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Abstract— Qualitative model operation description is useful 
for its direct validation using expert domain knowledge. A 
framework for this purpose uses low-order Boolean rules to 
approximate the response surfaces generated by analytical 
inference models. In the case of censored data, this approach 
serves to characterise the allocation of patients into risk groups 
generated by a risk staging index.  Furthermore, the low-order 
rules define low-dimensional sub-spaces where individual data 
points can be directly visualised by reference to decision 
boundaries for risk group allocation. The well-known ROC 
framework has recently been extended to a threshold 
independent, time-dependent performance index to quantify 
the predictive accuracy of censored data models, termed the 
Ctd index.  Taken together, the quantitative performance index, 
Boolean explanatory rules and direct visualisation of the data, 
define a consistent and transparent validation framework 
based on triangulation of information. This information can be 
included in decision support systems. 

I. INTRODUCTION 
SSESSING the generality of flexible models, such as 

artificial neural networks, is complex and multifaceted 
task to ensure generality of the results obtained. When these 
models are integrated into decision support systems, 
especially in safety-critical domains, the assessment process 
must comply with well-known requirements for evaluation 
as part of the lifecycle of software development, which 
includes the stages of verification and validation [1].  

Traditionally generic non-linear models are assessed by 
evaluating the generality of the estimated performance, 
using for instance the Receiver Operating Characteristic 
(ROC) framework. This framework serves to assure the 
validity of the performance claims made but it does not 
verify the extent to which the operation of the model, 
whether used for knowledge discovery or to make predictive 
inferences, is consistent with domain expertise.  There 
several procedures that can be used for this purpose, from 
sensitivity analysis through group profiling to rule extraction 
and visualization of the data in low-dimensions to identify, 
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for instance, the presence of outliers which can result in 
apparently accurate model predictions that are, nevertheless, 
unreliable.  These issues, and how they integrated into 
accepted frameworks for the development of complex 
clinical interventions, have been reviewed elsewhere [2-
3][Elia, your paper from EWADP in Pisa may be relevant 
here] 

This paper provides an overview of two aspects of the 
assessment process where recent developments have been 
reported, namely: 

• How to extend the ROC framework to evaluate the 
performance of time-to-event models in the presence 
of censored data, with reference to the model’s 
ability to correctly fit outcome data for individual 
cases 

• A framework to represent the operation of neural 
networks as low-order Boolean rules that may be 
tested for consistency with domain knowledge and 
use to visualize decision boundaries. 

It is proposed that statistical performance estimation, rule 
generation and direct visualization of the data, form an 
integrated framework to triangulate relevant and 
complementary aspects of verifiability and validity, which 
are relevant to quality assurance when assessing flexible 
models.   

In the interests of space, other aspects of the quality 
assurance will not be discussed in detail.  However, it is 
worth noting that the performance evaluation of generic 
non-linear models also needs to take account of robustness 
in model design, for instance through appropriate 
regularization.  When inferences are drawn for individual 
cases, which is important for the development of 
personalized health care systems,  then there is a further 
need to quantify the predictive uncertainty, that is to say to 
specify confidence intervals for the predictions made and to 
evaluate their accuracy, also to accurately model the data 
density in order to accurately identify outliers, which do not 
always automatically trigger large predictive errors. 

The remainder of the paper is focused on the overview of 
a time-dependent AUROC index for censored data, and 
efficient generation of explanatory rules in the context of 
risk stratification for prognosis. The overview will be 
illustrated with results from a benchmark study of 
prognostic modeling for patients with uveal melanoma 
together with further analysis for rule identification. 
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II. TIME DEPENDENT AUROC - THE CTD INDEX 
The ROC is among the most powerful and widely used 

frameworks to quantify generalized performance for 
classification tasks. Confidence intervals have been 
generated both in respect of the AUROC and for individual 
points on the curve, to show the area of uncertainty around 
the performance of classifiers with specific thresholds for 
class allocation [4]. 

