
 
 

 

  

Abstract— In this paper we describe and compare two neural 
network models aimed at survival analysis modeling, based on 
formulations in continuous and discrete time. Learning in both 
models is approached in a Bayesian inference framework. We 
test the models on a real survival analysis problem, and we 
show that both models exhibit good discrimination and 
calibration capabilities. The C index of discrimination varied 
from 0.8 (SE=0.093) at year 1, to 0.75 (SE=0.034) at year 7 for 
the continuous time model; from 0.81 (SE=0.07) at year 1, to 
0.75 (SE=0.033) at year 7 for the discrete time model. For both 
models the calibration was good (p<0.05) up to 7 years. 

I. INTRODUCTION 

URVIVAL analysis is used when we wish to study the 
occurrence of some event in a population of subjects and 

the time until the event is of interest. This time is called 
survival time or failure time. Survival analysis is often used 
in industrial life-testing experiments and in clinical follow-up 
studies. 
In literature there are many different modelling approaches 
to survival analysis. Parametric models based on specified 
families of distributions may involve too strict assumptions 
on the failure times which usually extremely simplify the 
experimental evidence, particularly in the case of medical 
data [1]. Semiparametric models do not make assumptions 
on the distributions of failures, but make instead assumptions 
on how the system features influence the survival time (the 
usual assumption being the proportionality of hazards); 
furthermore, usually these models do not allow for direct 
estimation of survival times. Finally, nonparametric models 
usually only allow for a qualitative description of the data on 
the population level. 

Neural networks have recently been used for survival 
analysis; for a survey on the current use of neural networks 
we refer to [2], [3]. The only neural network architectures 
aimed at survival analysis and trained in a Bayesian 
framework are described in [4], [5], [6], [7]. 
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Neural networks provide efficient parametric estimates of 
survival functions, and, at least in principle, the capability to 
give personalised survival predictions. In a medical context, 
such information is valuable both to clinicians and patients. 
It helps clinicians to choose appropriate treatment and plan 
follow-up efficiently. Patients at high risk could be followed 
up more frequently than those at lower risk in order to 
channel valuable resources to those who need them most. For 
patients, obtaining information about their prognosis is also 
valuable for planning their lives. 

In this paper we introduce a new class of models for 
continuous time modelling, and compare its performance 
with an existing model which shares some similarities but is 
aimed at discrete time modelling [6], [8]. 

In Section II we describe the survival analysis problem in 
discrete and continuous time; in Section III we provide 
details about the two neural network models and the 
Bayesian approach to modelling, whereas in Section IV a 
sample application on real data is shown. 

II. CONTINUOUS AND DISCRETE TIME SURVIVAL ANALYSIS 

A. Definitions 

Let T denote a positive random variable, with distribution 
function P, representing the time of occurrence of an event. 
The survival function, S(t), is defined as: 
 
S(t)=Pr(T>t), (1) 
 
that is, the probability of not experiencing the event up to 
(and including) time t. We shall assume that the survival 
function also depends on a set of covariates, represented by 
the vector x. Depending on whether T is absolutely 
continuous or discrete, we can introduce the hazard rate and 
hazard probability functions [1]: 
 
hr (t)= P(t)’/(1-P(t)) (2) 

 
hp (t)= (P(t)- P(t-1))/(1- P(t)) = Pr(T=t | T>=t) (3) 
 
where P’ is the first derivative of the distribution function P. 
 

B. Censoring 

In many survival analysis applications we do not directly 
observe realisations of the random variable T; therefore we 
must deal with a missing data problem. The most common 
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form of is right censoring, i.e. we observe realisations of the 
random variable: 
 
Z=min(T,C) (4) 
 
where C is a random variable whose distribution is usually  
unknown. We shall use a censoring indicator d to denote 
whether we have observed an event (d=1) or not (d=0). It 
can be shown that inference does not depend on the 
distribution of C [1]. 
 

C. Likelihood functions 

Log-likelihood functions for the discrete and absolutely 
continuous cases can be obtained in terms of hazard 
functions [1]. 

