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Abstract Brain aging frequently underlies cognitive
decline and is a major risk factor for neurodegenerative
conditions. The exact molecular mechanisms underly-
ing brain aging, however, remain unknown.Whole tran-
scriptome sequencing provides unparalleled depth and
sensitivity in gene expression profiling. It also allows
non-coding RNA and splice variant detection/compari-
son across phenotypes. Using RNA-seq to sequence the
cerebral cortex transcriptome in 6-, 12- and 28-month-
old rats, age-related changes were studied. Protein-
coding genes related to MHC II presentation and sero-
tonin biosynthesis were differentially expressed (DE) in
aging. Relative to protein-coding genes, more non-
coding genes were DE over the three age-groups.
RNA-seq quantifies not only levels of whole genes but
also of their individual transcripts. Over the three age-
groups, 136 transcripts were DE, 37 of which were so-
called dark matter transcripts that do not map to known

exons. Fourteen of these transcripts were identified as
novel putative long non-coding RNAs. Evidence of
isoform switching and changes in usage were found.
Promoter and coding sequence usage were also altered,
hinting of possible changes to mitochondrial transport
within neurons. Therefore, in addition to changes in the
expression of protein-coding genes, changes in tran-
script expression, isoform usage, and non-coding RNAs
occur with age. This study demonstrates dynamic
changes in RNA with age at various genomic levels,
which may reflect changes in regulation of transcrip-
tional networks and provides non-coding RNA gene
candidates for further studies.
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Introduction

Brain aging frequently underlies cognitive decline and
is a major risk factor for neurodegenerative conditions
such as Alzheimer's and Parkinson's disease. Mental
health is also a major concern of aging adults. The
exact molecular mechanisms underlying brain aging,
however, remain unknown (Lu et al. 2004). Quantita-
tive analysis of aging can provide important insights
into the basic mechanisms and their interactions with
age-related diseases (Kirkwood 2008). Sophisticated
high-throughput approaches enable age-related molec-
ular changes to be quantified with increasing detail
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and may help unravel the mechanisms of aging (de
Magalhães et al. 2010).

Microarrays interrogate thousands of transcripts in a
cost-effective manner and have provided key insights
into a number of processes, including aging. A number
of such studies have been carried out in mammals with
mice, rats, and humans (Lu et al. 2004; de Magalhães et
al. 2009). Age-related changes in key pathways and
processes, such as inflammatory and mitochondrial pro-
cesses, have been identified using the microarray
approach (Zahn et al. 2007; de Magalhães et al. 2009).
In spite of their usefulness, microarrays have important
limitations. One intrinsic problem ofmicroarrays is their
lack of sensitivity to low abundance transcripts. Eluci-
dating the transcriptional features of aging at a more
sensitive level, therefore, remains a critical challenge,
but one with potential to provide mechanistic clues
about aging. Microarrays also have limitations in pro-
filing the emerging RNA complexity such as different
transcripts originating from a single gene (splice
variants) and non-coding transcripts (Marioni et al.
2008; Cloonan et al. 2008). This issue is particularly
important for the brain because of the high complexity
of RNA populations, most of which are low prevalence,
as shown in a detailed comparison of Solexa/Illumina
deep sequencing with conventional microarray ('t Hoen
et al. 2008).

Next-generation sequencing technologies, such as
the SOLiD platform from Applied Biosystems (ABI),
allow large-scale sequencing at a low cost and are now
driving molecular biology research (Mardis 2008; de
Magalhães et al. 2010). By deeply sequencing the
transcriptome and determining the frequency of each
gene in the sequence sample by matching it to the
genome sequence (a.k.a. RNA-Seq), one can obtain a
digital measure of the presence and levels of known
and unknown genes (Wang et al. 2009). Previous
studies have shown that RNA-Seq is highly reproduc-
ible and has a much greater dynamic range than micro-
array (Cloonan et al. 2008; Mortazavi et al. 2008).
RNA-Seq is also considerably more sensitive than
traditional microarrays and can detect splice variants
and non-coding RNAs that would otherwise go unde-
tected (Wang et al. 2008; Tollervey et al. 2011). The
capacity of the SOLiD system to survey transcrip-
tomes in a near-complete fashion has been demonstrat-
ed in mouse embryonic stem cells by showing
detection of ~50 % more genes than microarrays
(Cloonan et al. 2008).

The aim of this study was to use RNA-seq to char-
acterize the aging transcriptome in the rat cerebral cor-
tex. It was envisaged that the comparable gross structure
of the rat to the human brain would make these results
potentially applicable to human brain aging and neuro-
degeneration research. Furthermore, the rat has been
used extensively in neurological research for many
years and is held as a model for mammalian behavioural
and neurodegeneration studies (Jacob 1999). By profil-
ing the transcriptome, it was hoped to gain insight into
the RNA complexity of aging and the regulatory path-
ways involved.

This study demonstrated that in addition to changes
in the expression of protein-coding genes with age,
substantial changes in transcript expression and iso-
form usage occur. Moreover, changes in non-coding
RNA expression are prevalent, suggesting that these
may be of importance in brain aging. These data
showcase how transcriptional changes occur at multi-
ple genomic levels, including in the dark matter of the
genome.

