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Abstract 

Prognostic models are developed to assist clinicians in 
making decisions regarding treatment and follow-up 
management. The accuracy of these models is often assessed 
either in terms of their discrimination performance or 
calibration but rarely both. In this paper, we describe a 
method for assessing both these aspects using the Harrell C 
index of discrimination and a Hosmer-Lemeshow type 
analysis for calibration. We show some illustrative examples 
to demonstrate the importance of assessing both 
discrimination and calibration. A tool is available to assess 
models online on the following URL:  
www.clineng-liverpool-nhs.com/AADP/Welcome.htm 

1 Introduction 

Numerous models have been developed to provide prognostic 
information in survival analysis. Such information is valuable 
both to clinicians and patients. It allows clinicians to choose 
appropriate treatment and plan follow-up as appropriate. 
Patients at high risk could be followed up more frequently 
than those at lower risk in order to channel valuable resources 
to those who need it most. For patients, obtaining information 
about their prognosis, although can be morbid, it is also 
extremely valuable in terms of planning their lives and 
providing care for their dependents.  
 
There is a large number of methods described in the literature 
for developing prognostic models. Some of these models are 
based on linear statistical methods such as the Cox model and 
others are based on non-linear machine learning methods such 
as artificial neural networks. A number of studies have been 
carried out to compare these methods [B8], [B6], [B5]. The 
advantages and disadvantages of these types of analyses are 
also well understood and documented [B9], [B10].  
 
Whatever model is used for studying survival, it is important 
to assess the performance of the model in two ways; its 
discrimination and calibration aspects. Discrimination is the 
ability of the model to correctly separate the subjects into 
different groups. Calibration is the degree of correspondence 
between the estimated probability produced by the model and 
the actual observed probability [B3]. It can be argued that 
discrimination performance is more important than calibration 
since calibration can be adjusted whereas a model that cannot 

discriminate between the different groups can not be put into 
practice. On the other hand, poor calibration can occur in 
highly discriminating models when the output is transformed 
monotonically [B2]. In a previous study, we performed 
double-blind comparison of five prognostic models in a multi-
centre trial using a benchmark data set [B11]. In this paper, 
we describe the implementation of the assessment procedure 
using a web-based tool. We show two examples using this 
tool to illustrate the need to study both discrimination and 
calibration concurrently.    

2 Background 

2.1 Survival Analysis 

Survival analysis is the study of time elapsed from some 
particular starting point to the occurrence of an event. The 
starting point of observation is usually a medical intervention 
such as first diagnosis of a given disease, a surgical 
intervention or the beginning of a treatment in a clinical 
study. The survival time is actually the time up to a certain 
event. Such event may be death, a relapse, or the development 
of a given disease.  

 
Let T be the random variable denoting the survival time. The 
survival function S (t), is defined as the probability that an 
individual survives longer than t: 
 

S(t) = P(T>t)     (1) 
 
S(t) is a nonincreasing function of time t with the following 
properties: 
 
S(t) = 1 for t = 0 
 0 for t = ∝   (2) 
 
meaning that the probability of surviving at least at time zero 
is 1 and that the probability of surviving at an infinite time is 
zero.  
 
The function S (t) is also known as the cumulative survival 
rate. The graphic representation of S (t) is called the survival 
curve. The basic problem in survival analysis is to estimate 
from the sampled data one or more of these three functions, 
and to draw inferences about the survival pattern in the 
population.  
 



In any observational study of survival, T is not known for all 
subjects entered in the study. Subjects ‘drop out’ from the 
study either because they are lost to follow-up (e.g. changing 
their address, dying of other causes, etc.) or because the event 
has not happened by the time the study has started. To deal 
with this problem, each subject in the study is only included 
up to the time they have been observed. If we assume that no 
subjects are lost to follow-up, the follow-up time (Tf) is the 
time from when the diagnosis was made up to either when the 
event has happened for deceased subjects or when the study 
has started for subjects who are still alive. The Event Status 
Indicator (D) is a binary variable representing the presence 
(=1) or absence of an event (=0). For example, if subject i 
died 4.5 years after he/she was diagnosed of the disease, then 
Tfi = 4.5 and Di = 1. If another subject j was diagnosed 7.5 
years before the study started and was still alive when the 
study has started, then Tfj = 7.5 and Dj = 0.    
 

