of aging gene expression profiles,
such as the high heterogeneity of the datasets.

Although gene expression changes may follow or drive the
process of aging, these differentially expressed genes may serve
as a basis for further studies, for example, for deriving reliable
biomarkers of aging. In addition, we were able to associate
biological processes and functions with this meta-signature. One
major pathway that we found upregulated with aging was the
immune/inflammatory response, which is in line with what is
known about the physiology of aging. It is well-established that
inflammatory levels increase with age and inflammatory processes
have been associated with various age-related diseases (Bruunsgaard
et al., 2001). Besides, given the systemic nature of the immune
system, it is reasonable that changes with age in inflammatory and/or
immune response would have an effect on different tissues that could
be detected as common molecular signatures of aging.

Interestingly, we also found evidence of pathways consistently
altered during aging in multiple tissues that involve mechanisms
intrinsic to cells. As aforementioned, however, interpreting aging
microarray experiments is no trivial task (Clarke et al., 2008).
Available expression data cannot dissect out the age-related
responses of different cell types in a complex sample, some cell
types of which may be dying while others may be growing, while
others are simply quiescent. Besides, genes differentially expressed
with age may indicate a transcriptional response to aging rather
than an underlying mechanism or transcriptional program causing
degeneration (de Magalhaes and Toussaint, 2004). For example,
APOD appears to play a role in protection from oxidative stress
and, in fact, overexpression of human APOD in flies extends
lifespan (Muffat et al., 2008). Therefore, we hypothesize that the
upregulation of APOD with age may not be a deleterious mechanism
associated with the physiological decline characteristic of aging but
rather may be a response to the process of aging. Many other genes
overexpressed with aging, like MGST1 which is known to protect
cells from oxidative stress (Siritantikorn et al., 2007), might also
fall into this category.

Our results suggest an overexpression of genes related to
lysosomes, such as cathepsins (CTSS, CTSH and CTSZ), and the
lysosomal membrane. Lysosomes degrade many macromolecules,
including proteins, and biochemical changes in these organelles
have been described with aging (Cuervo and Dice, 2000). One
hypothesis is that the overexpression of genes associated with
lysosomal function, as well as that of genes related to phagocytosis,
is a cellular response to the accumulation of abnormal proteins
with age. In this context, adaptive aging gene expression changes
could help pinpoint changes at other levels. We also found an
overexpression with age of anti-apoptotic genes and cell-cycle
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regulators like granulin (GRN) and annexins. It is possible that some
of these genes are not upregulated due to their role in apoptosis but
rather as a part of other functions. For example, clusterin (CLU) is an
extracellular chaperone that could curtail the effects of misfolding
and aggregation of proteins (Kumita et al., 2007).

Interestingly, we found evidence of overexpression of genes
previously found overexpressed in senescent cells, such as
fibronectin (FN1) (Kumazaki et al., 1991) and p21 (CDKN1A),
though both were slightly above our cutoff threshold (respectively,
Q = 0.11 and Q = 0.21). The upregulation of p21 with age was
previously validated by western blot in muscle (Edwards et al.,
2007) and could be related to an increased proportion of senescent
or growth arrested cells with age, an area of extensive other studies
and interest (de Magalhaes and Faragher, 2008). Increased levels of
CLU have too been associated with cellular senescence and shown to
protect cells from cytotoxic insults (Dumont et al., 2002), and APOD
expression also increases in senescent fibroblasts (Provost et al.,
1991). These results suggest that senescent biomarkers detected in
vitro may be important biomarkers during mammalian aging in vivo.
Considering that inflammatory processes can induce senescence and
that senescent cells can secrete inflammatory cytokines (Kuilman
et al., 2008), these cellular biomarkers may well be related and/or
contribute to systemic factors, emphasizing the need for integrative
models of aging (de Magalhaes and Faragher, 2008).

Genes underexpressed with age may be simpler to interpret
since, not only we found fewer than those overexpressed, but
most fall into energy metabolism categories and are less likely to
represent transcriptional responses to aging. Significantly, we found
an underexpression of mitochondrial genes, including of genes
associated with the electron transport chain, which is in agreement
with known biochemical and physiological observations suggesting
a mitochondrial functional decline with age (Ames et al., 1995).
In particular, a respiratory failure with age has been reported in
high energy-consuming tissues like the brain (Navarro et al., 2002)
and muscles (Trounce et al., 1989), which make up a considerable
number of our datasets. Extracellular matrix and collagen were
also found to be underexpressed with age, mostly due to the
underexpression of different forms of collagen. Though slightly
above our cutoff threshold (Q = 0.18), elastin (ELN) was found to
be underexpressed with age. Age-related changes in collagen and
elastin, such as reduced collagen deposition, is typical of aged tissues
such as the skin (Uitto, 1986). Our results suggest that these may
represent common biochemical age-related changes.

