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Abstract

This paper proposes and evaluates a multi-objective evolutionary algorithm for survival analysis. One aim of survival analysis
is the extraction of models from data that approximate lifetime/failure time distributions. These models can be used to esti-
mate the time that an event takes to happen to an object. To use of multi-objective evolutionary algorithms for survival analysis
has several advantages. They can cope with feature interactions, noisy data, and are capable of optimising several objectives.
This is important, as model extraction is a multi-objective problem. It has at least two objectives, which are the extraction of
accurate and simple models. Accurate models are required to achieve good predictions. Simple models are important to pre-
vent overfitting, improve the transparency of the models, and to save computational resources. Although there is a plethora
of evolutionary approaches to extract models for classification and regression, the presented approach is one of the first ap-
plied to survival analysis. The approach is evaluated on several artificial datasets and one medical dataset. It is shown that the
approach is capable of producing accurate models, even for problems that violate some of the assumptions made by classical
approaches.
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. Introduction

Survival analysis involves the estimation of the
istribution of the time it takes for an event to occur
o an object depending on its features (Kleinbaum,
996). In a medical domain, objects often correspond
o patients and their features, which are also known
s explanatory variables, predictors and covariates,
ould be demographic information and/or physiological
nformation. Events may correspond to the recurrence
f a disease or the death of a patient. Hence, the
istribution of the time to a specific event for an object
s also referred to as lifetime/failure time distribution.
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To estimate the lifetime distribution, or conversely the
probability of survival, has many benefits. It allows clin-
icians to devise a suitable treatment regime and counsel
patients about their prognosis. Hence, it helps patients
to plan their lives and provide future care for their
dependents.

Survival analysis is also widely used in the so-
cial and economic sciences, as well as in engineering.
Here the objects could correspond to customers, ma-
chines/systems and the event of interest may be that the
customer ‘churns’ or the failure of the machine. Sur-
vival analysis is therefore also referred to as reliability
and failure time analysis (Afifi et al., 2003).

The distribution of the time to a specific event depen-
dent upon the features of an object can be represented
by four closely related functions, which are listed as fol-
lows:
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• density function f (t, x) (p.d.f.);
• cumulative distribution function F (t, x) (c.d.f.);
• survival function S(t, x);
• hazard function h(t, x).

These functions are related to each other as shown in
Eqs. (1)–(4) (Allison, 1997; Collet, 1994):

f (t, x) = h(t, x)e−
∫ t

0
h(u) du = dF (t)

dt
= −dS(t)

dt

= lim
dt→0

P(t ≤ T < t + dt, x)

dt
(1)

F (t, x) =
∫ t

0
f (u) du = P(T < t, x) = 1 − S(t, x) (2)

S(t, x) = e−
∫ t

0
h(u) du = 1 − F (t, x) = P(T ≥ t, x) (3)

h(t, x) = − d

dt
log(S(t)) = f (t, x)

S(t, x)

= lim
�t→0

P(t ≤ T < t + dt|T ≥ t, x)

�t
(4)

The survival and hazard function are the most popular
ways of describing the lifetime distribution dependent
upon of the features x of an object. The hazard function is
also often referred to as force of mortality, instantaneous
death rate, or failure rate in a medical domain (Afifi et
al., 2003). It is important to note that, although it may
be helpful to think of the hazard as an instantaneous

knows the status of an object for a particular period of
time, but not for the complete follow up time.

Generally there are three different forms of censoring,
which are listed as follows (Kleinbaum, 1996):

(1) the event does not happen to the object before the
maximum time horizon of the study;

(2) the object is lost to follow-up during the study;
(3) the object is withdrawn from the study because a

different event made it impossible to follow it up
any further.

The first type of censoring indicates that the event did
not happen to the object during the complete follow up
time (e.g. the patient did not die during the study). Note
that the patient can usually enter the study at any time
during the follow up time.

The second type of censoring occurs when one does
not know the status of the object after a particular point in
time. For example, the patient may have failed to attend
an appointment in the clinic (Griffin, 1998).

The third type of censoring occurs because an event
that is not relevant to the study happened to the object and
made it impossible to follow the object up any further
(e.g. the event of interest may be ‘cancer related death’
but the patient died from a car accident).

All three types of censoring are often referred to as
right censoring, which is the most common form of cen-
soring (Lawless, 1982). Another form of censoring is
probability, it is not a probability as it can take on values
greater than one (Allison, 1997).

A popular way of estimating the survival function
is illustrated using a dataset taken from Freireich et al.
(1963). The dataset contains the survival times of 42
leukaemia patients with one dichotomous feature that
indicates whether or not the patient received a particular
treatment. Table 1 contains the data separated according
to the treatment feature.

The time is measured in weeks, and the maximum
time horizon of the study (the follow up time) is 35
weeks. Patients shown without plus signs died during
the follow up time, whereas patients shown with plus
sign were censored. In essence, censoring occurs if one

Table 1
Leukaemia data taken from Freireich et al. (1963)

Group 1 (treatment) Group 2 (placebo)

6, 6, 6, 7, 10, 13, 16, 22, 23, 6+,
9+, 10+, 11+, 17+, 19+, 20+,
25+, 32+, 32+, 34+, 35+

1, 1, 2, 2, 3, 4, 4, 5, 5, 8,
8, 8, 8, 11, 11, 12, 12,
15, 17, 22, 23

The numbers correspond to the survival times in weeks after the patient
entered the study. The plus sign indicates censoring.
known as left censoring. It occurs if the status of an ob-
ject is unknown at the left side of the follow-up period
(e.g. the diagnosis of a disease does not necessarily mean
that one knows when the disease started). If the popula-
tion is both right and left censored one speaks of interval
censoring.