Materials and methods

Animals

A previous experiment supplied the rat brain tissue for
this study (Merry et al. 2008). All animal husbandry
procedures undertaken in this study were carried out in
accordance with the provisions of the United Kingdom
Animals (Scientific Procedures) Act 1986. Male BN
rats (SubstrainBN/SsNOlaHSD) were obtained from
Harlan UK at 21–28 days of age and maintained under
barrier conditions on a 12-h light: 12-h dark cycle
(08:00–20:00). The health status of the rats was moni-
tored at regular intervals through the screening of sen-
tinel animals. All rats were fed ad libitum and sacrificed
at 6, 12, and 28 months of age. None of the animals
exhibited any signs of pathology when sacrificed. Each
age group had six rats from which brain samples were
taken, flash frozen, and stored at −80°C.

Cortex dissection and RNA extraction

To minimise thawing and therefore degradation of
RNA, the cerebral cortex was removed from the whole
brain on a solid CO2 base under a dissecting
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microscope. The cerebral cortex was cut into small
pieces to aid RNA extraction.

RNA was extracted from the cerebral cortex using
Qiagen's TissueLyser II and RNeasy lipid tissue kit.
The quality of the extracted RNA was assessed using
the Agilent 2100 Bioanalyser; all RNA integrity
numbers (RINs) were above 8, indicating that good
quality RNA had been extracted. The samples were
pooled 2 by 2 (leaving 3 samples per age group).
Ribosomal RNA was removed from the pooled sam-
ples using a Eukaryote ribominus kit (Invitrogen) and
confirmed with the Agilent 2100 Bioanalyser. Ribo-
somal removal, rather than Poly-A selection, allows
certain non-coding RNAs without Poly-A tails to be
included in the sequencing.

cDNA library preparation and SOLiD sequencing

The library preparation protocol was carried out
according to the manufacturer's instructions: The
RNA was fragmented and cleaned up using spin col-
umns (Invitrogen) and SOLiD RNA adapters were then
hybridized and ligated to the samples. Reverse tran-
scription was performed to generate cDNA. The cDNA
was purified, size selected, amplified, and then purified
again (as detailed in the SOLiD protocol). The size
distribution of the cDNA library was assessed using
the Bioanalyser. The samples were then subject to
emulsion PCR and sequenced in the Centre for Genomic
Research at the University of Liverpool using the
SOLiD system V4, in the forward and reverse.

Mapping

The RNA-seq results from the SOLiD system were
output as color space FASTA and quality files, these
were converted into FASTQ format using a python
script from Galaxy (http://main.g2.bx.psu.edu/). The
FASTQ files were mapped to the Ensembl release 65
rat reference genome (RGSC 3.4 assembly, May 2010
gene build) using Bowtie (Langmead et al. 2009) and
settings appropriate to SOLiD data. For each sample,
approximately 33.6 million reads were generated
(range, 29.5 to 39.8 million reads). On average 16.7
million reads per sample were mapped to the reference
genome (range, 13.8 to 21.4 million reads, approxi-
mately 50 % of reads generated were mapped). All
data have been submitted to GEO under the accession
GSE34272.

Gene expression analysis

In order to measure gene expression from mapped
data, the BAM files from Bowtie mapping were sorted
using SAMtools (Li et al. 2009). Raw counts per gene
were estimated by the Python script HTSeq count
(http://www-huber.embl.de/users/anders/HTSeq/)
using the Ensembl rat reference genome. The raw
counts per gene were used by EdgeR (Robinson and
Oshlack 2010) to estimate differential expression (DE).

EdgeR (Bioconductor release 2.9) uses a pair-wise
design to measure differential expression. The analysis
is based on a negative binomial model that uses over-
dispersion estimates to account for biological variability
(i.e., sample to sample differences); this is an alternative
to the Poisson estimates of biological variability that are
often inappropriate (Oshlack et al. 2010). Genes with
less than 5 reads were excluded from the analysis and
TMM normalisation of the sequenced libraries was per-
formed to remove effects due to differences in library
size (Robinson and Oshlack 2010). The most stringent
dispersion method (tag-wise) was used to ensure that
differential expression was not due to individual differ-
ences (EdgeR tag-wise options: prior.n07, prop.used0
0.5, gridlength0500). EdgeR generates a fold change
for each gene, p values and the Benjamini-Hochberg
false discovery rate (FDR) are calculated to statistically
test the measured DE. As in previous studies, no effect
size cut-off was set, as aging-related changes often tend
to be subtle (de Magalhães et al. 2009).

Splice variant prediction and expression analysis

In order to predict splice variant usage with age, the
sequence data must be mapped using Tophat (Trapnell
et al. 2009), which uses Bowtie initially (as previously)
but then generates splice variant predictions. The Cuf-
flinks pipeline (Trapnell et al. 2010) (cufflinks, cuffcom-
pare, cuffdiff) was used to assemble the transcripts
(known and novel), assess the usage of splice variants,
promoters, and coding sequences.

Cuffdiff can be used to measure the DE of tran-
scripts. It has been reported, however, that the DE
FPKM (fragments (reads) per kilobase of exon model
per million) methods used in these analyses do not
account for biological variation and can lead to false
positive results (Oshlack et al. 2010). To gain the most
robust results for transcript DE, raw counts were calcu-
lated for each transcript with HTSeq using the
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combined GTF file generated by Cufflinks as the
genomic reference file (lists the splice variants and their
genomic location generated by Tophat). Differential
transcript expression was then tested with EdgeR, as
in gene DE, making the results more robust and com-
parable to the gene expression results.

