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Abstract

Artificial neural networks have featured in a wide range of medical journals, often with promising results. This paper reports on a systematic

review that was conducted to assess the benefit of artificial neural networks (ANNs) as decision making tools in the field of cancer. The number of

clinical trials (CTs) and randomised controlled trials (RCTs) involving the use of ANNs in diagnosis and prognosis increased from 1 to 38 in the

last decade. However, out of 396 studies involving the use of ANNs in cancer, only 27 were either CTs or RCTs. Out of these trials, 21 showed an

increase in benefit to healthcare provision and 6 did not. None of these studies however showed a decrease in benefit. This paper reviews the

clinical fields where neural network methods figure most prominently, the main algorithms featured, methodologies for model selection and

the need for rigorous evaluation of results.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decade, the use of artificial intelligence (AI) has

become widely accepted in medical applications. This is

manifested by an increasing number of medical devices

currently available on the market with embedded AI

algorithms, together with an accelerating pace of publication

in medical journals, with over 500 academic publications each

year featuring Artificial Neural Networks (ANNs) (Gant,

Rodway, & Wyatt 2001). Claimed advantages of neural

network methods include:

† Ease of optimisation, resulting in cost-effective and flexible

non-linear modelling of large data sets.
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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Abbreviations: CTs, clinical trials; RCTs, randomised-controlled trials; AI,
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maps; PCA, principle component analysis; MLC, maximum likelihood

classifiers; SVM, support vector machines; FLD, fisher linear discriminators;

LR, linear regression; GA, genetic algorithms; CART, classification and

regression tree; MVDA, multivariate discriminate analysis.
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† Accuracy for predictive inference, with potential to support

clinical decision making.

† These models can make knowledge dissemination easier by

providing explanation, for instance, using rule extraction or

sensitivity analysis (Lisboa, 2002).

The published literature suggests that ANN models have

been shown to be valuable tools in reducing the workload on

the clinicians by detecting artefact and providing decision

support, potentially with the ability to automatically re-

estimate the model on-line. However, there are relatively few

published clinical trials, and even fewer testing the clinical

value of ANNs against established linear-in-the-parameters

statistical methods (Lisboa, 2002).

There are two recurring concerns on ANNs. The first is

the use of first principle statistical methods to control model

complexity, which has been addressed by regularisation

methods and with the use of cross-validation (Biganzoli,

Boracchi, Mariani, & Marubini, 1998; Lisboa, Wong,

Harris, & Swindell, 2003; Ripley, 1996; Ripley & Ripley,

2001). The second key issue is transparency, i.e. explaining

what influences the network predictions and how to resolve

outcome predictions in terms of readily understood clinical

statements. This is partly addressed by rule-extraction

algorithms.
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Fig. 1. Number of clinical trials involving the use of ANNs in clinical diagnosis

in the last decade.
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Fig. 2. Trials that showed an increase in benefit using ANNs in cancer (black

circles) and those that did not (white circles).
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Notwithstanding these concerns, an interesting feature of

neural network decision support in medicine is the routine

clinical use of a range of systems, from the commercial-C.Net

(Nabney, Evans, Tenner, & Gamlyn, 2001) and BioSleep

(Tarassenko, McGrogan, & Braithwaite, 2002)—to research

prototypes (Lisboa, Ifeachor, & Szczepaniak, 2000; Taktak,

Fisher, & Damato 2004) without listing in PubMed of

supportive clinical trials. The situation is not specific to neural

networks, but extends particularly to web-based decision

support tools such as www.adjuvantonline.com, marking a

departure from algorithms for clinical routine assessments, e.g.

the Glasgow Coma Score for severity of illness in critical care

and Nottingham Prognostic Index for breast cancer, both of

which have undergone rigorous multi-centre clinical trials

evidenced in the literature, if not altogether without

controversy.

The use of unstructured approaches to clinical evaluation of

new medical research is a trend, which has proved hard to

change. Already in 1994 a paper entitled ‘the scandal of poor

medical research’ (Altman, 1994) highlighted the need to

proper study design bordering on the unethical typically

through the application of such bad scientific methodology as

to be sometimes called ‘torturing the data’ until they confess to

the desired result (Mills, 1993).