One non-parametric approach for estimating the sur-
vival function is the Kaplan–Meier method. Its compu-
tation is summarised in Eq. (5):

Ŝ(t) =
k∏
j=1

(
nj − dj

nj

)
=

k∏
j=1

(
1 − dj

nj

)

= Ŝ(t − 1)

(
1 − dt

nt

)
(5)

Here, dj corresponds to the number of events (e.g.
deaths) at time j where one or more events occurred and
nj corresponds to the number of objects (e.g. patients)
that are still observed at time j. In the medical domain,
these patients are also called the risk set. Given the struc-
ture of Eq. (5), it is not surprising that the Kaplan–Meier
method is often referred to as the Product-limit estima-
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Table 2
Kaplan–Meier estimates for the leukaemia data of patients with
treatment

tj nj dj qj S(tj)

0 21 0 0 21/21 = 1.00
6 21 3 1 1 × 18/21 = 0.8571
7 17 1 1 0.8571 × 16/17 = 0.8067

10 15 1 2 0.8067 × 14/15 = 0.7529
13 12 1 0 0.7529 × 11/12 = 0.6902
16 11 1 3 0.6902 × 10/11 = 0.6275
22 7 1 0 0.6275 × 6/7 = 0.5378
23 6 1 5 0.5378 × 5/6 = 0.4482

Here, tj is the point in time where at least one event occurs, nj the size
of the risk set, dj the number of events at time tj , and qj is the number
of patients who were censored at time tj .

tor. The survival function values for the leukaemia data
for patients with treatment are summarised in Table 2
and for patients without treatment in Table 3.

It should be noted that Kaplan–Meier estimates could
not be used directly to approximate the lifetime distribu-
tion depending upon the explanatory variables. Instead,
groups containing patients with particular feature values
have to be determined beforehand. Hence, the estimated
survival curves are only reliable if the number of samples
within each group is large and the amount of censoring
is low.

The corresponding survival curves are shown in Fig.
1. Here, the solid line corresponds to the survival curve
for patients who were treated, and the dashed line cor-
responds to the survival curve for patients without treat-
ment.

It can clearly be seen that the survival function es-
timates of patients without treatment is worse than of
treated patients.

Table 3
Kaplan–Meier estimates for the leukaemia data of patients without
treatment

tj nj dj qj S(tj)

0 21 0 0 21/21 = 1.00
1 21 2 0 19/21 = 0.90
2 19 2 0 17/21 = 0.81
3 17 1 0 16/21 = 0.76
4 16 2 0 14/21 = 0.67
5 14 2 0 12/21 = 0.57
8 12 4 0 8/21 = 0.38

H
o
o

Fig. 1. Kaplan–Meier curves for the leukaemia data summarised in
Table 1. The solid line corresponds to the Kaplan–Meier curve for pa-
tients who were treated and the dashed line to those without treatment.

Another method for estimating lifetime distributions
is the proportional hazards model. It is also known as
the Cox model (Cox, 1972). The hazard function of an
individual is estimated using Eq. (6):

hi(t; x) = h0(t)ψ(xi) (6)

Here, h0(t) is the baseline hazard andψ(xi) is the relative
hazard. The baseline hazard is the hazard for individuals
with x = 0. The relative hazard is a factor that makes the
hazard of individual i proportional to the baseline hazard.
Proportionality means that none of the survival curves of
the population cross (Collet, 1994). It also means that the
logarithm of the estimated hazard functions has a con-
stant distance (Marubini and Valsecchi, 1995). In other
words, they should be strictly parallel (Allison, 1997).
Of course, this assumption is not very realistic as one
group of patients might have higher hazard values at the
beginning of the study but lower hazard values later. If
the converse would occur for another group of patient,
the survival curves of both groups would cross.

To model the dependency of the hazard on the fea-
ture values of an object one usually replaces the relative
hazard with a function that depends on, for example, a
linear combination of the features. The exponential func-
tion is used commonly to ensure that the relative hazard
remains positive. This leads to Eq. (7):

hi(t) = h0(t)e(β1x1i+β2x2i+···+βpxpi) = h0(t)e(β̂xi) (7)

The linear combination of the features is also referred

11 8 2 0 6/21 = 0.29
12 6 2 0 4/21 = 0.19
15 4 1 0 3/21 = 0.14
17 3 1 0 2/21 = 0.10
22 2 1 0 1/21 = 0.05
23 1 1 0 0/21 = 0.00

ere, tj is the point in time where at least one event occurs, nj the size
f the risk set, dj the number of events at time tj , and qj is the number
f patients who were censored at time tj .
to as the risk score or prognostic index. Unfortunately,
the coefficients β̂ cannot be estimated using the ordi-
nary maximum likelihood method, because the baseline
hazard h0 is not defined parametrically. To estimate the
coefficients β̂, Cox put forward the partial likelihood
method. This method allows the estimation of the coef-
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ficients β̂without specifying the baseline hazard h0. The
computation of the partial likelihood is summarised in
Eq. (8):

PL =
n∏
i=1

[
e(β′xi)∑n

j=1 Yij e(β′xj)

]δi
(8)

Here, Yij = 1 if tj ≥ ti and Yij = 0 if tj < ti, where t
corresponds to the time of the event or the time of cen-
soring. This is a convenient way to define the risk set in
the denominator at the time of the ith event. The expo-
nent δi indicates whether the object/patient was censored
(δi = 0) or whether the event occurred (δi = 1). The par-
tial likelihood can be maximised using, for example, a
version of the Newton–Raphson algorithm. It has to be
noted that Eq. (8) is only valid for data without ties in
which no two events occur at the same time. The compu-
tation of the exact partial likelihood for tied data can be
a daunting task (see for example Allison, 1997). Meth-
ods for the approximation of the partial likelihood for
tied data are discussed in Allison (1997), Collet (1994)
and Therneau and Grambsch (2000). Unfortunately, the
standard Cox model (Eq. (7)) has several shortcomings,
which are summarised as follows:

• It assumes proportional hazards;
• The baseline hazard has to be determined in order to

obtain values of the hazard/survival function for an
individual;

• The linear combination of the features cannot be used

•

•
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of evolutionary algorithms to regression and classifi-
cation problems, we believe that this is the first study
that uses a MOEA for survival analysis. This serves to
demonstrate the versatility of evolutionary approaches
for model extraction from data.