Cuffdiff also predicts splice variant, promoter, and
coding sequence usage changes (a.k.a. overloading).
Overloading is measured in each group and computed
from the relative abundance of transcripts (measured
by the expected fragments per kilobase of transcript
per million fragments mapped, a.k.a FPKM). The
square root of the Jensen-Shannon divergence com-
puted on the relative abundances of the sequences is
the test statistic from which a p value is generated. The
p value is corrected using the Benjamini-Hochberg
correction for multiple-testing giving a FDR.

qPCR

To generate cDNA for qPCR, 3.5 μg of total RNAwas
reverse transcribed using Superscript III First-strand
synthesis system for RT-PCR (Invitrogen, Paisley,
UK). The Roche universal probe library designer was
used to design primers (https://www.roche-applied-
science.com/servlet/) with sequences obtained from
Ensembl. All primers were designed to cross an exon–
exon boundary. The specificity of the primers was
checked using BLAST (http://www.ncbi.nlm.nih.gov/
BLAST/). A reference gene experiment was conducted
to identify the most stably expressed genes in the cere-
bral cortex with age (data not shown); HPRT1 (supple-
mentary Table 2) and YWHAZ (Rn00755072_m1
Applied Biosystems) were the most stably expressed
with age and were used to normalise the qPCR results.
Supplementary Table 1 shows the primers, amplicons,
and probes used.

The qPCR assays were all performed in triplicate
using a TaqMan™ ABI PRISM 7500 fast (Applied
Biosystems, Foster City, CA, USA) in 96-well plate
format. A 20-ml reaction volume was used per well,
consisting of: 10 μl Taqman 2× PCR master mix
(Universal PCR Mastermix; Applied Biosystems),
0.2 μl each of 20 mM forward and reverse primers,
0.2 μl of 10 mM probe (Exiqon; Roche Diagnostics
Ltd.), 0.2 μl distilled water and 9.2 μl of cDNA or
water for the negative controls. The amplification was
performed as follows: 2 min at 50°C, 10 min at 95°C
followed by 40 cycles of 95°C for 15 s and 60°C for

1 min. The efficiency of the assays were between 93 %
and 107 % and the R2 values were >0.98. The ΔΔcT
method was used to measure expression; “6 months”
was used as the reference samples from which relative
expression was calculated in 12- and 28-month-old
rats. The data were further corrected by the efficiency
of the standard curve for each gene. Log2 fold change
relative to “6 months” was calculated and compared to
the RNA-seq results in order to confirm the expression
results. The standard error was calculated for log2 fold
change as follows: (std error/mean)*log2e. For qPCR
the relative quantification values (calculated from
6 month—sample 1) were used to calculate standard
error. For RNA-seq, raw reads converted into relative
values (calculated from 6 month—sample 1) were
used to calculate standard errors.

Novel non-coding RNA

Novel non-coding RNAs (ncRNA) were identified by
Cufflinks and shown to be DE with age. To identify
the types of ncRNA DE, they were split by size into
the following groups: <200nt and >200nt. <200nt
non-coding RNA was checked using a combination
of miRbase (Kozomara and Griffiths-Jones 2011),
RFAM (Gardner et al. 2011), and RNAFold (Hofacker
2003) to identify miRNA, snoRNA, or other RNA.

Transcripts (>200nt) were thought to be long non-
coding RNAs (lncRNAs). To test this, transcripts were
checked for conserved protein domains using EMBOSS
transeq (http://www.ebi.ac.uk/Tools/emboss/transeq)
and NCBI's CDD-search tool (in all six reading frames)
(Marchler-Bauer et al. 2011). Any transcript with a
conserved protein domain was not defined as an
lncRNA. For each of the novel lncRNA, the top ten
closest protein-coding genes (in terms of genomic loca-
tion) were obtained from Ensembl, in order to test
co-localisation of expression with our genes DE with
age (Ponjavic et al. 2009).

Results

RNAwas obtained from the cerebral cortex of 6-month-,
12-month-, and 28-month-old rats. The SOLiD platform
was used for whole transcriptome sequencing at a high
coverage and reads were mapped to the reference rat
genome (see “Materials and methods”). Reads per gene
represent a quantitative digital measure of expression

766 AGE (2013) 35:763–776

https://www.roche-applied-science.com/servlet/
https://www.roche-applied-science.com/servlet/
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ebi.ac.uk/Tools/emboss/transeq


levels. If a gene failed to pass our selection threshold
across all samples, it was defined as not expressed,
leaving 16,152 protein-coding genes and 2,491 non-
coding genes that were expressed in at least one cerebral
cortex sample. In order to assess gene expression
changes with age, pairwise comparisons of 6- vs. 12-
month-olds, 6- vs. 28-month-olds, and 12- vs. 28-
month-olds were tested for differential expression
(DE) using a method that controls for false discovery
rates (see “Materials and methods”). Changes in gene
expression are stated as the log2-transformed fold
change (log2FC) in expression with increasing age.

Gene expression changes

Figure 1a summarises the DE genes for all age com-
parisons (FDR<0.05). Table 1 lists all protein coding
genes differentially expressed in all pairwise age com-
parisons. When comparing 6- to 12-month-old rats,
the majority of DE genes were non-coding (see
Fig. 1a and supplementary Table 2).

