

Methods and Statistics

Professor Azzam Taktak
Consultant Clinical Scientist

Types of Data

- Scalar
 - Age, weight, height, BP
- Ordinal
 - BIS index, GCS, TNM stage

- Categorical
 - Sex, ethnic group, marital status

Histograms – Scalar Data

Blood pressure measurement can be reasonably approximated by a normal distribution with a mean of 85 mmHg and a standard deviation of 20 mmHg

Numerical Summaries

Mean: The arithmetic average of the data values

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Median: the middle value of the data when sorted in ascending (or descending) order. If the number of samples is even then the median is halfway between the middle two values
- Mode: The most occurring value

- Consider the following dataset:
 - {3, 4, 9, 1, 5, 3, 2, 3, 2, 4}

Consider the following dataset:

$$-$$
 {3, 4, 9, 1, 5, 3, 2, 3, 2, 4}

• Mean = (3+4+9+1+5+3+2+3+2+4)/10 = 3.6

Consider the following dataset:

$$-$$
 {3, 4, 9, 1, 5, 3, 2, 3, 2, 4}

• Mean = (3+4+9+1+5+3+2+3+2+4)/10 = 3.6

• {1, 2, 2, 3, <mark>3, 3</mark>, 4, 4, 5, 9}

Median =
$$3+3/2 = 3$$

Consider the following dataset:

$$-$$
 {3, 4, 9, 1, 5, 3, 2, 3, 2, 4}

• Mean = (3+4+9+1+5+3+2+3+2+4)/10 = 3.6

```
• {1, 2, 2, 3, 3, 3, 4, 4, 5, 9}

Median = 3+3/2 = 3
```

• {1, 2, 2, 3, 3, 3, 4, 4, 5, 9} Mode = 3

Skewness

Skewed Distribution Example

Assessing Normality

Histogram

Assessing Normality

Normal (Q-Q) Plot

Transforming Data

PSA concentration (ng/ml)

Scattergrams – Scalar Data

Scattergrams – Scalar Data

Box Plots – Ordinal Data

 The adjacent values are the furthest away from the median but still within 1.5 times the interquartile range

Standard Deviation

- The standard deviation is the measure of dispersion, or scatter, in the data.
- Take the following 2 sets of measurements:
 - s₁: {6, 7, 8, 7, 7, 9, 8, 9, 8, 7} - s₂: {2, 18, 10, 7, 5, 10, 12, 1, 3, 8}
- Both sets have a mean of 7.6. The second set however is much more disperse than the first.
- sd = $\sqrt{((y_i y)^2/N)}$

Normally Distributed Data

Approximately, 95% of the data lie within 1.96 of the standard deviation

Comparing Means

 Student's t-test can be used to compare means of 2 independent samples that can be reasonably modelled by a normal distribution.

Comparing Means

 For example, we want to compare birth weight of 2 groups of infants diagnosed with SIRDS, Group 1 died and Group 2 survived

Setting the hypothesis

 Often, we want to show differences in means between 2 groups. In statistics, we hypothesize that the difference is zero (the null hypothesis) and see if we can find evidence against this hypothesis.

Significance level

- If the null hypothesis H_0 is true then, in repeated experiments, H_0 will be rejected in some of the experiments, even though it is true. The significance level gives the proportion of the repeated experiments in which H_0 will be rejected falsely.
- Note that this statement refers to repeated experiments in which the null hypothesis is true

Type I and Type II errors

- Type I error: rejecting the null hypothesis when it is true. This is often referred to as α and is usually set to 0.05.
- **Type II error:** not rejecting the null hypothesis when it is false. Probability of avoiding it is the power of the test. This is often referred to as γ and is usually set to 0.8.
 - Note: α and γ are related. Setting 1- α too high might result in low γ and vice versa.

Comparing Means

• In the SIRDS example:

Student's t-test:

$$t = 2.25$$

 $p = 0.014$

Given a standard deviation *s* in the data, if the two groups were similar, there is a 1.4% probability of observing a difference of magnitude *d* or higher.