2. Existing work

Many proposed methods to overcome the shortcom-
ings of the Cox model use the fact that the hazard corre-
sponds to a conditional probability in the discrete time
domain as shown in Eq. (9) (Lawless, 1982; Willett,
1993):

ĥ(tj, x) = Pr(T = tj|T ≥ tj, x) (9)

This is in contrast to the continuous time domain in which
the hazard corresponds to a rate that can have values that
are greater than one. In the discrete case, the survival
probabilities can be computed according to Eq. (10) for
each time interval tj:

Ŝ(tj, x) =
j∏
k=1

(1 − ĥ(tj, x)k) (10)

It follows that the original survival analysis problem can
be cast as a classification problem that requires the esti-
mation of a conditional probability. However, the origi-
nal data need to be pre-processed due to the problem of
censoring. The pre-processing is described with the help
of the artificial data in Table 4. Each object is uniquely
to model interaction effects;
The estimation of the partial likelihood is computa-
tionally very expensive when the data contain ties.
This is very likely as time is often measured in a dis-
crete domain;
It cannot be used (in its standard form) to model data
containing time-dependent features.

These shortcomings can be alleviated using meth-
ds that are, for example, discussed in Marubini and
alsecchi (1995) and Therneau and Grambsch (2000).
owever, it has to be emphasised that the correct use of

hese methods is quite difficult, as they require exten-
ive statistical knowledge. It is therefore not surprising
hat researchers are striving to develop more practical
pproaches, which make fewer assumptions and do not
resume extensive statistical knowledge.

This paper investigates the use of a multi-objective
volutionary algorithm (MOEA) for survival analysis.

similar MOEA has already successfully been applied
o several classification problems (Setzkorn and Paton,
005). Although, there are many successful applications
identified by its ID, the feature Gender and the features
S1–S6 which represent a time-varying feature S for six
time intervals. The column Time shows how long the
individual was observed. The column Censor indicates
whether or not the object was censored.

Table 5 contains the pre-processed data. Each object
was repeated according to the number of time intervals
it was observed. The features S1–S6 are represented
by one time-varying feature S. The feature Event indi-
cates whether the event occurred when the object was
last observed. The event has to be predicted. This can
be achieved by estimating the conditional probability
P(Event|x), where the feature vector x consists of the
three features Gender, S, and Time.

The conditional probability P(Event|x) can be
estimated by models that approximate the likeli-

Table 4
Original survival data

ID Gender S1 S2 S3 S4 S5 S6 Time Censor

01 1 0 1 – – – – 2 0
02 0 1 0 1 – – – 3 1
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Table 5
Pre-processed survival data

ID Gender S Time Event/indicator

01 1 0 1 0
01 1 1 2 0
02 0 1 1 0
02 0 0 2 0
02 0 1 3 1

hood ratio P(x|Event)/P(x|Event) and the prior ratio
P(Event)/P(Event) within the logistic link function. The
derivation of the logistic function is shown in Eqs. (11)–
(14):

P(Event|x) = P(x|Event)P(Event)

P(x)
(11)

P(Event|x)

= P(x|Event)P(Event)

P(x|Event)P(Event) + P(x|Event)P(Event)

(12)

P(Event|x)

= 1

1 + exp
(
− log

[
P(x|Event)
P(x|Event)

]
− log

[
P(Event)
P(Event)

])
(13)

P(Event|x) = 1

1 + e−ξ (14)

If ξ represents a linear combination of the features, the
model corresponds to the logistic regression equation. In
this case the parameters can be optimised using standard
statistic packages (Willett, 1993). In contrast to the stan-
dard Cox model, this simple model can already estimate
the dependency of the hazard on time without estimating
the baseline hazard. This is because the pre-processed
data contain the feature Time. Furthermore, the model
can be used for time-varying features such as S in Table
5

l
a
a

ξ

H
α

o
u
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et al. (1998) and is referred to as Partial Logistic Ar-
tificial Neural Network (PLANN). It can be optimised
using, for example, the back-propagation algorithm and
the cross-entropy error function which is shown in Eq.
(16) (Bishop, 1995):

E = −
N∑
i=1

L∑
j=1

{dij log[h(tj, x)]

+(1 − dij) log[1 − h(tj, x)]} (16)

Here,dij is the indicator value (see Event column in Table
5) for the ith vector for the jth time interval. The hazard
h(tj, x) is the output of the model.

An advantage of PLANNs is that they can directly
produce smooth estimates for the discrete hazard with-
out estimating the baseline hazard. In addition, PLANNs
can cope with non-proportional hazards as they account
for interactions between the features and time implic-
itly. This makes this model very powerful. However, this
apparent advantage can also be a problem as it enables
the model to fit chance fluctuations within the data that
are due to there being only a finite number of samples
(Burges, 1998; Hand, 1997). Finite numbers of samples
sparsely cover the feature space, especially within high
dimensional feature spaces. Hence, the classifier has to
extrapolate the samples in a non-trivial way. This prob-
lem is also known as the ‘curse of dimensionality’ (e.g.
Geman et al., 1992).

The PLANN can become very specific to the data
.
Of course, it is also possible to model non-linear re-

ationships between the features and the hazard. This is
chieved by using a more complicated relationship for ξ
s shown in Eq. (15):

= α+
H∑
h=1

whφh

⎛
⎝αh +

J∑
j=1

wijxij

⎞
⎠ (15)

ere, φ corresponds to the logistic function and α, wh,
h, and wij are parameters that have to be estimated. If
ne substitutes Eq. (15) into Eq. (14) one obtains a partic-
lar type of artificial neural network (ANN) with a single
idden layer. An ANN like this was used in Biganzoli
by fitting chance fluctuations. Hence, the model does
not estimate the general mechanism that produced the
data (Dietterich, 1995). Such models are called over-
fitted. The extreme scenario is that the model exactly
represents/memorises the data. On the other hand, if the
model is too simple it might not achieve a good fit to the
data (it is under-fitted). This problem can be summarised
with help of the following metaphor taken from Burges
(1998):

An over-fitted model is like a botanist with a photo-
graphic memory who, when presented with a new tree,
concludes that it is not a tree because it has a different
number of leaves from anything she has seen before; an
under-fitted model is like the botanist’s lazy brother, who
declares that if it’s green, it’s a tree.