Between 6- and 28-month-old the protein-coding
genes Qdpr, Tph1, Sult1a1, and Hspa1a were DE, with
Qdpr, Tph1, and Sult1a1 showing a continuation of
the trend at 12 vs. 28 months. SNORA62 and
SNORA64 also show DE in two age comparisons
suggesting that these genes are up-regulated at early
age and then down-regulated with increasing age (see
Fig. 1a and supplementary Table 2).

Between 12- and 28-month-olds, the majority of pro-
tein coding genes are down-regulated and non-coding are
up-regulated. Functional enrichment analysis of DE
protein-coding genes from 12- to 28- month-olds using
DAVID (Huang et al. 2009) revealed that “Antigen pro-
cessing and presentation via MHC class II” was signifi-
cantly over-represented in the DE genes (Enrichment
3.87, FDR 6.5×10−7). This is due to a down-regulation
of genes from the MHC class II family, e.g., RT1-Da,
CD74, and other immune related genes; complement
component 4-gene 2, Ifi27, Aif1. As in the 6 to 12 month
comparison, Hrh3 and six snoRNAs are significantly DE.
Their expression profile, however, is inverted, suggesting
a quadratic change in expression over the three ages (see
Fig. 1a, Table 1 and supplementary Table 2).

qPCR confirmation of observed expression

Eight genes, with a range of significance values, were
selected for confirmation by qPCR: CD74, GFAP,

Hsp1a1, RT1-Db1, Sult1a1, Tph1, RT1-Bb, RT1-Da
(primer and probe information is in supplementary
Table 1). Figure 2 shows the log2FC from qPCR and
RNA-seq. Seven genes confirm the expression profile
observed in the RNA-seq experiment (Tph1 on
Fig. 3). One gene, RT1-Bb, confirmed the observed
expression profile when comparing 6- to 12-month-
old animals but not in the 6- to 28-month-old compar-
ison; however, the log2FC is nominal (RNA-seq,
−0.25, qPCR, 0.09).

Tph1 showed the same pattern of expression at 12-
vs. 28-month-olds using qPCR and RNA-seq (qPCR
−2.38 and RNA-seq −4.62, data not shown). It was
noted, however, that the standard error was high,
therefore, in order to confirm the RNA-seq results,
the relative expression of each sample were compared.
Figure 3 shows that qPCR and RNA-seq strongly
agree for each individual sample confirming the ob-
served expression in the RNA-seq experiment, despite
the high standard error when the fold change for each
age group is calculated. Figure 3 also shows that
“6 months sample 2” and “12 months sample 3” are
likely to be skewing the DE result, giving the observed
significant DE between 6-/12- month-olds and 28-
month-old rats. This is despite using tag-wise disper-
sion to minimise the effect of individual differences
(see “Materials and methods”).

Transcript expression changes with age

When quantifying gene expression, multiple tran-
scripts from a given gene are grouped together to
produce an average expression value for the gene.
Large changes in an individual transcript may not be
reflected in the average gene expression value. The
expression of individual transcripts is biologically rel-
evant information, as different transcripts from the
same gene can produce different proteins. It is impor-
tant, therefore, to assess DE for each individual tran-
script; RNA-seq makes this possible. Using the Tophat
software, the reads are assembled into transcripts, rather
than genes, as in the Bowtie program. This allows
quantification at the individual transcript level and pre-
diction of novel transcripts.

Applying the same DE methods as the gene analysis,
Fig. 1b summarises DE expressed transcripts for all age
comparisons. Table 2 and supplementary Table 3 list the
protein-coding and non-coding transcripts DE, respec-
tively. More transcripts were DE compared to genes,
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except in the 12- vs. 28-month comparison (Fig. 1c).
Multiple novel transcripts were identified as DE
(Fig. 1b), for classification and genomic location of
these transcripts, see supplementary Table 4.

Figure 1c shows the overlap of transcripts and
genes identified by both analyses. The 6-vs. 12-
month comparison reflects the high number of non-
coding genes found by the gene expression analysis.
More protein-coding transcripts were DE than protein
coding genes (Fig. 1b,c, Table 2). Using DAVID func-
tional enrichment analysis on the DE protein-coding
transcripts, “Antigen processing and presentation via

MHC class II” (Enrichment 2.7, FDR 6.2×10−4) is
significant. Cdh1, the transcription factor early growth
response protein 3 and Sema3b are all DE in the 6- to
12-month-old comparison; these transcripts are all
involved in development/maturation (Table 2).

Comparing 6- to 28-month-olds, protein-coding tran-
scripts significantly DE are not in a related functional
group (as assessed byDAVID); however, both Tph1 and
Tph2 were DE; these are involved in serotonin biosyn-
thesis and both were down-regulated. Hspa1a, Sult1a1,
and three non-coding RNAs were also DE reflecting the
gene expression results (Fig. 1c).

Fig. 1 Venn diagrams for differentially expressed genes and
transcripts (FDR <0.05). a Differentially expressed genes in 6-
vs. 12-month-old, 6- vs. 28-month-old, and 12- vs. 28-month-
old rats. Arrows indicate the direction of fold change with
increasing age. Both up and down arrows indicate a quadratic
change with age. Genes differentially expressed in more than
one age group comparison are listed. b Differentially expressed
transcripts in 6- vs. 12-month-old, 6- vs. 28-month-old, and 12- vs.

