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e Scalar
— Age, weight, height, BP

e Ordinal
— BIS index, GCS, TNM stage

e Categorical
— Sex, ethnic group, marital status
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Blood pressure measurement can be reasonably approximated by
a normal distribution with a mean of 85 mmHg and a standard
deviation of 20 mmHg
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e Mean: The arithmetic average of the data values

* Median: the middle value of the data when
sorted in ascending (or descending) order. If the
number of samples is even then the median is
halfway between the middle two values

* Mode: The most occurring value



I

Evammnl
CXdmpie

e Consider the following dataset:
— {3/ 4/ 9/ 1/ 5; 3; 2; 31 21 4}
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e Consider the following dataset:
— {3/ 4/ 9/ 1/ 5; 3; 2; 31 21 4}

e Mean = (3+4+9+1+5+3+2+3+2+4)/10=3.6
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Consider the following dataset:
— {3/ 4/ 9/ 1/ 5; 3; 2; 31 21 4}

Mean = (3+4+9+1+5+3+2+3+2+4)/10 = 3.6

Median = 3+3/2 =3
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Consider the following dataset:
— {3/ 4/ 9/ 1/ 5; 3; 2; 3/ 2/ 4}

Mean = (3+4+9+1+5+3+2+3+2+4)/10 = 3.6

Median = 3+3/2 =3

{1I 2) 2/ 3) 3) 3) 4) 4) 5) 9}

Mode =3
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(b} Normal (no skew)
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{c) Positively skewed

Maode

Megative diraction

The normal curve

represents a perfectly
symmetrical distribution

Positive direction
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Histogram
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Box Plots — Ordinal Data

potential potential
outlier outliers
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 The adjacent values are the furthest away
from the median but still within 1.5 times the
interquartile range
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The standard deviation is the measure of
dispersion, or scatter, in the data.

Take the following 2 sets of measurements:
~5,.:{6,7,8,7,7,9,8,9,8, 7}

—s,:{2,18,10,7,5, 10, 12, 1, 3, 8}

Both sets have a mean of 7.6. The second set
however is much more disperse than the first.

sd = V((y; = y)*/N)
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m-1.96%*sd m m+1.96*sd

Approximately, 95% of the data lie within 1.96 of
the standard deviation
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e Student’s t-test can be used to compare
means of 2 independent samples that can be
reasonably modelled by a normal distribution.
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 For example, we want to compare birth weight of 2
groups of infants diagnosed with SIRDS, Group 1 died
and Group 2 survived

—_—
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e Often, we want to show differences in means
between 2 groups. In statistics, we
hypothesize that the difference is zero (the
null hypothesis) and see if we can find
evidence against this hypothesis.
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* If the null hypothesis H, is true then, in
repeated experiments, H, will be rejected in
some of the experiments, even though it is
true. The significance level gives the
proportion of the repeated experiments in
which H, will be rejected falsely.

 Note that this statement refers to repeated
experiments in which the null hypothesis is
true
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 Type | error: rejecting the null hypothesis
when it is true. This is often referred to as o

and is usually set to 0.05.

* Type ll error: not rejecting the null hypothesis
when it is false. Probability of avoiding it is the
power of the test. This is often referred to as y
and is usually set to 0.8.

— Note: a and y are related. Setting 1-a too high
might result in low y and vice versa.
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* In the SIRDS example: —I
|
|

Student’s t-test: T

|

|
t=2.25 d
p=0.014 | |

| |

|
0 1

Given a standard deviation s in the data, if the two groups
were similar, there is a 1.4% probability of observing a
difference of magnitude d or higher.



The P Value
Definition

The probability of having observed our data (or
more extreme) given the null hypothesis is true
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The probability of obtaining the data given the null hypothesis is
true

p>0.1 little evidence against H,
0.1>p>0.05 weak evidence against H,
0.05>p>0.01 moderate evidence against H,

p <0.01 strong evidence against H,
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 Misinterpretation: The P value is sometimes
misinterpreted as the probability of the null
hypothesis being correct or the probability

that the observed effect is not real

e Publication Bias: Research findings with p >
0.05 sometimes do not get published

 Over-Reliance: Researchers sometimes
change their conclusion radically depending
on which side of 0.05 the P value is
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e |If you have more than 2 groups and you wish
to compare their means, you use a test called
1-way ANOVA (Analysis of Variance)
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For example, we wish to compare CO, measurements in 3
groups of children: Group 1 — Normals, Groups 2 — Hypoxia,
Group 3 — Down Syndrome
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Group 1 Group 2 Group 3



Calculating Sample Size
(Power Calculations)

e |f you are collecting continuous scalar data (e.g.
blood pressure, weight, height, etc.) and you wish
to compare the difference in means, you need
the following:

— Underlying variation (standard deviation): from
literature, pilot studies, models

— Difference considered to be significant: from clinical
experience

— Power of the study: usually 0.8 or 0.9
— Level of significance: usually 0.05 or 0.01



Calculating Sample Size
(Power Calculations)

e |f data represent proportions (e.g. proportion of
males affected, proportion of patients developing
metastases, etc.) and you wish to compare the
difference in proportions, you need the following:

— Proportion in the control group: from literature, pilot
studies, models

— Change in proportion that is considered to be
significant: from clinical experience

— Power of the study: usually 0.8 or 0.9
— Level of significance: usually 0.05 or 0.01
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e |f normal distribution cannot be assumed for
the data, we use a family of tests called non-
parametric tests to compare medians rather

than means.
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 For example, we would like to compare level of arousal score
using auditory-evoked response in two groups: Group 1 —
awake subjects and Group 2 — anaesthetised subjects
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Group 1 Group 2
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Group 1

e Mann-Whitney Test
2=4.578
p <0.001

Group 2
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For categorical variables, data is presented in cross tabulation
format. For example, for a study looking at association
between smoking and lung cancer, we might have the

following data:

M

Smoking
Non-smoking 8 62 70

RR — 31/66
8/70
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Chi-squared analysis are used to test for association between
exposure to risk and outcome:

For the smoking data:

2 =20.98
p <0.01

Therefore strong evidence against the null hypothesis for no
association
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 Two variables are said to be correlated if
knowing the value of one of the variables tells
you something about the value of the other.

 Regression is the process of modelling how a
certain random variable (response) is
correlated to an associated variable
(explanatory).
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Smoking and Lung Cancer in Europe
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* Figures taken from Cancer Research and International Agency for
Research in Cancer (IARC) websites
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y=15.26 + 1.28 *x
R?=0.368
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e Strength of the association

 Dose-response relationship

e Consistency of the association (with other studies)
 Temporality (exposure precede disease)

* Biological plausibility

e Lack of conflict

Hill, A. B. (1965) The environment and disease: Association or causation?
Proceedings of the Royal Society of Medicine, 58, 295-300
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For differences in means between two continuous variables,
use Student’s t-test if the data is normally distributed.
Otherwise use non-parametric tests such as the Mann-
Whitney

For more than 2 variables, use ANOVA for normally
distributed data. Otherwise, use a non-parametric version
such as Kruskall-Wallis

For looking at association between categorical variables, use
chi-squared analysis