Over-fitted models exhibit a high variance, because
their fit to the data (bias), although good on particular
data, is worse when they are tested on new data sam-
pled from the same population. This phenomenon is
also known as the bias/variance dilemma (Geman et al.,
1992). There are several methods to prevent over-fitting,
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which are reviewed in Setzkorn (2005). Numerous ap-
proaches to avoid over-fitting of ANNs are discussed in
Lisboa et al. (2003) and Biganzoli et al. (1998).

This paper uses a multi-objective evolutionary algo-
rithm (MOEA) to extract radial basis function networks
(RBFNs) from survival data, instead of using PLANNs
and optimisation algorithms such as back-propagation.
It builds upon the work presented in Setzkorn and Pa-
ton (2005). RBFNs are a specific type of ANN: ad-
vantageously, RBFNs have simpler structures relative to
PLANNs. This results in less complex search spaces and
thus shorter extraction times (Bishop, 1995). In addition,
the simpler structure of RBFNs allows an easier interpre-
tation of the parameters of the model. Hence, one major
criticism of ANNs, namely their difficult interpretability
(Clark et al., 2003), might be overcome.

MOEAs are powerful optimisation algorithms, which
can optimise several incommensurable objectives with-
out making any assumptions about their importance.
This is important in the context of model extraction,
which is a multi-objective problem. It has at least two
objectives, which are the extraction of accurate and sim-
ple models from data. Accurate models are required to
achieve exact predictions whereas simple models are re-
quired to understand the data generation process. In fact,
it is often argued that only simple models are adopted in
practice due to their transparency (Elder and Pregibon,
1996; Humphrey et al., 1998; Pazzani et al., 1997). The
extraction of simple models is also important because
complex models tend to be over-fitted, require longer

other trade-off solution/model from the solution set (e.g.
(s)he might prefer more accurate models over simpler
models). This saves valuable (computational) resources,
because the search does not have to be repeated. Gener-
ated trade-off solutions can also be combined. Combined
model may offer better generalization in some cases, and
worse in others (Kuncheva, 2004).

3. Using a multi-objective evolutionary
algorithm for survival analysis

This section describes the implemented MOEA. It
begins with a brief summary of the algorithm and then
describes its particular components. Fig. 2 depicts the
structure of the algorithm. It is similar to other evolu-
tionary algorithms (e.g. Michalewicz and Fogel, 2005).

In broad terms, the algorithm proceeds as follows.
Candidate solutions/individuals (i.e. a population of
RBFNs) are initialized randomly. After this, the vari-
ation operators are applied to some of the RBFNs to re-
combine and/or change them. The fitness evaluation then
determines the performance (fitness/objective values) of
each RBFN.

The selection process generates a new population of
individuals by sampling from the current population and
the archive. The archive stores the best (elite) individu-
als found by the MOEA. This prevents the loss of good
candidate solutions due to the randomness of the selec-
tion process (Zitzler et al., 2002). The use of an archive
is a form of elitism, which can help to create better in-

the im
execution times, and more storage space.
There are additional reasons for the preference to-

wards MOEAs for model extraction. For example,
MOEAs are less prone to feature interactions and can
cope better with noisy data. This is in contrast to other
greedy search algorithms (Dhar et al., 2000; Freitas,
2002; Shi et al., 1999). In addition, MOEAs can extract
several models (trade-off solutions for the given objec-
tives) from a dataset in a single run. This is because
MOEAs deploy a number of candidate solutions/models
to search a given search space (Michalewicz and Fogel,
2005). This has the advantage that, if the preferences
of the decision maker change, (s)he could choose an-

Fig. 2. Structure of
dividuals (Deb, 2001). In fact, the implemented MOEA
uses an archiving strategy that ensures diversity within
the population and prevents premature convergence of
the algorithm (Laumanns et al., 2002a). The selection
process is followed by the termination test, which either
terminates the MOEA or transmits the current popula-
tion (generation) to the process that applies the variation
operators.

Better individuals (RBFNs) will be produced over
time, as the above sequence is repeated. If the MOEA
terminates (e.g. after a maximum number of generations)
the RBFNs within the current population and the archive
are evaluated on a validation dataset, which was not used

plemented MOEA.
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during the induction process. The final output of the sys-
tem is the updated set of individuals within the archive.
Here follows a more detailed description of the compo-
nents of the MOEA.

3.1. The representation scheme

Radial basis function networks can be used to estimate
conditional probabilities (Biganzoli et al., 2001; Bishop,
1995), such as the discrete hazard defined in Eq. (9), by
replacing ξ in Eq. (14) with

ξk =
M∑
j=1

wkjzj(x) + bk (17)

Here,wkj are coefficients (weights), zkj the output of the
jth basis functions, and b is a bias. The index k denotes
the class to be predicted. This index is only necessary if
one intends to predict more than two classes. The present
study used a Gaussian basis function, which is defined
in Eq. (18):

f (x; σ,µ) = e−(x−µ)2/2σ2
(18)

Here, σ is the variance and µ the mean. Note that other
basis functions (kernels) could also be used.

The implemented representation scheme consists of
basis functions (see Eq. (17)), which are represented as
trees (see Fig. 3). This part of the representation scheme
was inspired by the representation scheme of genetic
programming (GP) (Cramer, 1985; Koza, 1998). How-

the RBFN. This also means that the MOEA can perform
an implicit feature selection, because it is not forced to
use all features within the trees.

Each tree also has k associated weight vectors, which
contain values between zero and one (see Eq. (17)).
Hence, this representation scheme could also be used to
model competing risks (e.g. Biganzoli et al., 2001). The
kth bias is a real number. The structure of the tree as well
as the parameters (basis function parameters, weights,
number of basis functions, etc.) can be changed by sev-
eral variation operators that are described in Section 3.4.

3.2. The fitness evaluation

The implemented MOEA minimises the following
objectives using the fitness assignment of the sec-
ond Strength Pareto Evolutionary Algorithm (SPEA2)
(Zitzler et al., 2002):

• Objective 1: measures the fit of the RBFN to the data
using Eq. (16);

• Objective 2: measures the number of basis functions
within the RBFN;

• Objective 3: measures the number of different features
used within the RBFN.

To assign a scalar fitness to an individual with sev-
eral objective values, the fitness evaluation makes use
of the Pareto dominance relation, which is explained in

Definition 1.