28-month-old rats. Arrows indicate the direction of fold change
with increasing age. Both up and down arrows indicate a
quadratic change with age. Protein coding transcripts differentially
expressed in more than one age group comparison are listed. c The
overlap between differentially expressed transcripts and genes
at all ages, 6- vs. 12-month-old, 6- vs. 28-month-old, and 12-vs.
28-month-old rats
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Between 12- and 28-month-olds, all non-coding tran-
scripts were up-regulated and the majority of protein-
coding transcripts were down-regulated (10 down and 2
up). The protein-coding transcripts showed enrichment
for “Antigen processing and presentation viaMHC class
II” (Enrichment 2.95, FDR 1.3×10−3), as in the gene
expression analysis (Fig. 1c).

The apparent discrepancy between the number of
genes and transcripts identified as DE in most cases is
due to genes with multiple transcripts, i.e., a large change
in an individual transcript that is not reflected in the
average gene expression value. However, some single
transcript genes were DE in the transcript analysis only.
This could be due to the transcript assembly methods

used by Tophat compared to Bowtie. Tophat filters the
more unreliable reads compared to Bowtie, therefore,
these transcripts may be significant in the transcript
expression analysis but not in the gene expression anal-
ysis (our raw reads and p values reflect this). All results
are given in the supplements and on our website (http://
genomics.senescence.info/gene_expression/RNA_seq_
rat_brain.php); raw data is available in GEO (GSE34272)
if others wish to redo the analysis.

Novel RNA transcripts

Across the three pairwise comparisons, 37 novel RNA
transcripts were identified as DE; these were either

Table 1 Protein-coding genes significantly differentially expressed at 6- to 12-, 6- to 28-, and 12- to 28-month-old rats

Ensembl ID Gene symbol Gene name Log2 fold change FDR

6- vs. 12-month-old rats

ENSRNOG00000008080 Hrh3 Histamine H3 receptor −2.02 0.002

6- vs. 28-month-old rats

ENSRNOG00000019342 Sult1a1 Sulfotransferase 1A1 1.74 3.16×10−07

ENSRNOG00000033526 Hspa1a Heat shock 70 kDa protein 1A/1B −2.11 0.021

ENSRNOG00000011672 Tph1 Tryptophan 5-hydroxylase 1 NE 28 0.022

ENSRNOG00000003253 Qdpr Dihydropteridine reductase −0.94 0.033

12- vs. 28-month-old rats

ENSRNOG00000000451 RT1-Ba Rano class II histocompatibility antigen, B alpha −1.82 8.40×10−11

ENSRNOG00000033215 RT1-Db1 Rano class II histocompatibility antigen, D-1 beta −2.14 8.40×10−11

ENSRNOG00000032844 RT1-Da RT1 class II, locus Da −1.86 5.78×10−09

ENSRNOG00000018735 Cd74 H-2 class II histocompatibility antigen gamma −1.69 2.00×10−07

ENSRNOG00000019342 Sult1a1 Sulfotransferase 1A1 1.54 2.91×10−07

ENSRNOG00000002919 Gfap Glial fibrillary acidic protein −1.29 5.89×10−07

ENSRNOG00000032708 RT1-Bb Rano class II histocompatibility antigen, B-1 beta −1.83 2.44×10−05

ENSRNOG00000002911 Alb Serum albumin −2.19 8.80×10−05

ENSRNOG00000005542 Apob Apolipoprotein B-100Apolipoprotein B-48 −2.60 3.06×10−04

ENSRNOG00000011672 Tph1 Tryptophan 5-hydroxylase 1 NE 28 4.36×10−04

ENSRNOG00000030729 E9PSV0_RAT Complement component 4, gene 2 −1.78 0.004

ENSRNOG00000031230 LOC689064 Hemoglobin subunit beta-2 −1.14 0.004

ENSRNOG00000030625 Tf Signal recognition particle receptor subunit beta −0.92 0.005

ENSRNOG00000012294 Heph Hephaestin 1.11 0.007

ENSRNOG00000003253 Qdpr Dihydropteridine reductase −0.85 0.010

ENSRNOG00000000853 Aif1 Allograft inflammatory factor 1 −1.37 0.015

ENSRNOG00000008080 Hrh3 Histamine H3 receptor 1.20 0.031

ENSRNOG00000007227 RGD1306682 Similar to RIKEN cDNA 1810046 J19 (RGD1306682), mRNA −0.93 0.039

ENSRNOG00000000574 F1LTG5_RAT Uncharacterized protein −1.13 0.042

ENSRNOG00000009263 Ifi27 Interferon, alpha-inducible protein 27 −1.11 0.042

NE—not expressed (reads below 5 in all samples), 6 = 6-month-old, 12 = 12-month-old, and 28 = 28-month-old. FDR<0.05 (fold
change represents change with increasing age)
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unknown intergenic transcripts, within introns or had mul-
tiple classifications (supplementary Tables 3 and 4). To
better understand why these unknown transcripts were

DE, a combination of RFAM (Gardner et al. 2011), miR-
base (Kozomara and Griffiths-Jones 2011), RNAFold
(Hofacker 2003), and NCBI's conserved protein domain
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old—sample 1) were used to
calculate standard error
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Fig. 3 Tph1 expression rel-
ative to 6-month sample 1
using qPCR and RNA-seq.
This graph shows the relative
quantification values (calcu-
lated from 6-month-old—
sample 1) for each sample for
qPCR and RNA-seq (raw
reads were used)
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Table 2 Protein-coding transcripts significantly differentially expressed at 6- to 12-, 6- to 28-, and 12- to 28-month-old rats