2.2 Discrimination 

Ideally, if a large dataset exists, testing the model is carried 
out on an unseen set of data that has not been used for 
training and validation. As mentioned earlier, for prognostic 
models, it is desirable to assess the model in terms of its 
discrimination and calibration aspects. The most appropriate 
method for assessing discrimination in survival analysis is 
Harrell’s C index [B4] [B1]. The C index is an extension of 
the Area Under the Receiver Operator Curve (AUROC) but it 
is more suited to survival analysis since it is threshold 
independent. It is calculated by looking at all pairs of samples 
which are comparable and calculating the probability of these 
pairs being concordant. To calculate first the probability of 
any given pair being comparable, at least one of the samples 
in the pair must have developed the event (e.g. death) and that 
the follow-up time period for this sample is less than that of 
the other sample. For example, let us assume the same 
subjects i and j above. The subjects are defined comparable 
by the event {Tfi < Tfj  | Di = 1}. A binary variable πcomp(i,j) can 
be defined as an indicator of the event. The (unnormalised) 
probability of comparison for the dataset can therefore be 
calculated as: 
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Next, we need to calculate the probability of concordance. In 
the above example, the elements of the pair {i, j} are said to 
be concordant if the probability of survival for subject i as 
predicted by the model under test (Si) is greater at time t than 
that for subject j (Sj). A second binary variable πconc(i,j) can be 
defined which is set to 1 if: 

a) the pair is comparable, and 
b) the above condition is true 

In other words, πconc(i,j)  is an indicator for the event {Sti  > Stj  | 
πcomp(i,j) = 1  &  t < Tfi}. The (unnormalised) probability of 
concordance can then be calculated as:   
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Finally, the C index is calculated as: 
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2.3 Calibration 

Next, we shall look at the assessment of the calibration 
performance of the model. For this, the Hosmer-Lemeshow 
statistics is an appropriate test [B7]. In this approach, the St 
values are first rank ordered and divided into N groups. The 
upper group contains subjects who are least likely to develop 
the event whereas the lowest contains those who are most 
likely to develop the event. Now if ol denotes the observed 
survival in group l calculated by: 

l
lol  groupin  samples ofNumber 
 groupin  events ofNumber 1−=  (6) 

 
and el denotes the average estimated S value for group l, a 
goodness-of-fit measure can be obtained by comparing ol and 
el graphically for l = 1,….,N. To quantify this analysis, a chi-
square statistic can be derived by: 
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with N-(p+1) degrees of freedom. 
 

3. Method 

3.1 Simulation data 

In order to demonstrate the process, a set of artificial data was 
created based on real clinical data. First, a random variable X 
simulating a covariate was sampled 2000 times from a log 
normal probability distribution function X~LOGN(2.5,0.09). 
Next, a second variable depicting noise was created having a 
normal probability distribution function such that 
Noise~N(1,16). A prognostic index P was calculated as 
follows:  

P=10*e(-0.05*X)    (8) 
 
The actual survival time T was sampled from a gamma 
probability distribution function T~GAMMA(P,4).  
 
A censoring variable C was created also using a gamma 
distribution function C~GAMMA(CT,1) where CT is a 
control variable which can be used to control the proportion 
of events in the dataset. The follow-up time Tf was calculated: 
 

Tf  =  Min(C,T)    (9) 
 
The Event Status Indicator (D) was then calculated: 
 
 
 



D = 0 if C < T   (10) 
 
 1 if C > T 
 
 
The Cox model was used to predict survival using (X+Noise) 
as a covariate. Discrimination and calibration assessment was 
carried out at different event ratios.  

3.2 Algorithm implementation 

The above algorithm was implemented in MATLAB® (The 
MathWorks). The program examines the data in pairs and for 
each pair (i,j) it carries out a test of comparability and a test of 
concordance as described above. The program calculates the 
total number of comparable pairs r, the number of comparable 
and concordant pairs w and the number of comparable and 
disconcordant pairs v. Under the assumption that the above 
algorithm provides a Gaussian estimator for the C index, the 
chi-square standard error of the mean can be calculated as 
follows: 
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3.3 Analysis web tool: 

We have developed a  simple-to-use and robust method to 
employ a MATLAB function to carry out these analysis 
across the Internet. The tool is accessed from a Client/User 
web-page using the generic Simple Object Access Protocol 
(SOAP) interface to multiple concurrent MATLAB 
Automation Services on a single host (single processor) 
machine. MATLAB Automation Services offers remote 
access to an instance of MATLAB, with commands being  
submitted from local programs such as MS Visual Basic or 
MS Excel effectively as command line entries. This method 
lends itself to the rapid deployment of teaching materials, 
research works and turn-key applications which are feature of 
modern signal and image processing in medicine. It is not 
necessary for the Developer, Host Administrator or the 
Client/User to have any specialised knowledge relating to 
web-interfacing or server management: the MatSOAP method 
is constructed as a ready-to-go software tool. The interface 
layer, inherent between the MATLAB command line and the 
User/Client, complies entirely with the legal restrictions on 
the MATLAB licences.  
 
The MatSOAP arrangement can be summarised as a Client 
Web-Page which submits, over a TCPIP network, 2 pieces of 
information, i.e. the MATLAB function name and input 
variables as a single CSV string, to the MatSOAP Web-Page. 
MATLAB executes the function and returns output as a single 
string to the Client web-page. 
 