Definition 1 (Pareto dominance relation). A solution
x1 is said to dominate a solution x2, also expressed as
x1 � x2, if x1 is at least as good as x2 in all objectives and
better with respect to at least one objective. This can be
expressed more formally as: ∀i ∈ {1, . . . , n} : fi(x1) ≤
fi(x2) ∧ ∃j ∈ {1, . . . , n} : fj(x1) < fj(x2).

As mentioned earlier, the use of the Pareto dominance
relation during the fitness selection enables the algorithm
to optimise several incommensurable objectives without
making any assumptions about their importance. The fit-
ness F (i) of an individual i is computed according to Eq.
(19) (Zitzler et al., 2002):

F (i) = R(i) +D(i) (19)

The value of R(i) captures dominance information (see
Eqs. (20) and (21)) andD(i) captures density information
(see Eq. (22)) of the ith individual:

R(i) =
∑

j∈Pt+P̄t ,j�i
S(j) (20)
ever, in contrast to GP, the basis functions are not com-
bined into one tree: rather they are kept apart in order
to simplify the application of problem-specific variation
operators and to maintain transparency.

Non-terminal nodes (circles in Fig. 3) correspond to
the product operator. The terminal nodes (squares in Fig.
3) correspond to Gaussian basis functions (see Eq. (18)).
A tree can contain at most one basis function for each
feature. Note that neither the number of basis functions
nor the number of features used within a tree is pre-
set. They can be between a minimum and maximum
value enabling the MOEA to adapt the complexity of

Fig. 3. Basis function tree.
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S(i) = |{j|j ∈ Pt + P̄t ∧ i � j}| (21)

Here, Pt and P̄t refer to individuals from the population
and the archive, respectively. The expression i � j de-
notes the dominance relation between individuals i and
j. Eq. (20) determines the strength of the dominators of
the ith individual. A high value means that the ith indi-
vidual is dominated by many individuals, which in turn
dominate other individuals. If the value of Ri is zero the
individual i is non-dominated. The density information
is computed according to Eq. (21) and is an adaptation
of the kth nearest neighbour method (Silverman, 1999):

D(i) = 1

σki + 2
(22)

Here, σki is the Euclidean distance between the objective
values of the kth and the ith individual. The value for
k is equal to the square root of the sample size: k =√
N + N̄ (Silverman, 1999). The values N and N̄ denote

the number of individuals in the population and archive,
respectively.

3.3. The selection

The selection process produces a new population of
individuals from the current population and the archive
using binary tournament selection (Zitzler et al., 2002).
Two individuals are sampled randomly without replace-
ment from either the population or the archive. Whether

the evolutionary search (Spears, 1995; Janikow, 1993;
Grefenstette, 1991; Wolpert and Macready, 1997). It was
therefore decided to implement several problem-specific
VOs. These VOs work on different levels of the individ-
ual (e.g. basis function level and weight level) to achieve
an appropriate exploitation and exploration of the search
space.

Two types of VOs were implemented. The first type
(VO1) can change one individual and is also known as the
mutation operator. The second type (VO2) can change
two individuals and is also known as the crossover oper-
ator. There are several operators of each type. Each VO
is applied to an individual with a low probability, which
is determined by the parameters ‘crossover probability’
and ‘mutation probability’. A particular VO is chosen
with a uniform probability.

To illustrate the working principle of the VOs, the
MOEA was applied to an artificial dataset that consisted
of 1000 samples. Each sample had two features (X1 and
X2), which were sampled with a uniform probability
from the interval [−10.0, . . . , 10.0].

3.4.1. VO11 operator
The VO11 operator reinitialises one terminal node of

one tree of the individual. The tree and the node are cho-
sen with a uniform probability. The working principle of
the operator is illustrated in Fig. 4.

Fig. 4 shows two individuals with two basis functions
as contour diagrams within the feature space defined by
an individual is selected from the archive or the popula-
tion is determined by the ‘elitism degree’ (ED). The value
of ED is computed according to Eq. (23) (Laumanns et
al., 2000):

ED =
{

1 − |Pt |
|P̄t∪Pt | if |P̄t| ≥ 2

0 otherwise
(23)

Here, |Pt| is the size of the current population and |P̄t ∪
Pt| is the size of the archive and the current population.
Hence, the larger the archive, the more likely it is that an
individual is sampled from the archive. The individual
with the lowest fitness value (see Eq. (19)) is declared
as the winner of the ‘binary tournament’ and inserted
into the new population. If a tie occurs, an individual
is chosen with a uniform probability. This procedure is
repeated until the new population has reached the size of
the old population.

3.4. The variation operators

It is well known that the deployment of several
problem-specific variation operators (VOs) can improve
X0 andX1. The left part depicts the individual before the
VO11 operator is applied. The right part of Fig. 4 depicts
the individual after the application of the operator. It can
clearly be seen that the Gaussian kernel for feature X0
of the dotted basis function was changed.

3.4.2. VO12 operator
The VO12 operator reinitialises an individual. This

operator is expected to be very disruptive but may help
to prevent the premature convergence of the algorithm by
introducing new ‘genetic material’ into the population.

3.4.3. VO13 operator
Similarly to the VO11 operator, the VO13 operator

reinitialises one node of one tree in the individual. The
tree and the node are chosen with a uniform probabil-
ity. A new node or a sub-tree (depending on the afore-
mentioned restrictions) replaces the node.

3.4.4. VO14 operator
The VO14 operator removes one basis function

tree from the individual if the resulting individual
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Fig. 4. The left part shows an individual with two basis functions before the VO11 operator is applied. The right part depicts the individual after the
VO11 operator was applied.

would not contain fewer basis functions than al-
lowed. The basis function is chosen with a uniform
probability.

3.4.5. VO15 operator
The VO15 operator adds one new basis function tree

to the individual if the resulting RBFN does not exceed
the maximum number of trees.

3.4.6. VO16 operator
The VO16 operator changes one Gaussian kernel of

one basis function slightly. The basis function and the
kernel are chosen with a uniform probability. A Gaussian
kernel can be changed in three different ways. It can be
shrunk, extended, or moved. How the kernel is changed
is decided upon with a uniform probability.