The P Value Definition

The probability of having observed our data (or more extreme) given the null hypothesis is true

Interpreting the P value

The probability of obtaining the data given the null hypothesis is true

P value	Rough interpretation	
p > 0.1	little evidence against H_0	
$0.1 \ge p > 0.05$	weak evidence against H_0	
$0.05 \ge p > 0.01$	moderate evidence against H_0	
p ≤ 0.01	strong evidence against H ₀	

Problems with P Values

- Misinterpretation: The P value is sometimes misinterpreted as the probability of the null hypothesis being correct or the probability that the observed effect is not real
- Publication Bias: Research findings with p >
 0.05 sometimes do not get published
- Over-Reliance: Researchers sometimes change their conclusion radically depending on which side of 0.05 the P value is

ANOVA

 If you have more than 2 groups and you wish to compare their means, you use a test called 1-way ANOVA (Analysis of Variance)

ANOVA

For example, we wish to compare CO₂ measurements in 3 groups of children: Group 1 – Normals, Groups 2 – Hypoxia, Group 3 – Down Syndrome

Calculating Sample Size (Power Calculations)

- If you are collecting continuous scalar data (e.g. blood pressure, weight, height, etc.) and you wish to compare the difference in means, you need the following:
 - Underlying variation (standard deviation): from literature, pilot studies, models
 - Difference considered to be significant: from clinical experience
 - Power of the study: usually 0.8 or 0.9
 - Level of significance: usually 0.05 or 0.01

Calculating Sample Size (Power Calculations)

- If data represent proportions (e.g. proportion of males affected, proportion of patients developing metastases, etc.) and you wish to compare the difference in proportions, you need the following:
 - Proportion in the control group: from literature, pilot studies, models
 - Change in proportion that is considered to be significant: from clinical experience
 - Power of the study: usually 0.8 or 0.9
 - Level of significance: usually 0.05 or 0.01

Comparing Medians

• If normal distribution cannot be assumed for the data, we use a family of tests called nonparametric tests to compare medians rather than means.

Comparing Medians

 For example, we would like to compare level of arousal score using auditory-evoked response in two groups: Group 1 – awake subjects and Group 2 – anaesthetised subjects

Comparing Medians

Mann-Whitney Test

$$z = 4.578$$

p < 0.001

Differences in Categories

 For categorical variables, data is presented in cross tabulation format. For example, for a study looking at association between smoking and lung cancer, we might have the following data:

Exposure	Cancer	No Cancer	Total
Smoking	31	35	66
Non-smoking	8	62	70

$$RR = \frac{31/66}{8/70} = 4.11$$

Differences in Categories

- Chi-squared analysis are used to test for association between exposure to risk and outcome:
- For the smoking data:
- $\chi^2 = 20.98$
- p < 0.01
- Therefore strong evidence against the null hypothesis for no association

Correlation and Regression

- Two variables are said to be correlated if knowing the value of one of the variables tells you something about the value of the other.
- Regression is the process of modelling how a certain random variable (response) is correlated to an associated variable (explanatory).

Example Smoking and Lung Cancer in Europe

^{*} Figures taken from Cancer Research and International Agency for Research in Cancer (IARC) websites

Regression

$$y = 15.26 + 1.28 *x$$

 $R^2 = 0.368$

From Correlation to Causation

- Strength of the association
- Dose-response relationship
- Consistency of the association (with other studies)
- Temporality (exposure precede disease)
- Biological plausibility
- Lack of conflict

Hill, A. B. (1965) The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine, **58**, 295-300

Summary

- For differences in means between two continuous variables, use Student's t-test if the data is normally distributed.
 Otherwise use non-parametric tests such as the Mann-Whitney
- For more than 2 variables, use ANOVA for normally distributed data. Otherwise, use a non-parametric version such as Kruskall-Wallis
- For looking at association between categorical variables, use chi-squared analysis