However, the standard AUROC index does not apply for 
time-to-event modeling with censored data [5].  To derive 
models for outcome prediction, a crucial aspect is the 
availability of appropriate measures of predictive accuracy 
for a general class of models. The Harrell's C discrimination 
index is an extension of the area under the ROC curve to the 
case of censored survival data, which owns a 
straightforward interpretability. For a model including 
covariates with time-dependent effects and/or time-
dependent covariates, the original definition of C would 
require the prediction of individual failure times, which is 
not generally addressed in most clinical applications. The 
time-dependent discrimination index Ctd [5] exploits the 
whole predicted survival function as outcome prediction, to 
summarise over time the discrimination power among 
subjects having different outcome. Ctd is based on a novel 
definition of concordance: a subject who developed the 
event should have a less predicted probability of surviving 
beyond his/her survival time than any subject who survived 
longer. The predicted survival function of a subject who 
developed the event is compared to: (1) that of subjects who 
developed the event before his/her survival time, and (2) that 
of subjects who developed the event, or were censored, after 
his/her survival time. Subjects who were censored are 
involved in comparisons with subjects who developed the 
event before their observed times. A confidence interval for 
Ctd is derived using the jackknife method on correlated one-
sample U-statistics. 

III. UVEAL MELANOMA BENCHMARK 
Uveal melanoma is a cancer of the eyeball.  

Approximately 50% of all patients with uveal melanoma 
ultimately die of metastatic disease, which usually involves 
the liver. The probability of metastatic death after treatment 
of uveal melanoma is increased with a range of generally 
known risk factors, including large basal tumour dimension, 
ciliary body movement, epithelioid cellularity, closed 
connective tissue loops, increased microvascular density and 
chromosome 3 deletions [6]. At present, only tumour 
diameter and extension are known in most patients, because 
few undergo local resection or enucleation and because 
tumour biopsy is not routinely performed before 
radiotherapy or phototherapy. Whereas Tumour, Node, 
Metastasis (TNM) Classification and other categorizations 
of ciliary body and choroidal melanomas have been 
developed to group patients according to their prognosis for 
survival at the time of their initial treatment there is 

recognized need for more specific ranking of survivorship 
with less variation within each risk group.  

The outcome of interest for the benchmark study reported 
in [6] all-cause mortality. Follow-up times were measured 
from the date of primary ocular treatment, either to the date 
of death or to the date of the close of the study, which was 
the 8th of March 2005. All the subjects entered in this study 
were registered with the UK National Cancer Registry who 
informed us automatically when any subject died. Thus, we 
were confident that any subject who has not been flagged as 
dead, was still alive at the end of the study. 

Patients were selected from the database of the Liverpool 
Ocular Oncology Center for the time period 1984 – 2004 if: 
(1) diagnosed with uveal melanoma, clinically or 
histopathologically; (2) primarily treated at the Tennent 
Institute of Ophthalmology, Glasgow, before January 1993 
or at the Royal Liverpool University Hospital after that date; 
and (3) resident in the United Kingdom (UK). Patients were 
excluded because of: (1) bilateral melanoma; or (2) missing 
data regarding basal tumor dimension or anterior tumor 
extension.  

The dataset was randomly split into training and test sets 
and the sets were stratified to include roughly equal 
proportion of events, with data from 1734 patients (490 
events) and 1146 patients (305 events) respectively. The 
median follow-up time was 5.31 years (range: 0 – 
35.66).The tenets of the Helsinki Declaration were followed 
and institutional ethical committee approval for a multi-
center outcomes analysis was obtained. 

A double-blind evaluation of the accuracy in out-of-
sample prediction of overall mortality was carried out to 
compare the predictive performance of generic non-linear 
models for censored data, [7], a Partial Logist Radial Basis 
Function Network (PLRBF) fitted with a multi-objective 
evolutionary algorithm, and a Partial Logistic Neural 
Network, with the architecture of a Multi-Layer Perceptron 
and regularisation within the Bayesian framework with a 
normal approximation to the evidence, using Automatic 
Relevance Determination (PLANN-ARD) [8]. The 
performance of the flexible models was benchmarked 
against a Partial Logistic Spline Model (PLSPL), which is a 
generalized linear model of the discrete hazard based on 
partial logistic regression, as well as the more commonly 
used log-normal and Cox regression models.  