The ‘slight’ change of a parameter is achieved by
applying Eq. (24). The parameter α could, for example,
correspond to the centre of the Gaussian kernel µ in Eq.
(18):

ά =
{
α+ δ(t, αUB − α)

α− δ(t, α− αLB)
(24)

Here, ά denotes the changed parameter and t the current
generation. The values αLB and αUB denote the lower
and upper bound of the parameter α. The value of δ is
computed according to Eq. (25) (Michalewicz, 1996):

δ(t, y) = y(1 − r(1−(t/T ))b ) (25)

H
f
n
c
t

The value of b was set to a value of two for all runs of the
MOEA.

3.4.7. VO17 operator
The VO17 operator makes a copy of one basis func-

tion tree of the individual and adds it to the individual.
This is only done if the resulting individual would not
contain more trees than allowed. All terminal nodes of
both trees (the cloned and the original tree) are slightly
changed, as described for the VO16 operator.

3.4.8. VO18 operator
The VO18 operator extends the Gaussian kernel of

one terminal node by changing σ slightly (see VO16 and
Eq. (18)). The tree and the terminal node are chosen with
a uniform probability. This operator could increase the
sensitivity of the RBFN.

3.4.9. VO19 operator
The VO19 operator extends the Gaussian kernel of

one terminal node by changing σ slightly (see VO16 and
Eq. (18)). The tree and the terminal node are chosen with
a uniform probability. This operator could increase the
specificity of the RBFN.

3.4.10. VO110 operator
The VO110 operator moves the Gaussian kernel of one

terminal node by changingµ slightly (see VO16 and Eq.
(18)). The tree and the terminal node are chosen with a
uniform probability.
ere, r is a random number that is sampled with uni-
orm probability from the interval [0, . . . , 1] and T de-
otes the maximum number of generations. Hence the
hange ratio of parameter α is decreased as the evolu-
ionary search progresses, depending on the value of b.
3.4.11. VO111 operator
The VO111 operator negates one bit of the bit string

that corresponds to a weight w in Eq. (17). The bit is
chosen with a uniform probability.
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Fig. 5. Crossover between two basis function trees. The upper part
shows the trees before the VO21 operator was applied. The lower part
shows the trees after the application of the VO21.

3.4.12. VO112 operator
The VO112 swaps the weights of two randomly cho-

sen basis functions.

3.4.13. VO113 operator
The VO113 slightly changes the bias value by

adding/subtracting a small real number. The real number
is sampled from the interval [−1, . . . , 1] with a uniform
probability.

3.4.14. VO21 operator
The VO21 operator performs an exchange (crossover)

of randomly chosen parts between two basis func-
tion trees from two individuals. The two individu-
als and trees are chosen with a uniform probabil-
ity. Fig. 5 illustrates the working principle of this
operator.

The upper part of Fig. 5 depicts the trees before
the application of this operator. The lower part of Fig.
5 depicts the resulting trees. Fig. 5 also shows the
crossover points which mark the parts of each tree that
are exchanged. The crossover points are chosen such
that the resulting trees do not contain more nodes than
allowed, and such that no feature is used more than
once within the resulting trees. Fig. 6 illustrates the
working principle of the VO21 operator in the feature
space.

The left part of Fig. 6 shows two individuals before
the VO21 operator was applied. The right part of Fig.

3.4.15. VO22 operator
The VO22 operator removes a complete basis func-

tion tree from each individual, which is chosen with a
uniform probability. The tree is then added to the other
individual.

3.4.16. VO23 operator
The VO23 operator merges two individuals. If the

resulting RBFN contains more basis functions than al-
lowed, trees are removed randomly until this constraint
is not violated anymore. The resulting RBFN replaces
each of the original two individuals.

3.4.17. VO24 operator
The VO24 operator performs crossover between two

bit strings (e.g. Michalewicz, 1996). A bit string is cho-
sen with a uniform probability in each individual.

3.5. Archive

As mentioned earlier, an archive contains the best
(elite) individuals that the MOEA has found so far. The
archive ensures that the best individuals are preserved, as
they could otherwise get lost due to the randomness of the
selection process (Zitzler et al., 2002). For practical rea-
sons, an archive can only store a limited number of indi-
viduals (large numbers of individuals increase the mem-
ory demands and the execution time of the algorithm).
However, this can result in the loss of non-dominated
6 shows the two individuals after the application of the
VO21 operator. It can clearly be seen that the VO21 op-
erator changed the basis function trees that are depicted
as dotted lines (the Gaussian kernels of feature X0 were
exchanged).
solutions, which is a problem known as partial deteri-
oration (Laumanns et al., 2002b) and is illustrated in
Fig. 7.

The leftmost subplot depicts the archive of a MOEA
after the first generation (g = 1). During the next gen-
eration, the candidate solution denoted as A (depicted
in the objective vector space as diamond) is replaced by
another incomparable candidate solution.1 The replace-
ment of individuals in the archive can happen because
the size of the archive is limited. The new member of the
archive is depicted as a diamond and denoted as B in the
second subplot from the left (g = 2). The new member
of the archive is then replaced by another incomparable
candidate solution during the next generation, which is
again depicted as a diamond and denoted as C in the
third subplot from the left (g = 3). All candidate solu-
tions that were produced in the last three generations are
shown in the right subplot. It can clearly be seen that

1 An individual is incomparable if it is not dominated by any other
individual in the population, or conversely if it belongs to the set of
non-dominated candidate solutions (see also Definition 1).
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Fig. 6. The left part shows two RBFNs before the application of the VO21 operator. The right part shows the two RBFNs after the VO21 operator
was applied. The VO21 operator changed the basis function trees depicted as dotted lines (the Gaussian kernels of feature X0 were exchanged).

Fig. 7. Development of a size limited archive (both objectives have to be minimised).

the approximation of the Pareto set has deteriorated, as
candidate solution C is clearly dominated by all other
candidate solutions. It could only become a member of
the archive due to the removal of candidate solution A af-
ter the second generation. Laumanns et al. (2002b) have
proposed an archiving strategy that uses an archive of
bounded size, but does not exhibit the problem of partial
deterioration. For the present purposes, the implemented
MOEA deploys this archiving strategy.