Therefore, it is important to define and keep to a staged

framework to design a sequence of studies each with a clear-cut

purpose, ranging from the exploratory to the definitive, where

the chief aim of each step in this chain is to support the next

developmental step until a power calculation is possible which

will determine the sample size, along with clinical protocol and

study design for a multi-centre randomised clinical trial. Such a

framework has been published (Campbell et al., 2000) and

adapted for the development of intelligent decision support in

an earlier review (Lisboa, 2002). This review will note the

current trends in the studies that reach journals in the medical

or medically related science literature, highlight points of good

and poor practice, and draw conclusions for study design to

improve the likelihood of studies being appropriately followed-

up in the future.

2. Literature search

A systematic literature search was conducted using Pubmed

for entries during the period 1994–2003 with the keywords

‘neural networks’. The search was limited to clinical trials and

randomised controlled trials (RCTs). Results of the search are

summarised in Fig. 1. The search was repeated using the

keywords (neural networks) and (cancer) from 1994 to the

current date. There were 396 hits in total with only 27 either

CTs or RCTs and the abstracts of the resulting hits were

analysed. The effectiveness of this technique has been shown to

have 50–60% sensitivity (Gant et al., 2001).

Some trials showed clear added benefit in using ANNs

whilst others were only able to show that they performed as

well as traditional methods. A third group showed that there are

advantages and disadvantages in using ANNs. The trials were

therefore classified into two categories:
(a) Those that showed an added benefit containing the first

group.

(b) Those that did not contain the last two groups.

None of the trials examined showed conclusive decrease in

benefit in using these techniques. The number of subjects and

the main findings in each trial were also noted as a measure of

the statistical power of the study and was plotted in a funnel

graph according to their category, shown in Fig. 2. The values

in the abscissa represent the total number of patients/samples

included in the study (subjects and controls).

The number of published papers was further compared with

the incidence of cancer (Parkin, Whelan, Ferlay, Raymond, &

Young, 1997). The plot in Fig. 3 shows a preponderance of

publications on cancers of the prostate and cervix, arguably

because there is considerable potential for patient benefit from

well-tailored therapy, compared to, for example, cancer of the

lung. There is also a higher than expected proportion of

publications on rare diseases, arguably exploiting a need for

greater decision support in areas where clinical expertise is

scarce.
3. Review of papers related to cancer listed in Pubmed

The majority of clinical trial studies benchmarked the

ANNs performance against traditional screening methods. In

prostate cancer, this involves the use of prostate specific

antigen (PSA) serum marker, digital rectal examination,

Gleason sum, age and race (Gamito, Stone, Batuello, &

http://www.adjuvantonline.com
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Fig. 3. Number of incidence of different types of cancer in Europe on the left

axis and number of clinical trials for each type on the right axis.

P.J. Lisboa, A.F.G. Taktak / Neural Networks 19 (2006) 408–415410
Crawford, 2000; Remzi et al., 2003; Stephan et al., 2003;

Tewari et al., 2001). Some studies have compared ANNs with

statistical methods (Chan et al., 2003; Finne et al., 2000;

Matsui et al., 2002; Remzi et al., 2003). Remzi demonstrated

that ANNs are more accurate than multivariate logistic

regression (LR) using ROC analysis and therefore reduced

the number of unnecessary repeat biopsies. They went on to

conclude that their system would allow individual counselling

of patients with an initial negative biopsy. Finne on the other

hand showed that ANNs and LR are both accurate than PSA

alone and also reached the conclusion that they reduced the

number of unnecessary repeat biopsies.

Cervical cancer applications concentrated mainly on

evaluating the benefits of the widely known PAPNET system

(Doornewaard et al., 1999; Kok & Boon, 1996; Mango &

Valente, 1998; Nieminen, Hakama, Viikki, Tarkkanen, &

Anttila, 2003; Sherman et al., 1997), one of very few ANNs

systems to gain FDA approval for clinical use. The system

uses ANNs to extract abnormal cell appearance from vaginal

smear slides and describe them in histological terms (Boon &

Kok, 2001). The alternative more conventional way is to re-

screen the slides under the microscope. Mango and Valente

have shown that the PAPNET system uncovered a higher

proportion of false negatives than conventional microscopic

re-screening as confirmed by cytologists. Sherman looked at

the results of PAPNET in 200 specific cases where initial

screening was inconclusive and compared them with

conventional microscopy, DNA analysis and biopsy. The

study showed that for these cases, PAPNET would have

reduced unnecessary biopsies but at the expense of increasing

false positives.