Model selection was carried out separately for each 
model, resulting in the covariate subsets listed in Table 1. 
ANTMAR is a categorical variable representing the anterior 
margin of the tumour. ANTORA was derived from 
ANTMAR by applying a threshold to categorise tumours 
into pre-ora and post-ora. Note that the COX and LOGN 
methods applied their own categorization technique into 
ANTMAR to reduce its dimensionality instead of using 
ANTORA. The tumour dimensions measured from 
ultrasound images provided variables LUBD and UH 
representing the largest basal diameter (mm) and height 
respectively. EPI is a binary variable representing the 
presence or absence of epithelioid cells in the tumour tissue 
from histopathological slides.   



 
 

 

 
TABLE 1 VARIABLES SELECTED BY EACH MODEL. 

 
Model Age Sex ANT

MAR 
ANT
ORA 

LU
BD 

UH EPI 

COX   1     
LOGN   1     
PLSPL        
PLAN
NARD 

2    2 2  

RBF     3   
1Categorised 
2Normalised 
3Rounded  

 
TABLE 2 CTD INDEX ESTIMATES τ =3, 5 AND 10  YEARS. TYPE 

“SPECIFIC” CONSIDERS THE DIFFERENT MODEL SPECIFIC TEST 
DATASET (COX AND LOGN 1146 PTS, PLANNARD AND RBF 1069, 

PLSPL 505) WHILST  TYPE “COMMON” DENOTES THE SUBSET 
FOR WHICH ALL OF THE REQUIRED VARIABLES ARE PRESENT 

IN THE  TEST DATASET (498 PATIENTS). 
 

 Values of Ctd 

dataset COX LOGN PLSPL PLAN
NARD 

RBF 

specific 0.687 0.708 0.681  0.716 0.683 

common 0.700 0.716 0.684 0.716 0.655 

specific 0.706 0.722 0.668 0.732 0.701 

common 0.705 0.708 
 

0.672 0.710 0.659 

specific 0.714 0.737 0.699 0.747 0.718 

common 0.726 0.737 0.701 0.738 0.687 
  
 
 

The Ctd provided a discriminating index which ranked 
models by order of predictive performance in a way that was 
consistent with additional accuracy measures also reported 
in this study. The latter included graphical assessment of the 
survival curves generated by each model against the Kaplan-
Meier curves in different prognostic groups of patients from 
excellent to poor prognosis. Numerical calibration of each 
model was also carried out using a generalization method of 
the Hosmer-Lemeshow analysis comparing predicted against 
observed survival in groups of patients at predetermined 
time intervals. 

IV. RULE GENERATION FOR SURVIVAL DATA 
A. Definition of a prognostic index 
 
A further study was carried out to stratify patients into risk 

groups for mortality.  The data comprised of 1734 cases with a 
20 year follow up with all events being censored thereafter. 
The unit time interval size quieried to the PLANN-ARD is a 
tenth of a year.  The explanatory variables used are listed in 
Table 1.  Following the methodology introduced in [8], a 
prognostic index was defined from the logit of the hazard 
estimate for each individual case, averaged over the follow-up 

period.  This score corresponds to the argument, βx, of logistic 
regression and Cox regression functions. The log-rank test was 
applied to the risk score, identifying three groups with are 
significantly different values of the prognostic index, which 
was verified by cross-validation resulting in the grouped 
Kaplan Meier curves shown in fig 1: 
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Figure 1 Kaplan-Meier survival characteristics for three groups of patients 
defined by significantly different values of prognostic index. The unit time 
interval is a tenth of year showing a follow up time of 20 years. Group 1 has 720 
cases, group 2 has 345 and group 3 has 669 cases. The upper and lower lines for 
each group show  95% confidence intervals. 