Ensembl ID Gene symbol Gene name Log2 fold change FDR

6- vs. 12-month-old rats

ENSRNOT00000048332 RT1-Da Rano class II, locus Da 2.60 1.29×10−11

ENSRNOT00000000523 RT1-Ba Rano class II histocompatibility antigen, B alpha 2.39 1.67×10−11

ENSRNOT00000000525 RT1-Bb Rano class II histocompatibility antigen, B-1 beta 3.03 1.37×10−10

ENSRNOT00000049667 Hspa1a Heat shock 70 kDa protein 1A/1B −2.42 3.69×10−05

ENSRNOT00000027346 Cdh1 Cadherin-1E 2.63 2.46×10−04

ENSRNOT00000067419 Klf10 Krueppel-like factor 10 NE 12 0.002

ENSRNOT00000004174 Gc Vitamin D-binding protein NE 6 0.004

ENSRNOT00000058641 Egr3 Early growth response protein 3 −1.39 0.012

ENSRNOT00000051137 F1LXJ8 Uncharacterized protein Ne12 0.013

ENSRNOT00000037445 D3ZVJ6_RAT Uncharacterized protein 1.04 0.013

ENSRNOT00000049259 Satb2 DNA-binding protein SATB2 −1.20 0.014

ENSRNOT00000004703 Nptxr Neuronal pentraxin receptor −0.98 0.015

ENSRNOT00000022226 LOC100364907 Family with sequence similarity 18, member B2 1.75 0.026

ENSRNOT00000035085 Usp40 Ubiquitin carboxyl-terminal hydrolase 40 NE 6 0.028

ENSRNOT00000021181 D4A357_RAT Uncharacterized protein 1.28 0.032

ENSRNOT00000022202 Sema3b Semaphorin-3B NE 6 0.034

ENSRNOT00000050716 Lrrc10b Leucine-rich repeat-containing protein 10B −1.86 0.035

ENSRNOT00000003013 Ptplb Uncharacterized protein −1.60 0.041

ENSRNOT00000054997 D3ZWX7_RAT Uncharacterized protein −1.01 0.042

6- vs. 28-month-old rats

ENSRNOT00000049667 Hspa1a Heat shock 70 kDa protein 1A/1B −3.21 6.82×10−08

ENSRNOT00000026186 Sult1a1 Sulfotransferase 1A1 1.74 1.1×10−06

ENSRNOT00000056109 Tph1 Tryptophan 5-hydroxylase 1 NE 28 5.2×10−06

ENSRNOT00000026121 Hmgcs2 Hydroxymethylglutaryl-CoA synthase, mitochondrial 1.64 0.003

ENSRNOT00000005157 Tph2 Tryptophan 5-hydroxylase 2 NE 28 0.006

ENSRNOT00000067419 Klf10 Krueppel-like factor 10 NE 28 0.015

ENSRNOT00000067442 Arc Activity-regulated cytoskeleton-associated protein −1.01 0.042

ENSRNOT00000056120 RGD1359529 UPF0471 protein C1orf63 homolog 1.00 0.042

12- vs. 28-month-old rats

ENSRNOT00000000523 RT1-Ba Rano class II histocompatibility antigen, B alpha −1.79 1.49×10−06

ENSRNOT00000048332 RT1-Da Rano class II, locus Da −1.87 1.49×10−06

ENSRNOT00000056109 Tph1 Tryptophan 5-hydroxylase 1 NE 28 2.02×10−05

ENSRNOT00000026186 Sult1a1 Sulfotransferase 1A1 1.48 1.74×10−04

ENSRNOT00000003921 Alb Serum albumin −2.62 4.08×10−04

ENSRNOT00000000525 RT1-Bb Rano class II histocompatibility antigen, B-1 beta −1.73 0.002

ENSRNOT00000034401 Gfap Glial fibrillary acidic protein −1.12 0.006

ENSRNOT00000047434 Fcgr3a Fc fragment of IgG, low affinity IIIa, receptor NE 28 0.024

ENSRNOT00000007164 Pmm1 Phosphomannomutase 1 −2.29 0.024

ENSRNOT00000015944 Trh ProthyroliberinThyroliberin NE 28 0.024

ENSRNOT00000050675 Lrp2 Low-density lipoprotein receptor-related protein 2 NE 28 0.040

ENSRNOT00000017312 Heph Hephaestin 1.13 0.040

NE—not expressed (reads below 5 in all samples), 6 = 6-month-old, 12 = 12-month-old, and 28 = 28-month-old. FDR<0.05 (fold
change represents change with increasing age)
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database (Marchler-Bauer et al. 2011) were used to
identify the non-coding RNA type (see “Materials and
methods”). Supplementary Table 4 lists the non-coding
RNA type assigned and genomic position, in brief, a
novel tRNA-sec, 2 splicesomal RNAs, 10 microRNAs,
2 snoRNAs, and 14 novel putative lncRNAs were iden-
tified. Seven transcripts could not be classified by our
methods either because they were smaller than the read
length (possible adapter sequencing), did not show any
conservation or had an unusual secondary structure.