Parekattil, Fisher, and Kogan (2003) showed in a clinical

trial on bladder cancer that their ANNs model was more

accurate in identifying patients who required cystoscopy

thereby providing possible savings. Whilst the majority of

ANNs algorithms used in the trials concentrated on multi-

layer perceptrons (MLP), one study used a hybrid system

combining non-supervised Kohonen self-organising map

(SOM) with MLP (Glass & Reddick, 1998) to study the

response of paediatric osteosarcoma to chemotherapy using
MRI images. The technique showed a high correlation with

histopathologic analysis. One study used ANNs as a

validation method for another technique, namely electrical

impedance spectroscopy to separate basal cell carcinoma

(BCC) from benign skin lesion (Dua, Beetner, Stoecker, &

Wunsch, 2004).

There are several aspects of good practice, not least the

proportion of studies involving more than 200 subjects, of

which there are 14. However, only five publications carried out

regularisation on a principled basis, Fujikawa et al. (2003) with

the Bayesian evidence approximation, Glass et al. (1998) using

a hybrid combination of self-organising map (SOM) and a

multi-layered perceptron (MLP), Gletsos et al. (2003) using

genetic algorithms (GA), Chan et al. (2003) and Lin et al.

(2004) using a support vector machine (SVM), the remaining

22 studies apparently relying on vanilla MLPs.

Moreover, performance assessment consisted of estimating

misclassification rates from a single train/test split in 20 out of

the 27 papers reviewed, the exceptions being three RCTs

(Gamito et al., 2000; Matsui et al., 2002; Remzi et al. 2003)

which used separate train/test/validation datasets, two RCTs

(Chan et al., 2003; Finne et al., 2000) and one CT (Lin et al.,

2004) that applied leave-one-out cross validation, and one RCT

(Bryce et al., 1998) that applied round-robin cross-validation.

Only one trial using Papnet (Nieminen et al. 2003) was a

prospective study.

While several papers express classification performance as

the area under ROC (AUROC), also quoting values of

sensitivity, specificity and positive predictive value for the

threshold of choice, very few applied rigorous tests to compare

their method with benchmark systems. Remzi et al. (2003)

compared their diagnostic system with the benchmark logistic

regression model and conventional PSA tests using the

McNemar test modified by Bonferoni-Holm. The use of

AUROC to claim a performance advantage is also invalidated

by the absence of confidence intervals for the area values with

the exception of Bryce et al. (1998).

A complete list of CTs and RCTs with the clinical

application, number of subjects and methods used is presented

in Tables 1 and 2 respectively. As explained earlier, some

studies showed a clear added benefit in the use of ANNs

techniques in cancer diagnosis whereas others did not. Fig. 2

separates these two groups and shows them plotted against the

number of subjects in the trial as a method of assessing the

statistical power of such trial.

Overall, the publications reviewed were favourable to the

neural network approaches, although two of the most proficient

studies, both about prostate cancer, drew conflicting con-

clusions results from very similar empirical results (Matsui

et al., 2002; Remzi et al., 2003). However, there is clearly some

way to go before establishing the case for a performance

advantage for neural networks over conventional statistical

methods in the diagnosis of complex data, a finding that is

supported by reviews of prostate cancer noting that:

“.priority areas to be addressed are medical record quality,

the need for proper evaluation of repeatability through



Table 2

Summary list of randomised controlled-trials (RCT) involving the use of ANNs

in cancer

Reference Application Subjects Methods

Diagnosis

Chan et al. (2003) Prostate 11 MLC, SVM, FLD

Doornewaard et al.

(1999)

Cervical 898 PAPNET

Finne et al. (2000) Prostate 656 ANNs, LR

Gamito et al.

(2000)

Prostate 5099 ANNs

Kok and Boon

(1996)

Cervical 91,294 PAPNET

Matsui et al. (2002) Prostate 178 ANNs, LR

Naguib et al. (1996) Breast 81 ANNs

Nieminen et al.

(2003)

Cervical 108,686 PAPNET

Parekattil et al.