Our functional annotation analyses of top genes using DAVID
and of GO categories using a value counting method reinforced
each other, thus demonstrating the power and accuracy of the
new meta-profiling method employed in the latter. Moreover,
the analyses of GO categories revealed many other biological
processes of potential interest for associating molecular changes
during aging with physiological changes, including processes (to our
knowledge) not previously associated with aging in gene expression
studies. Succinctly, we found evidence of upregulation of blood
coagulation (GO:0007596), which is in agreement with the reported
hypercoagulability of aged individuals (Mari et al., 1995). Since
blood coagulation potential increases from an early age (Andrew
et al., 1992), another possible interpretation of gene expression
changes with age related to developmental mechanisms that continue
throughout adulthood (de Magalhaes and Church, 2005). On another
note, we found evidence of upregulation of transcription repressor

activity (GO:0016564) and negative regulation of transcription
(GO:0045892), suggesting that transcriptional activity decreases
with age. This is in line with previous results indicating a decrease
in RNA and protein synthesis with age. Because total RNA and
protein content do not appear to decrease with age, one hypothesis
is that RNA and protein turnover decrease with age and might be
a factor in the age-related accumulation of abnormal proteins (Van
Remmen et al., 1995). Also, we found an upregulation with age
of detoxification pathways, such as xenobiotic catabolic process
(GO:0042178) and detoxification of copper ion (GO:0010273),
which again may suggest a transcriptional response to the process
of aging.

The breadth of GO categories we identified as significantly
associated with aging opens avenues for future studies by, for
example, a more careful analysis of whether changes in these
processes parallel other age-related changes and pathologies and
even by gene manipulation experiments in model systems to test
whether such processes might drive aging. Though it is impossible
for us to discuss all the significant functional categories that we
found differentially expressed with aging, many may merit further
attention to understand transcriptional changes during aging and our
full results are available as Supplementary Tables S7 and S8 and
on our website (http://genomics.senescence.info/uarrays/signatures.
html).

Recently, the Atlas of Gene Expression in Mouse Aging Project
(AGEMAP) reported gene expression profiles with age for 8932
genes in 16 mouse tissues (Zahn et al., 2007). We chose not to
include this large dataset in our meta-analysis because then our
work would be considerably biased towards the AGEMAP results.
Nonetheless, it is interesting to note that there is a considerable
overlap among the top functional categories identified in AGEMAP
and in our study with genes related to mitochondrial electron
transport chain found underexpressed, and cell cycle and immune
response/inflammation genes found overexpressed in AGEMAP
(Zahn et al., 2007). These similarities are noteworthy as they
emphasize the quality and utility of meta-analyses for aging research
and how one can obtain meaningful global signatures of aging using
a cost-effective computational method.

5 CONCLUSIONS
Although other studies have compared age-related microarray
datasets from different species and in long-lived mutants and
conditions (e.g. in caloric restriction) (McCarroll et al., 2004;
McElwee et al., 2007; Swindell, 2008), our work is the first to
perform a comprehensive meta-profiling of aging in a systematic
way to identify conserved signatures of aging. By integrating
multiple gene expression profiles and employing a novel method that
emphasizes sensitivity, we were able to identify genes and processes
altered by aging at the transcriptional level with unprecedented
power, and our work reveals previously unknown transcriptional
changes during aging, in particular a surprisingly large number of
GO categories. These genes and functions could represent targets
for future studies in helping to define biomarkers of aging, testing
their mechanistic role experimentally and in helping to develop the
emerging discipline of computational systems biology of aging by
increasing our understanding of transcriptional regulation during
aging (Kriete, 2006). Indeed, we suggest that these molecular
signatures of aging not only reflect a mix of degenerative processes
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but also transcriptional responses to aging as healthy cells adapt
to degeneration. As the aging transcriptome continues to be
increasingly better characterized, meta-profiling and integrative
approaches will be increasingly more useful to understand the aging
process.
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