The novel lncRNAs were tested for co-localisation
with DE expressed protein-coding transcripts (Ponjavic
et al. 2009). No evidence of co-localisation was found,
therefore a cis regulatory role is unlikely. This does not,
however, preclude the possibility that these novel
lncRNAs are acting in trans or over long physical
distances.

Differential promoter, coding sequence, and splice
variant usage with age

For each primary transcript, it is possible to estimate the
amount of overloading amongst its isoforms, i.e., differ-
ential usage of splice variants with age. Transcripts
differentially spliced across the age comparisons are
listed in supplementary Table 5. There is some overlap
across differentially spliced transcripts between the age
comparisons, which suggest that there may be isoform
switching with age as in differentiation and develop-
ment (Trapnell et al. 2010; Kalsotra and Cooper 2011).
Figure 4 shows examples of isoform switching.

A gene can produce multiple proteins, therefore any
differences in coding sequence (CDS) output with age
was tested (see supplementary Table 6). A DAVID anal-
ysis revealed no significant functional clusters; however,
multiple genes related to actin, cytoskeleton, and micro-
tubule regulation/binding were present, suggesting dif-
ferences in mitochondrial and other organelle transport
within neurons (Sheng and Cai 2012).

Changes in promoter use, and therefore differences
in the primary transcript produced with age, can be
predicted by grouping splice variants by a transcription
start site ID. Eleven genes show differential promoter
use across the three age comparisons, seven of which
show differential CDS output (see supplementary
Table 6). Glutamate receptor 2 (Gria2) is the only gene
with promoter use changes that shows differential
splicing (Supplementary Tables 5 and 6). A DAVID
analysis shows that themajority of genes with differential

promoter use are “membrane bound vesicles” (using
11 genes from all age comparisons; enrichment 4.04,
FDR 3.7×10−3).

Discussion

Relative to most disease gene expression studies, few
genes differentially expressed with age have been
found for most organs, including the brain, when
using microarrays (de Magalhães et al. 2009; Zahn et
al. 2007). In spite of the greater sensitivity of RNA-
seq, again relatively few genes differentially expressed
with age were found in our study. Reflecting previous
gene expression studies (Njemini et al. 2011; Odera et al.
2007), a heat shock protein, and a low-density lipopro-
tein receptor-related protein-2 were down-regulated with
age (Table 1).

Development/maturation-related transcripts were
identified as DE in the comparisons between 6- and
12-month-old rats. Comparing all three ages shows
that some genes are expressed in a quadratic profile
(inverted U- or U-shaped curve) with increasing age,
e.g., Hrh3, RT1-Da, RT1-Ba, RT1-Bb, and multiple
snoRNAs. A complex, non-linear pattern of matura-
tion/age-related change has been previously observed
in the human and macaque brain (Somel et al. 2010).
Measures of brain aging (cognitive, sensory, motor)
have also shown quadratic-like profiles, peaking at
adulthood and declining with an accelerating trajectory
thereafter (Fjell et al. 2010). There is also a debate of
when that peak occurs and brain aging begins (20–
39 years in humans) (Fjell et al. 2010). The quadratic
profile observed in some genes, together with the tran-
script evidence at 6- vs. 12-month-olds, suggests that
aging-related changes will be observed when comparing
12- to 28-month-olds and to a lesser extent 6- to 28-
month-olds. These observations justify the use of pair-
wise analysis instead of linear regression over all age
groups.

Changes in immune system-related genes involved in
antigen presentation, the complement system, and regu-
lation of cytokines were observed in the 6- to 12-month-
olds and 12- to 28-month-olds comparisons, in a
quadratic-like profile. Twelve-month-old rats show an
increase in the expression of MHC II genes from
6 months; this could indicate the final programming of
the brain's immune system, consistent with the idea that
brain maturation takes longer than other systems (greater
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than 20 years old in humans) (Toga et al. 2006). By
12 months, the rat the thymus has regressed, possibly
resulting in the subsequent decline in immune-related
genes observed between 12- to 28-month-olds. Our data
shows decreases in genes belonging to the MHC II
family (12- to 28-month-olds), suggesting decreased
inflammation in aged cerebral cortex. This contradicts
previous observations that normal aging exhibits immune
activation and increased inflammation (de Magalhães et
al. 2009; Zahn et al. 2007). It has been suggested, how-
ever, that detection ofMHC II antigens in microglial cells
(the brain antigen presenting cells) does not equal evi-
dence of inflammation and that microglia may be neuro-
protective (Graeber and Streit 2010). Further to this, it

has been noted that a progressive decline of immune
function occurs in other tissues with aging with naive T
cells from aged animals showing decreased antigen
responsiveness (Linton et al. 1996; Bruunsgaard et al.
2000). Aging may reduce the ability to respond effec-
tively to immune challenges rather than causing inflam-
mation in the cerebral cortex. Neurodegeneration,
however, is characterised by chronic inflammation (Glass
et al. 2010). An absence of serious inflammatory con-
ditions and low levels of serum heat shock protein have
been associated with successful biological aging
(Njemini et al. 2011). This is demonstrated in the expres-
sion profiles observed in this study that employed
disease-free, health-defined animals.