(2003)

Bladder 253 ANNs

Simpson et al.

(1995)

Breast 91 FLD, ANNs

Prognosis

Bryce et al. (1998) Head and neck 116 ANNs

Kothari, Cualing,

and Balachander

(1996)

Leukemia 170 ANNs

Remzi et al. (2003) Prostate 820 ANNs, GA

Image analysis

Gerger, Pompl, and

Smolle (2003)

Skin 369 CART, Machine

learning

Glass and Reddick

(1998)

Paediatric osteo-

sarcoma

43 SOM, ANNs

Gletsos et al.

(2003)

Liver 147 ANNs, GA

Ng, Ung, Ng, and

Sim (2001)

Breast 82 ANNs

Table 1

Summary information from clinical trials (CT) involving the use of ANNs in

cancer

Reference Application Subjects Methods

Diagnosis

Dua et al. (2004) Skin 34 ANNs

Mango and Valente

(1998)

Cervical 10,000 PAPNET

Sherman et al.

(1997)

Cervical 200 PAPNET

Stephan et al. (2003) Prostate 94 ANNs

Tewari et al. (2001) Prostate 1400 ANNs

Tomatis et al. (2003) Skin 534 MVDA, ANNs

Vomweg et al.

(2003)

Breast 604 ANNs

Prognosis

Image analysis

Coppini et al. (2003) Lungs 312 ANNs

Lin et al. (2004) Cervical 59 SVM, PCA

Stefaniak, Chole-

winski, &

Tarkowska (2003)

Head and Neck 25 ANNs
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multicentre studies quoting results in terms of the ROC

framework as well as resistance to change in working

practice especially from older clinicians.. ANNs do not

prove always better as to replace standard statistical analysis

as the method of choice in interpreting medical data. In

particular, likelihood odds ratios calculated separately for

each explanatory variable are considered by clinicians to be

easily understood and useful, a way of opening the black-

box” (Anagnostou, Remzi, Lykourinas, & Djavan, 2003).

It is widely acknowledged that neural network modelling

requires large amounts of data, moreover they “. have not

fulfilled the expectation of some proponents that it would

eclipse more conventional statistical techniques.” (Lynch et al.,

2001), moreover “.several issues associated with neural

network derivation demand that developers apply rigorous

engineering practices in their studies.” (Rodvold, McLeod,

Brandt, Snow, & Murphy, 2001).

While parallel studies have identified neural network

methods among the most prevalent non-traditional method-

ologies for data analysis (Chau, 2001), in realising their

potential application needs to overcome obstacles including the

need for expanded databases and the need to establish

multidisciplinary teams (Dayhoff & DeLeo, 2001) and lack

of appropriate gold standards (Zhang, Huang, & Roy, 2002)
4. Implications for study design

It is well documented that hundreds of papers are published

in the medical literature, at a vast mean cost per published

paper, yet few results find their way into improving healthcare

practices in routine clinical use. There are reasons for this,

partly the unavoidable result that not all interesting new

methods turn out to fulfil their early promise. However, more

often than not it is methodological shortcomings that mortally

damage the future worth of the paper. Some of the reasons for

this are (Altman & Royston, 2000; Wyatt & Altman, 1995):

† Study aims with little immediate clinical relevance.

† Model structures that lack clinical credibility.

† Lack of clear purpose for the study, in particular

distinguishing between,

† exploratory studies that aim to generate insights into the

data and to optimise model complexity, typically with

retrospective studies which need to have proper

evaluation strategies, and should explain how the

method will integrate into clinical processes, and

† pragmatic studies aiming to establish the utility of a

predictive model, typically prospective studies, whose

results should include the definition of a clinical need, an

indication of what performance is needed in order to

achieve clinical usefulness.

† Overoptimistic assessment of predictive performance.

† Poor model selection procedures when many variables are

involved.

† Insufficient estimation due to small sample sizes, which

should match a ratio of events of interest (e.g. diagnosed
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cancer cases) per variable of interest (e.g. possible input

variables to choose from) of the order of 10.

† Poor evaluation and benchmarking, typically

† quoting the ‘best model’ with a train/test validation

introduces a bias causing an underestimate of the error

rate as the test data are used for model selection,

† lack of proper statistical performance measures to

compensate for the effect of prevalence, e.g. the ROC

framework,

† ad hoc comparisons between neural network perform-

ance against a benchmark, when statistical method-

ologies need to be used if comparative performance

claims are to be made (Ripley, 1996).