In this application, the user first uploads the datafile onto the 
server (Filename). They then specify the time point at which 
the analysis is to be carried out (τ) and the number of groups 
for the goodness-of-fit test (NumGrps). The input string to the 
MatSOAP tool therefore has the following format: 
 
Input String = (<Filename>,<τ>,<NumGrps>) 
 
The MATLAB function decodes the input, carries out the 
analysis and passes the output in a single CSV string which is 
processed at the client’s machine using JavaScript. The output 
string contains information about the value of the C index (C) 
with the confidence intervals (CH, CL), the χ2 statistic for the 
goodness-of-fit test with the p value and the name of the 
JPEG calibration image on the server (CalImg). The output 
string therefore has the following format: 
 
Output String = (<C>,< CH, CL >,< χ2>,<Pval>,<CalImg>) 
 

4. Results 

Two values for mean parameter for CT were chosen. These 
were 6 and 9 corresponding roughly to 10% and 20% event 
proportions (R) respectively at 10 years. The Cox model 
provided a good estimate of survival in each case as can be 
seen in figure 1. The model was also evaluated with no 
censorship which resulted in R = 40% for a 10-year follow-
up. Figure 2 shows that  variable (X+Noise) was a good 
discriminator in the model.  

 
(a) 

 

 



(b) 

 
(c) 

Figure 1  Survival function in the dataset showing good 
agreement between the Cox model and the Kaplan-Meier 

estimate for events proportions of (a) 0.1, (b) 0.2 and (c) 0.4 
 

 
Figure 2  Survival curves showing worsening survival with 

increased value of the covariate   
 
The C index with the 95% confidence intervals was 
calculated for different values of R at time points τ = 3, 5 and 
10 years. The results are shown in table 1.  
 
The χ2 statistics and the corresponding p values are shown in 
table 2 for the same time intervals and the same proportion of 
events values. Calibration curves are shown in figures 3-6. 
 

R τ C index 95% CI 
0.1 3 0.7454 (0.6164 – 0.8744) 

 5 0.7074 (0.6142 – 0.8006) 
 10 0.7012 (0.6174 – 0.7854) 

0.2 3 0.7656 (0.6456 – 0.8856) 
 5 0.7172 (0.6406 – 0.7938) 
 10 0.6809 (0.6189 – 0.7429) 

0.4 3 0.7535 (0.6391 – 0.8679) 
 5 0.6975 (0.6293 – 0.7657) 
 10 0.6118 (0.5752 – 0.6484) 

Table 1:  The C index and 95% confidence intervals at 
different time points (τ ) for different proportions of events 
(R) 
 

R τ χ2 P 
0.1 3 0.0622 1 

 5 2.5144 0.9805 
 10 244.2917 0 

0.2 3 0.1742 1 
 5 1.0490 0.9993 
 10 285.6117 0 

0.4 3 0.3956 1 
 5 3.9817 0.9126 
 10 4.2722 0.8926 

Table 1:  The x2 statistics for the goodness-of-fit at different 
time points (τ ) for different proportions of events (R) 
 

 

 



Figure 3  Calibration curves at τ = 3 (top), 5 (middle) and 10 
(bottom) for events proportion of 0.1. The dotted line 

represents the line of equality 

 

 
Figure 4  Calibration curves at τ = 5 (top), 5 (middle) and 10 

(bottom) for events proportion of 0.2. The dotted line 
represents the line of equality 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
Figure 5  Calibration curves at τ = 10 (top), 5 (middle) and 

10 (bottom) for events proportion of 0.4. The dotted line 
represents the line of equality 

 
 
 
 



5. Discussion 

The results showed that the C index decreased with increasing 
time. We have also calculated the area under the ROC curve 
figures for these results as an alternative measure of 
discrimination and found similar results. Calibration results 
also showed that the results were better numerically at τ = 3 
and 5 than those at τ = 10. The visual plot provides a good 
clue in determining the reason for the degradation of the 
performance at longer time points. Although the trends of the 
calibration points are plausible, it is shifted from the line of 
equality probably due to censoring. For example, the markers 
in figure 4 corresponding to τ = 10 are closer to the line of 
equality than those shown in figure 3 for the same time 
period. The corresponding graph in figure 5 where there was 
no left censoring shows that the points lie on either side of the 
line of equality. It is very important when assessing the 
performance of any prognostic model to determine the 
median follow-up time to give an indication about the amount 
of censorship in the data. In the datasets used in this study, 
these figures were 5.2, 7.4 and 10.1 for R = 0.1, 0.2 and 0.4 
respectively. These figures show that the performance of the 
model is determined by the data itself and the cause of the 
degradation in the discrimination performance is probably 
due to the data rather than the model.  
 

6. Conclusion 

In this paper we have shown that a true assessment of any 
prognostic model should be made in terms of both 
discrimination and calibration. A large number of studies 
have assessed the performance of the models they use in 
terms of accuracy or the C index of discrimination only. 
However, neither of these measures are sufficient indicators 
of the performance by themselves. Both measures have been 
shown to be dependent on the sample size and the proportion 
of events, which can lead to misleading results.  
 
The illustrative examples given in this paper also showed that 
graphical representation of the performance is very important 
in the assessment and can compliment numerical analysis. On 
the other hand, if one looks at the graphical assessment alone, 
it will be difficult to decide at which point the evidence in 
front of them is strong enough. We therefore conclude that 
survival models should be assessed in terms of discrimination 
and calibration both graphically and numerically.  
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