Fig. 4 Examples of isoform switching (differential splice vari-
ant usage) at different ages. The relative abundance is given as
the FPKM and the age axis is in months. Error bars represent
the standard deviation. a Apbb1—Statistically significant dif-
ferential splice variant usage between 6- vs. 28-month-olds and

12- vs. 28-month-olds. b Bend6—statistically significant differ-
ential splice variant usage between 6- vs. 12-month-olds and 12-
vs. 28-month-olds. c Mapk9—statistically significant differen-
tial splice variant usage between 6- vs. 12-month-olds and 6- vs.
28-month-olds
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Changes in neurotransmitter levels and receptors have
been noted in the aging cerebral cortex (Wong 2002).
Our study identified changes in histamine receptor 3,
serotonin biosynthesis enzymes Tph1, Qdpr (Table 1
and supplementary Table 1) and Tph2 (Table 2 and
supplementary Table 3); however, the variability between
samples for Tph1 does bring the result into question
(Fig. 3). A decline in serotonin function with aging is
consistent with observations of age-related changes in
behaviours, such as sleep, that are linked to serotonergic
function (Meltzer et al. 1998). Similarly, lipid and cho-
lesterol metabolism/transport genes ApoB and Lrp2 were
decreased in the 12- vs. 28-month-olds comparison. Both
function in the recognition, transport, and clearance of
LDL particles. Decreases in these genes suggest a dys-
function in lipid clearance with age, perhaps leading to
protein aggregate formation (Lindner and Demarez
2009). Sult1a1 was one of the few protein-coding genes
to increase in expression with age (6- to 28-, 12- to 28-
month-olds). An increase of Sult1a1 has been observed
inmouse hippocampus and has been associated with age-
related memory deficit (Verbitsky et al. 2004).

RNA-seq allows the widespread splicing changes and
alterations in the levels of various types of RNA genes to
be surveyed, illustrating the usefulness of RNA-seq for
studies of aging. The strong agreement of the qPCR
results with the RNA-seq data demonstrates the reliability
of RNA-seq, giving confidence in the observed results.
Differential splicing patterns were observed with age,
indicating that isoform switching, as observed for cell
differentiation (Trapnell et al. 2010) is occurring during
maturation (6- vs 12-month-olds) and aging (6-/12- vs 28-
month-olds). The primary transcripts showing differential
splice variant use are involved in a range of functions,
such as translation, endocytosis, lysosome biogenesis,
and kinase activity. Figure 4 shows specific examples of
isoform switching in Apbb1 and MAPK9. These are
involved in DNA damage response/induction of apopto-
sis and stress activated immune response, respectively.

Further to the changes observed in splice variant
usage, promoter and CDS usage also show considerable
alterations with age. The differential CDS analysis
showed genes involved in mitochondrial and other
organelle transport within neurons. Activity-regulated
cytoskeleton associated protein (Arc) is also down-
regulated between 6- and 28-month-olds (Table 2).
Changes in mitochondrial transport would have implica-
tions for synapse density, plasticity, and transmission;
furthermore, defects in mitochondrial transport have

been linked to neurodegeneration (Sheng and Cai
2012). Expression of mature microRNA was beyond
the scope of this study, but DE stem loop sequences were
identified as were 14 novel lncRNAs (supplementary
Tables 3 and 4), indicating that there is a role for non-
coding RNAs in cerebral cortex maturation and aging, as
previously described (Qureshi and Mehler 2011).

Although the overall results show limited changes in
protein-coding genes, our study revealed that differential
expression of non-coding genes and individual tran-
scripts were prevalent: 1.3 % of all non-coding genes
expressed were DE compared to 0.13 % of protein-
coding genes, though non-coding genes were more DE
between 6- and 12-month-old rats. This highlights the
importance of expanding transcriptional analyses of
aging to other levels of genomic information beyond
protein-coding genes. Multiple snoRNAs, a type of
non-coding RNA, were found to be DE in this study.
snoRNAs generally guide the modification of ribosomal
RNA, though a previous study has shown that snoRNAs
can regulate alternate splicing of the serotonin receptor
2CmRNA (Kishore and Stamm 2006). High numbers of
snoRNAs were down-regulated between 6- and 12-
month-olds; this comparison also shows the greatest
number of spliced transcripts, suggesting that non-
coding RNAs are involved in regulation of splicing
activity during maturation and aging.

Many non-coding RNAs also show a quadratic pat-
tern over the three age groups and the similarity of the
pattern to the protein coding genes may suggest that
changes occurring with age are regulated, rather than a
result of damage—as is the traditional view of aging.
Closer observation of the patterns of expression in the
pair-wise comparisons shows that between 12- to 28-
month-olds, all non-coding genes were up-regulated and
the majority of protein-coding genes were down-
regulated; a similar pattern is observed in the other
pair-wise comparisons. These data suggest that there is
a subtle regulation of the non-coding RNA network that
may affect protein-coding gene expression, splicing,
promoter selection, and coding sequence output with
age. Unravelling these dynamic changes in transcrip-
tional networks with age that appear to involve multiple
genome levels warrant further investigation.

Clearly transcriptome changes with age extend
beyond protein-coding genes and their regulation
may involve players in the dark matter of the genome.
Our results suggest that changes in non-coding RNA,
splice variant usage, and expression may be part of a
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tightly controlled regulatory non-coding RNA net-
work that changes with age. This may be affecting
the response to immune challenge, decreasing lipid
clearance and altering neurotransmitter levels, provid-
ing a hypothesis and candidates for further studies.
Lastly, our work demonstrates the use of RNA-seq to
obtain a more detailed picture of transcriptional
changes with age which we believe will be necessary
to unravel the mechanisms of brain aging.
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