All of these shortcomings are apparent in the medical

statistics literature in general, but especially so for papers

involving neural networks (Schwartzer, Vach, & Schumacher,

2000). These concerns can be addressed by consideration of the

following practices:

† Bias in the estimation of error rates can be avoided by

optimising the neural network model with cross-validation

methods instead of train/test splits, employing a separate

dataset for independent estimation of the error, which

should ideally be a distinct cohort either later in time

(temporal validation) or from different clinical centres

(external validation).

† Efficient performance estimates do sufficient sample size,

whose effect should be quantified by means of 95%

confidence intervals for a full range of ROC values

including sensitivity, specificity and positive predictive

value for the classified of choice, as well as the AUROC for

the model.

† Implausible decision functions result from overfitting,

which needs to be controlled through a combination of:

† appropriate sample size in terms of EPV,

† use of a principled regularisation scheme,

† a method to explain the network’s response, e.g.

sensitivity analysis, log-odds ratio, or rule extraction.

† Information on network complexity has to be quoted,

including the number of nodes per layer and hence the free

parameters (weights) as a ratio of the number of events of

interest—where the evidence approximation is use (Bishop,

1995) then the approximate number of free degrees of

freedom actually utilised by the network may also be cited.
Table 3

MHRA view on the use of software in medical applications (MEDDEV 2.1/1)

Software that constitutes a medical device

Control or influence the functioning of a medical device

Use for/by patients to diagnose or treat a physical or mental condition or

disease

Analysis of patient data generated by a medical device with a view to

diagnosis and monitoring
† Appropriate benchmarking should include gold standard

clinical assessment procedures, as well as credible

alternative statistical and machine learning models, e.g.

logistic regression, nearest neighbours, CART, etc.

† Insufficient comparisons with benchmark performance

undermine the conclusions from the study, therefore

McNemar or similar tests are required (Ripley, 1996) and

for comparisons between particular classifiers 95% confi-

dence intervals may be obtained about individual ROC

points (Tilbury, Van Eetvelt, Garibaldi, Curnow, &

Ifeachor, 2000).

These elements of good practice go a long way towards

maximising the benefit of clearly defined studies set within a

staged framework for the development of decision support

systems in medicine, a good example of which is the

continuum of evidence outlined in Table 3. This framework

enables a clear purpose and methodology to be defined for

different types of study at each stage in the ladder, enabling the

conclusions of one study to feed into the next.
5. Ethical and legal issues

A final consideration with particular implications for the

evaluation of biomedical decision support systems concerns

the legal and ethical foundation to judge whether the ‘duty of

care’ has been breached. The principles involved hark back to

the ‘Bolam test’ which refers to the skill of an ordinary

competent practitioner. This test offers considerable latitude in

the exercise of clinical discretion, a leniency founded on

confidence in the doctor’s training (Gant et al., 2001). Similar

considerations apply also to regulatory requirements for

evidence of repeatability, reliability and performance.

The first question is: are such systems considered as a

medical device and therefore subject to the medical device

directive (MDD) and CE marking? Article 1 in the Directive

defines a medical device as “any instrument, apparatus,

appliance, material or other article whether used alone or in

combination, including the software necessary for its proper

application intended by the manufacturer to be used for human

beings for the purpose of: diagnostic, prevention, monitoring,

treatment or alleviation of disease,.” This suggests that

software whether standalone or part of a device can be a

medical device.
Software which is not a medical device

Administrative handling

Education software

Maintenance of medical devices or components of medical devices

Design and manufacturing processes of the medical device. (e.g. compilers,

CM systems, MRP, production control, inventory control, SPC, etc.)

‘Operating system’, support or system software
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The view of the UK regulatory body, the Medicines and

Healthcare Products Regulatory Agency (MHRA) on software

is summarized in Table 3 (MEDDEV 2.1/1). Taking this into

account therefore, the type of ANNs and other AI systems

covered in this review would probably fall under the definition

of a medical device. Suppliers of medical devices are under

legal obligation to demonstrate that the device meets the

Essential Requirements detailed in Annex I in the MDD.