 
B. Rule extraction with OSRE 
 
The clinical interpretation of risk groups relies on a 

mathematical characterization of their content.  While the 
profile of average or median values of the covariates carry 
information about the overall pattern of data within each group, 
it comprises a series of univariate measurements which do not 
generally provide a method to verify consistency with domain 
expertise, other than in very broad terms. Consequently, it is of 
interest to consider strictly multivariate descriptions of the 
composition of risk groups, preferably translated into the 
language of the medical domain, often represented as logical 
rules in terms of set membership defined by thresholding the 
covariates. 

  Orthogonal Search Rule Extraction (OSRE) [9] is a 
computationally efficient algorithm to search for hypercubes in 
data space, since they map directly onto Boolean rules. This is 
achieved by assigning a separate indicator label for each risk 
group and treating risk group allocation as a classification task, 
to which a regularised Multi-Layer Perceptron can be fitted to 
generate a suitable response surface. 

Once the noise in the risk assignment data is smoothed out 
by the response surface, the second stage is a recursive search 
process starting at each data point and traversing outwards 
from that point to the extreme value of each individual 
covariate, one at a time, keeping all other covariates fixed. A 
list is kept of the directions emanating from the data point 
along which the response surface crosses the response 
threshold, set for this study at a value of 0.5. 

This methodology initially returns a rule for each data point, 
which requires a pruning process to keep only those rules 



 
 

 

which represent large proportions of the data in each risk 
group, i.e. show high sensitivity for group membership, and do 
so with minimal mixing between groups, i.e. also have high 
specificity. The result is a set of multivariate rules involving 
typically few covariates, that is to say, low-order rules 
containing the covariates that characterize sub-group contained 
in each risk group.   

 

 
Figure 2 shows the effect of adding individual rules to the disjunction list. The 
overall sensitivity and specificity point of the disjoint of these rules steps closer 
to the cross which is the target ROC point.  The rules in Table 3 can be seen as 
the lower three circles. It can be seen that addition of further rules provides less 
significant gain. 

 
TABLE 3 CONTAINS THREE WELL PERFORMING RULES 

TARGETING MEMBERSHIP OF PROGNOSITIC GROUP 3 AS IN CLASS. 
THE FIRST TWO COLUMNS SHOW THE NUMBER OF CASES THAT 
ARE TRUE FOR THIS RULE FROM A TOTAL OF 1602 CASES (CASES 
WITH ‘LUBD’ AND ‘UH’ MISSING ARE NOT QUERIED INTO OSRE). 

THE NUMBER OF CASES IN GROUP 3 ARE 626. THE OTHER 
COLUMNS SHOW INDIVIDUAL SENSITIVITY, SPECIFICITY AND 

POSITIVE PREDICTIVE VALUE FOR EACH RULE. 
 
Conjuntive Rule Statement Cases 

In 
class 

Cases 
Out 
class 

Sens Spec PPV 

Rule 1: 
 10.315 <= lubd <= 27.370  
 epi  = 1 
 

372 
 

8 0.59 0.99 0.98 

Rule 2: 
12.935 <=  lubd  <= 27.635  
6.500 <=  uh  <= 20.000  
54.375 <= age <= 103.425  
antora = 1 
 

183 7 0.29 0.99 0.96 

Rule 3: 
7.040 <=  lubd  <= 27.885  
2.000 <=  uh  <= 20.000  
epi  = 1 
 62.475 <= age <= 103.350  
 

307      6     0.49 0.99   0.98 

 
Note that OSRE contrasts with widely used rule induction 

methods in two ways: there are no univariate cut-offs for 
groups of data, as in OSRE a sequential univariate search is 
carried out at the level of each individual data point and returns 
a multivariate hyperbox around that point, without the need to 
partition the data along a sequence of univariate covariates; and 

secondly, the price paid for this methodology is that the rules 
are overlapping, rather than constrained to mutual exclusivity 
as is the case in rule tree induction. Mutually exclusive trees 
can be readily derived from overlapping rule sets by sequential 
conjunctions of each rule and the complement of the previous 
rule along the tree branch, but this loses the benefit of the 
simplicity of interpretation that comes with the derivation of 
low-order rules.    