For the continuous and discrete time cases, we have 
respectively: 

 

log ( , ) (1 ) log(1 ( , )).p i p i i i p i i
i

L d h x t d h x t= + − −∑  (5) 

 
In the latter case we recognize the log-likelihood function for 
a logistic regression problem, in which some pre-processing 
of the data is necessary. In particular, each pattern xi is 
replicated a number of times equal to the cardinality of the 
set {1,2,…,ti-1}, whereas the target di is set to zero for each 
of these replications. Therefore, the index i in the summation 
above should be intended over the set of pre-processed data. 

III. NEURAL NETWORK MODELS 

The basic neural network model for both approaches is the 
Multi-Layer Perceptron (MLP) [9]:  

 

 

where g() is a sigmoid function, and w={ 0b ,v,u, 0u ,b} is the 

set of parameters. Depending on the problem, the MLP 
defines a model for the logarithm of the hazard rate function 
in the continuous time case: 
 

 
whereas in the discrete case the MLP models the log-odds 
ratio of the hazards: 
 

 
We refer to the continuous time model as Conditional 
Hazard Estimating Neural Network (CHENN), whereas the 
discrete time model is called a Partial Logistic Artificial 
Neural Network (PLANN) [8]. In this paper, we use the 
Bayesian version of the PLANN model, called PLANN-
ARD (PLANN with Automatic Relevance Determination) 
[6]. Previous attempts at modelling the continuous time 
survival function used an MLP with constraints on the 
weight space, so that the output of the network could be 
interpreted as a survival function [5]; the constraints on 
weight space however made the problem computationally 
difficult. 

A. Bayesian learning 

The Bayesian learning framework has several advantages 
over maximum likelihood methods [9], [10], since model 
overfitting is unlikely; the model is automatically 
regularized; and error bars can be obtained (at least in 
theory) to estimate the uncertainty in the predictions. 
In the conventional maximum-likelihood approach to 
training, a single weight vector is found, which minimizes an 
error function; in contrast, the Bayesian scheme considers a 
probability distribution over weights w. This is described by 
a prior distribution p(w) which is modified when we observe 
the data D={(x,t)}. This process can be expressed by Bayes’  
theorem: 
 

( | ) ( )
( | )

( )

p D w p w
p w D

p D
= . (6)  

 
To evaluate the posterior distribution, we need 

expressions for the prior p(w) (which is itself parameterized 
by hyperparameters) and for the likelihood p(D|w).  

The posterior distribution is usually very complex and 
multimodal, and the determination of the normalization 
factor (also called the evidence) is very difficult. 
Furthermore, the hyperparameters must be integrated out, 
since they are only used to determine the form of the 
distributions. 

A solution is to integrate out the parameters separately 
from the hyperparameters, by making a Gaussian 
approximation; then, searching for the mode with respect to 
the hyperparameters. It turns out, as noted in [9], [10], that 
this procedure gives a good estimation of the probability 
mass attached to the posterior, in particular for distributions 
over high-dimensional spaces. 

The full Bayesian treatment of inference implies that we 
do not simply get a pointwise prediction for functions 
f(x,t;w) of a  model output, but a full distribution. Such 
predictive distributions have the form: 
 

.)|()|,())|,(( ∫= dwDwpwtxfDtxfp  (7) 

 
The above integral is in general not analytically tractable, 

0

log ( , ) ( , )d ,
it

r i r i i r i
i

L d h t x h u x u= −∑ ∫

( , )
( , ; ) log

1 ( , )
p

p

h t x
a t x w

h t x−

( , ; ) log ( , )ra t x w h t x

0 0( , ; ) ( )T
k k k

k

a t x w b v g u x u t b= + + +∑

5421



 
 

 

even when the posterior distribution over the parameters is 
Gaussian. However, it is usually enough to find the moments 
of the predictive distribution, in particular its mean and 
variance, which can usually be obtained by approximation 
[9], [10]. We emphasize that it is important to evaluate first 
and second order information to understand the overall 
quality and reliability of a model’s predictions. Error bars 
also provide hints on the distribution of the input patterns 
[11] and can therefore be useful to understand whether a 
model is extrapolating its predictions. 

In our case, error bars on the hazard and survival functions 
can only be obtained for the CHENN model. For the 
PLANN-ARD model, current approximations only allow 
error bars on the log-odds ratio, which is formally equivalent 
to a regression network; for a complete description, see [6], 
[9], [10]. 