The most reliable way of ensuring that a device complies with

the Essential Requirements is to ensure its compliance with the

appropriate harmonized standards such as the IEC 60601-1-4 in

the case of software.

Unfortunately none of these or any other current European

standards make a special case for the incorporation of AI in

software so it is difficult to know how to meet the Essential

Requirements for such systems. However, the Food and Drug

Agency in theUSAhave issueda guidancedocument for software

inmedical devices,which is based on the European IEC60601-1-

4 standards (FDA, 1998). The document has a section on expert

systems and ANNs software, which provides useful tips for

manufacturers and assessors. Some of the points highlighted by

this document are that ANNs can behave in a non-deterministic

manner. The designer should therefore justify and explain the

choices made for the artificial neural network model, topology,

and training sets, as well as explain and justify the data set class

that the ANNs is intended to analyze or process. The designer

should also describe how overfitting was avoided and should

demonstrate how the relevant features were extracted (such as a

specific pattern to be detected) and not a peculiarity contained

only in the training set. The document sets out a requirement for

additional data sets to be processed through the network to ensure

that the performance remains as expected.

What does this mean for the use of artificial neural network

models in medicine? An immediate implication is to require

rigorous evaluation of their:

† Accuracy in regression or classification

† Repeatability or generality of performance

† Transparency in relation to clinical knowledge, meeting the

requirements from the doctrine of ‘learned intermediaries’

Further evaluation is needed in relation to the specific rôle

of decision support, which can be generally categorised as:

† Guiding patient management by means of

† Inferences about diagnosis, prognosis or treatment

effects

† Summaries of complex low-level data, e.g. through

visualisation

† Filtering of similar cases to the individual patient at hand

† Alerting for rare events, e.g. high-risk cases

† Auditing compliance with, and more importantly, consist-

ency in the use of clinical discretion within clinical

guidelines.

In this context, the evaluation of models to guide patient

management, in particular, must include an additional and
demanding measure to ensure that the model inferences

accurately fulfil the role probabilities namely, calibration

which is the equivalent of a correlation plot of prediction vs.

outcomes in regression, which becomes a plot of the

prevalence of outcome against the predictions from the

model (Lisboa, Vellido, & Wong, 2000). This is especially

important as decision support needs to move away from ‘oracle

systems’ and turn towards informing, rather than advising, the

clinician, e.g. by inferring risk of disease and presenting it as a

colour-coded bar length to indicate that out of 100 similar

patients a certain proportion would be expected to have the

condition.

With regard to the evaluation of decision systems,

considerations about regulatory and legal aspects have

implications that extend to the very purpose of systems

intended to help with medical decision making, leading

away from the treatment of diagnostic support as a mirror

for the statistical analysis relevant to therapeutic studies. In

recognising the decision making role of the clinician,

computerised decision support systems serve not to instruct

on a decision on a predicted outcome, but to modulate the

clinician’s own decision by adding new evidence through

associative recall from historical data. A practical frame-

work to put this into practice is a Bayesian approach where

the likelihood ratio of the diagnostic test factors into the

clinician’s pre-test likelihood of a diagnosis, returning a

posterior probability that the clinician may test in multiple

scenarios by considering the effect over a range of plausible

choices of pre-test likelihoods derived from the available

clinical signs.
6. Conclusions

A review of PubMed listed publications involving

clinical trials of neural network systems identified trends

in areas of clinical promise, specifically in the diagnosis,

prognosis and therapeutic guidance for cancer, but also the

need for more extensive application of rigorous method-

ologies. This has implications for study design, to address

some of the more common pitfalls of empirical models for

medical diagnosis, particularly those relying on generic non-

linear function approximations, which includes artificial

neural networks.

Further considerations regarding evaluation of systems for

clinical decision support led to a categorisation of possible

functional roles from auditing, through personalised infor-

mation about ‘cases like yours’ and filtering of rare conditions,

to clinical guidance. Issues of regulatory compliance, legal

recourse and clinical acceptance all point towards an ‘added-

value’ framework whereby the diagnostic test forms an

extension of standard laboratory tests adding information to

modulate the clinician’s own scenarios about likelihood of a

particular diagnosis, which can be practically implemented

within a likelihood ratio framework.
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