4. Results and discussions

The implemented MOEA is evaluated on several
benchmark datasets. In addition, it is evaluated on a

‘real-world’ medical dataset. The benchmark datasets
comprise the leukaemia dataset (Freireich et al., 1963)
(see also Section 1) and four artificial datasets.

The datasets were randomly split into a training
dataset and test dataset for each experiment. The training
datasets contained two-thirds and the test dataset one-
third of the original dataset. Before the MOEA was run
a holdout dataset was randomly selected from the train-
ing dataset. It contained one-third of the training dataset.
The MOEA was then run and the generated individuals
in the archive and the population were re-evaluated on
the holdout dataset. As each run of the MOEA produces
several trade-off solutions, the RBFN with the best fit to
the holdout dataset (see Eq. (16)) was chosen as the final
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Table 6
Parameter values used for each MOEA run

Parameter Parameter value

Population size 100
Number of generations 500
Crossover probability 0.7
Mutation probability 0.3

output of the algorithm. It should be noted, that if there
were several RBFNs with the same fit to the validation
data, the RBFN with the smallest number of basis func-
tions and features was chosen. To choose the model with
the best fit to the holdout dataset rather than the training
dataset makes it more likely that the model generalises
on unseen data. This method is also referred to as hold-
out method (Bishop, 1995). During the experiments the
parameters summarised in Table 6 were used.

4.1. Evaluation on the leukaemia data

This section applies the implemented MOEA to the
leukaemia data (see Section 1). Fig. 8 shows the Kaplan–
Meier estimates and the model estimates.

It can clearly be seen that the estimates agree with the
Kaplan–Meier estimates.

4.2. Evaluation on the artificial dataset 1

This artificial dataset was inspired by the well-known
XOR classification problem. It has two binary features:
X0 and X1 and a third binary feature that has to be pre-

Table 7
Possible combinations of the feature values (two left columns)

x0 x1 µ σ Samples

0 0 1.1 0.15 50
0 1 1.8 1.1 50
1 0 1.8 1.1 50
1 1 1.1 0.15 50

Parameters of the inverse lognormal distribution (two right columns).

dicted. Two new features replaced the third feature in
order to simulate a survival analysis problem. The first
feature (I) indicated whether the event occurred to the
sample and the second feature (Time) determined the ob-
servation time of the sample. The maximum observation
time was set to a value of ten. The actual data consisted
of 50 samples for each feature value combination (see
Table 7).

Two values were generated to obtain the observation
time for a sample. The first value (α) was sampled from
the interval [0, . . . , 10] with a uniform probability. The
second value (β) was sampled from a inverse lognor-
mal distribution (Evans et al., 1993). This distribution is
characterised by the parameters µ and σ. The parameter
values for a particular sample (feature value combina-
tion) are summarised in Table 7. To simulate censoring
the actual observation time and the indicator value were
determined according to Eq. (26):

(I,Time) =
∣∣∣∣∣(1, β) forα ≥ β

(0, α) otherwise
(26)

Fig. 9 depicts the probability density functions (left) and
the survival function (right) for the parameters in Table
7.

Here, the dashed lines correspond to the parameters
µ = 1.1 and σ = 0.15 and the solid lines to the parame-
ters µ = 1.8 and σ = 1.1. It can clearly be seen that this
problem does not exhibit proportional hazards as the sur-
Fig. 8. Kaplan–Meier estimates for the leukaemia dataset together with
the yearly estimations of the generated model. The solid line corre-
sponds to the Kaplan–Meier estimates for patients who were treated
and the dashed line to those without treatment. The stars correspond
to the estimations of the model for treated patients whereas the crosses
correspond to the estimations for untreated patients.
vival curves cross. Hence, the standard Cox model would
be unsuitable (see also Section 1). Fig. 10 shows the re-
sponses of the evolved RBFN for each possible feature
value combination together with the ‘true’ survival func-
tions.

The ‘true’ survival function for the specific feature
value combination is shown as dotted line. Fig. 10 shows
that the evolved model predicts the survival functions
correctly. The r2 measure was used to measure the corre-
lation between the expected values and the predicted val-
ues. The evolved model achieved an r2 value of 0.9154.
This shows that the proposed approach can be applied to
survival data with non-proportional hazard distributions.
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Fig. 9. Probability density functions (left) and the survival functions (right) for the parametersµ = 1.1, σ = 0.15 (dashed line) andµ = 1.8, σ = 1.1
(solid line).

Fig. 10. Response values of the evolved model for each feature value combination. The correct survival function is shown as dotted line.
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Fig. 11. Probability density functions (left) and the survival functions (right) for the parameters µ = 1.1, σ = 0.15 (solid line); µ = 1.8, σ = 1.1
(dashed line); µ = 3.5, σ = 1.7 (dotted line).

4.3. Evaluation on the artificial dataset 2

This artificial dataset was generated in the same
manner as the first artificial dataset. However, it con-
tains an additional ‘noise’ variable, which was gen-
erated by sampling from the interval [0, . . . , 1] with
a uniform probability. The evolved model achieved
an r2 measure of 0.9219 and excluded the ‘noise’
variable. This shows that the implemented MOEA
can be applied to non-proportional and noisy hazard
distributions.

4.4. Evaluation on the artificial dataset 3

This artificial dataset was generated in a similar man-
ner as the first artificial dataset. However, it contains
three features that can have the value 1 or 0. Hence,
there are eight possible combinations as shown in Table
8, which also contains the corresponding parameter val-
ues for the inverse lognormal distributions.

Table 8
Possible combinations of the feature values (two left columns)

x0 x1 x2 µ σ

0 0 0 1.10 0.15
0 0 1 3.50 1.70
0 1 0 1.80 1.10
0 1 1 3.50 1.70
1 0 0 1.80 1.70
1 0 1 3.50 1.70

The probability density functions and survival func-
tions for the three lognormal distributions are shown in
Fig. 11.

Fifty samples were produced for each feature value
combination. Fig. 12 depicts the estimations of the
evolved model for each feature value combination as
circles together with the ‘true’ survival functions, which
are depicted as dotted line.

It can clearly be seen that the evolved model estimates
these artificial survival functions. The evolved model
achieves an r2 value of 0.9491.