IV.  AN APPLICATION: INTRAOCULAR MELANOMA 

PROGNOSIS 

A. The Problem 

Intraocular melanoma occurs in a pigmented tissue called 
the uvea, with more than 90% of tumours involving the 
choroid, beneath the retina. About 50% of patients die of 
metastatic disease, which usually involves the liver. In this 
application the event of interest is all-cause mortality. 
The data used to test the model were selected from the 
database of the Liverpool Ocular Oncology Centre [12]. The 
dataset was split into two parts: 1823 patterns for training, 
781 patterns for test. Nine prognostic factors were used. For 
the PLANN-ARD model, the time to event was discretised in 
1-year blocks as required by the model definition. 

B. Survival Predictions 

Both neural network models were trained and tested on the 
same data. The PLANN-ARD model has 10 hidden units, 
whereas the CHENN model has 4 hidden units; these 
numbers were chosen to allow moderate flexibility in the 
models, on the ground that the functions modeled do not 
typically exhibit high frequency behaviour. 
In Fig. 1 we show the estimated population survival curves 
of the test data, for both neural networks; for comparison, we 
also show the Cox and KM estimates. As can be seen, the 
agreement with the KM estimate is quite good up to about 7 
years for both models, whereas the Cox estimate seems to 
show an optimistic bias. In practice the main interest is in 
relatively short time predictions, from 1 to 7 years, so these 
performances can be deemed acceptable from an application 
point of view. 

C. Discrimination and Calibration 

The performance of survival analysis models can be 
assessed according to their discrimination and calibration 
capabilities. Discrimination is the ability of the model to 
correctly separate the subjects into different prognostic 
groups. Calibration is the degree of correspondence between 

the estimated probability produced by the model and the 
actual observed probability [13].  

One of the most used methods for assessing discrimination 
in survival analysis is Harrell’s C index [13], [14], which is 
an extension to survival analysis of the Area Under the 
Receiver Operator Characteristic. Calibration is usually 
assessed by  goodness-of-fit testing procedures based on a 
chi-square statistic. This method however does not take into 
account censoring; therefore, we applied the less known  

Kolmogorov-Smirnov (KS) test with corrections for 
censoring [15]. 

The C index was evaluated over the set of years {1,3,5,7}. 
The values are reported in Table I. As can be seen, there is 
no statistically significant difference between the CHENN 
and PLANN-ARD discrimination performance. 

The KS test with corrections for censoring was applied for 
the same set of years, and up to the maximum uncensored 
time (16.8 years); the confidence level was set as usual at 

0.05. For both the PLANN-ARD and CHENN models the 
null hypothesis that the modelled distributions follow the 
empirical estimate cannot be rejected for years 1 to 7, 
whereas it is rejected if we compare the distributions up to 
16.8 years; the null hypothesis is always rejected for the Cox 
model. 

V. CONCLUSION 

In this paper a new neural network model for survival 

TABLE I 
C-INDEX (WITH STANDARD ERROR) 

Year CHENN PLANN-ARD 

1 0.80 (0.093) 0.81 (0.07) 
3 0.80 (0.043) 0.79 (0.04) 

5 0.77 (0.036) 0.77 (0.036) 
7 0.75 (0.034) 0.75 (0.033) 

For each year the discrimination capability of the two models have 
been assessed. There does not seem to be a statistically significant 
difference between the models. 

Fig. 1.  Population survival probability estimates for different 
methods. For the CHENN and PLANN-ARD models these were 
evaluated as the average of the survival predictions for each pattern in 
the test set. 
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analysis in a continuous time setting has been proposed, 
which approximates the logarithm of the hazard rate 
function. The model formulation allows computation of error 
bars on both hazard rate and survival predictions. This model 
is compared with a neural network, which models the log-
odds ratio of the hazard probability in a discrete setting; the 
latter model however does not allow evaluation of error bars 
on survival predictions, but only on the log-odds ratios. Both 
models are trained in the Bayesian framework to reduce the 
risk of overfitting. The models have been tested on real data, 
to predict survival from intraocular melanoma; by using 
formal discrimination and calibration tests we have shown 
that both models have good performance within a time 
horizon of 7 years, which is found useful for the application 
at hand; whereas Cox’s model exhibits an optimistic bias 
which might be dangerous in applications. 
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