The rules generated by OSRE for the uveal melanoma data 
set are listed in table 3.  These rules were presented to the 
surgeon leading the multicentre trial that acquired the data and 
it was judged that the sub-groups identified for each risk 
category were consistent with current understanding.   

Representing neural network decision boundaries as 
Boolean rules has two important benefits.  First, it provides a 
method for diagnosing and correcting class individual 
assignment failures during development and during potential 
prospective tests.   This feature of the rule-based approach is 
as important as the ability to explain the drivers 
underpinning accepted inferences. 

Secondly, the rules can capture a substantial proportion of 
the discriminant power of the neural network, providing a 
possible white-box replacement for it.  This is illustrated by 
the Kaplan-Meier curves for the risk groups, expressed now 
transparently using Boolean for the risk allocations derived 
from the prognostic neural network model. 
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Figure 3 shows the Kaplan-Meier survival characteristic of the patients 
allocated into groups according to the criteria defined by OSRE extracted 
rules that target each PI group.  It can be seen that the functions are similar 
to the corresponding trends in figure 1. Memberships for these groupings 
are not necessarily mutually exclusive. There are 608 cases that satisfy the 
disjunctive rule list for P.I group 1, 468 cases true for the rules explaining 
P.I group2 and 684 for P.I group 3. 

V. VISUALISATION OF DATA AND DECISION BOUNDARIES 
A claimed strength of the OSRE method is the low-order 

of the rules that are typically obtained even for complex, 
real-world medical data.  This is largely a consequence of 
lifting the restriction of mutual exclusivity.  Mutually 
exclusive rule trees can be trivially obtained where the 
nodes at each level of tree are multivariate. 

Low-order rules lend themselves to direct visualization of 
the data at the dimensionality of the rule order.  So, for 



 
 

 

instance, where a rule involves 3 covariates, this obtains a 2-
dimensional data subspace where the data separate by risk 
group.  Given that projecting to higher dimensional spaces 
will not cause further missing, the visualization map reflects 
also separation of the full dimensional data. 

However, the covariates absent from the rule will have 
different values.  For this reason, their values are sampled by 
Monte Carlo on the basis of univariate distributions, 
generating 95% confidence intervals for the location of the 
decision boundary in its low-dimensional projection to the 
data subspace. [Terence: can you confirm this description?]  
A well-separated data subspace will be expected to show 
decision boundaries with a narrow confidence interval, 
while poorly separating sub-spaces, which form the vast 
majority of possible covariate combinations, will be almost 
entirely covered by the width of the confidence interval for 
the decision surface. 

 
Note that the proximity of individual cases to the decision 

surface can now be directly ascertained.  This is potentially 
of value both to understand erroneous assignments, should 
they occur, and for interpretation of borderline cases. 

Once the models have been fitted, it is straightforward to 
apply them to out-of-sample data, for new patients, through 
risk stratification, application of the describing rules and 
projection onto the visualization maps. 

 

VI. CONCLUSION 
An assessment framework was described comprising 

complementary components to evaluate performance and 
describe the operation of prognostic models.  This 
framework applies to standard generalized linear models, 
but equally as well to flexible models, of which neural 
networks were taken as an example. 

The time-dependent extension of the AUROC is a 
rigorous method to quantify modeling accuracy for time-to-
event models with censored data. This method was extended 
by the application of automatic rule generation and direct 
data visualization in separating subspaces.  

This triangulation of available evidence from outcome 
data and domain expertise supports robust quality assurance 
through verification and validation of survival models and 
risk stratification. The methods are scalable and efficient for 
real-world clinical data. 
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Figure 4 shows the data space defined by the three continuous variables 
from Rule 3 from table 3. The figure contains the decision surface of the 
MLP-ARD which classifies the cases in P.I group 3.  

 
 
 
 

 
 

Figure 5 shows the 4 dimensional hyper-cube that is Rule 3. The left cube 
shows the data space when epi=1, this cube contains predominantly in-class 
data. The limits of the cube are defined by the other statements in rule 3 
which are by definition parallel to each axis. The right cube shows the data 
space when epi=0, the majority of out-class cases appear on this side. 
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