4.5. Evaluation on the artificial dataset 4

This artificial dataset was originally proposed in
Eleuteri et al. (2003). The artificial lifetime distribu-
tion is a mixture of a Weibull and gamma distribu-
tion. The parameters of these distributions depend on
the values of the two features x1 and x2 as shown in
Eq. (27):

f (t|x) = x2W(x2
1, sin(x1)3 + 2) + (1 − x2)G((x1+1)2,

× exp(cos(x1) + 2)) (27)

The values of x1 and x2 were first sampled from a
bivariate Gaussian with the mean vector (0, 0) and
the covariance [1.0,−0.5; 1.0, 0.5]. The variable x2
was then transformed to a binary indicator (values
greater than or equal to zero were set to one, val-
ues less than zero were set to zero). Five hundred

training and test data samples were produced. Each
sample was censored with a probability of 0.27 (see
Eleuteri et al., 2003).
1 1 0 1.10 0.15
1 1 1 3.50 1.70

Parameters for the inverse lognormal distribution (two right columns).
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Fig. 12. Estimations of the evolved model for each feature value combination (circles). The dotted lines depict the ‘true’ survival functions for the
particular feature value combination.

Fig. 13. Kaplan–Meier estimates (KM Q1–KM Q5) and average sur-
vival function estimates of the evolved model (M Q1–M Q5) for all
five groups.

The estimates of the evolved RBFN at t = 8 were
then ordered and divided into five groups of equal size.2

The Kaplan–Meier estimates and the average survival
function estimates of the evolved RBFN for each group
are shown in Fig. 13.

The model captures the distribution of the data if both
estimates agree (Eleuteri et al., 2003). This can be ob-
served in Fig. 13.

2 The median survival time is 8.4 (Eleuteri et al., 2003).

4.6. Evaluation on a medical problem

This section evaluates the implemented MOEA on
a ‘real-world’ medical dataset of uveal melanoma pa-
tients (Damato, 2000). Uveal melanomas, which have
an occurrence rate of six per million per year (Damato,
2005), arise from melanocytes in the uvea. The uvea
consists of the choroid, ciliary body and iris. Patients
with uveal melanoma usually have symptoms, such as
blurred vision, flashing lights and visual field loss. With-
out treatment, many eyes become blind, painful and
cosmetically unsightly. Approximately 50% of all pa-
tients with uveal melanoma ultimately die of this dis-
ease, nearly always as a result of haematogenous spread
of tumour to the liver (i.e. through the blood circula-
tion). Estimating the probability of survival for uveal
melanoma patients has many benefits. It allows clini-
cians to review their practice and advice their patients on
the best course of treatment. Furthermore, it allows pa-
tients to plan their lives and provide future care for their
dependents.

The samples consisted of six features, which are sum-
marised in Table 9. The training data consisted of 1820
samples and the test data of 978 samples. The former
contained 549 events whereas the latter contained 286
events.

The MOEA was applied to the training data and
the evolved model was evaluated on the test data us-
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Fig. 14. Kaplan–Meier estimates (dashed, dotted and solid lines) together with the average group estimates of the model (stars, circles, and ses) for
each group created at time 2, 4, 6, 8 and 10.

ing the rank-based discrimination index (Ctd) proposed
by Antolini et al. (2005). This measure was inspired by
the C-index put forward by Harrell et al. (1996). The
C-index is equivalent of the AUC measure (Hanley and
McNeil, 1982) for survival data. The closer theCtd index
is to one the better the model discriminates the data. The
evolved model achieved a value of 0.696 with a standard
deviation of 0.0142.

Table 9
Features of the uveal melanoma dataset

Name Type Description

Antora Dichotomous Indicates whether the tumour is at the
front or the back of the eye (anterior
choroid or posterior choroid)

Age Continuous Age of the patient when (s)he entered
the study

Ludb Continuous Tumour dimension as measured by
ultrasonography

Gender Dichotomous n/a
Time Continuous Observation time of the patient
Indicator Dichotomous Indicates whether or not the patient

was censored

The survival probability values for the test data were
arranged in ascending order for time 2, 4, 6, 8 and 10.
Three groups were created for these time values with
an equal number of samples. The Kaplan–Meier esti-
mates were computed for each group. Fig. 14 shows
the Kaplan–Meier estimates (dashed, dotted and solid
lines) together with the average group estimates of
the model (stars, circles, and ses) for each group and
time.

It can be observed that the model produces esti-
mates that approximate the Kaplan–Meier estimates,
apart from the group with the worst survival curve.
Here,the model produces more pessimistic estimates as
time progresses. It has to be noted, however, that censor-
ing also increases as time progresses making the Kaplan–
Meier estimates less accurate.

The distribution of the grouped samples was also anal-
ysed using the approach described in Setzkorn and Paton
(2005) (the samples were classified according to their
group membership). Interestingly, it was observed that
the produced model classifies samples according to the
existing TNM staging (Sobin and Wittekind, 2002) of
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uveal melanoma patients. TNM is an abbreviation for
tumour nodes metastasis.

5. Conclusions and further work

A multi-objective evolutionary algorithm for the ex-
traction of models for survival analysis has been pro-
posed and evaluated. The evaluation of the MOEA on
several benchmark datasets and one medical problem
has shown that the approach is capable of producing ac-
curate and valid models. The evaluation on the artifi-
cial dataset also emphasised that the approach can cope
with interaction effects and noisy non-proportional haz-
ard distributions. This is in contrast to, for example, the
Cox model. In its standard form, it does not consider
interaction effects and non-proportional hazard distribu-
tions. Only extensive statistical knowledge allows one to
apply it to such dataset successfully.

The experiments have also shown that the generated
models can produce survival function values for given
feature values without estimating the baseline hazard
first. Another advantage of the proposed approach is that
it could be used to model cause-specific hazards as sug-
gested in Biganzoli et al. (2001) because it can cope with
several indicator values.

One drawback of the current approach is that the orig-
inal data have to be time-coded. This results in a large
datasets and long execution times. Hence, if the original
number of samples is large, the application of the ap-
proach can be impractical (Baesens et al., 2005). How-
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