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Statistical paradoxes: when maths
and logic collide with one another

Azzam F. G. Taktak (Department of Medical Physics and Clinical Engineering,
Royal Liverpool University Hospital] has some examples of conditional probability

“ By
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of winning

he world of statistics is full of paradoxes
which have generated a lot of interest and
debate for many years.! One of the main
themes that these paradoxes take are
related to the topic of probability and, more
specifically, conditional probability. These
paradoxes demonstrate quirks which have significant
implications on data analysis in research. The literature is
full of examples were researchers fell foul of the pitfalls
that these paradoxes illustrate. Ben Goldacre’s Bad
Science book® is an excellent reference highlighting how
such pitfalls can lead to wrong, or simply dubious,
conclusions. I have picked out a few examples here
which make excellent party material for sad physicists
and engineers like myself (I am available for weddings,
christenings and other occasions). I have linked these
examples to some real-world medical applications.

THE TWO ENVELOPES PARADOX

| Thave two identical envelopes containing cash. The

amount of cash in one envelope is twice the amount in
the second. I pick one envelope and I have the chance to
open it or swap for the second. I reason that if the
amount in the envelope in my hand is X, the amount in
the other envelope is either 2X or X/2, each having a
probability of 1/2. The expected value of the amount in
the second envelope is therefore:
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which is higher than X. It is therefore in my advantage to
swap. But then I apply the same reasoning to the second
envelope and swap again, and go on swapping forever.

; Where did I go wrong? The problem is in my assumption
| that the amount in the envelope in my hand is X and
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making my calculations based on that assumption.
However, X is a random value so 1.25X is also a random
value.

Another way to look at it is that we were told that one
envelope contains twice the amount of the second. We
therefore defined the sample space at the start of the
problem as {X, 2X}. Once we made a prior assumption
about the first envelope (which we also called X just to
be confusing), we based our assumption for the second
envelope relative to the first and our sample space is now
{X/2, 2X]. This sample space violates the condition of the
original question as 2X is four times X /2 and not twice.
The correct way to look at it is that each envelope has
either X or X /2 with a probability of 1/2 so the expected
Va]ue Of Each envelope is:

xX+lx2X-§—xX
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This is certainly true. If, for example, one envelope
contains £10 and the other contains £20 (X = 10) and if |
do this experiment 1,000 times, then on average I will
gain £15 per experiment.

THE MONTY HALL PARADOX

This is an interesting paradox on conditional probability.
Supposing you were in a game show and the host shows
you three doors; 1, 2 and 3. Behind one of these doors is a
car. You pick a door at random, say 1. Before the host
opens door 1, he says ‘let me open another door and
show you that it does not contain the car’, just to add
suspense. He then opens door 3 and shows that it does
not contain the car. He then gives you the option to stay
with door 1 or swap to door 2. What should you do? The
most logical answer is that the probability of the car being
behind door 1 is equal to the probability of it being
behind door 2, which is 1/2. Wrong! By swapping to door
2, you actually double your chances of winning.

Here is why. Each door has a probability of 1/3 of
containing the car. Supposing that the car was indeed
behind door 1. The host can open either door 2 or door 3,
each with a probability of 1/2. The total probability of the
car being behind door 1 and the host opening door 2 or
door 3 is:

1/3x1/2+1/3x1/2=1/3

In this case, if you swap you will lose. Now, if the car
was behind door 2, the host can only open door 3 because
if he opens door 2 he will reveal the car. The total
probability of the car being behind door 2 and the host
opening door 3 is therefore 1 x 1/3. In this case, if you
swap you will win. The same argument holds if the car
was behind door 3. There is therefore a 2/3 chance that
you will win if you swap and a 1/3 chance that you will
lose.

To put it mathematically, if the probability of the car
being behind door 2 is P(C = 2), the probability of you
selecting door 1 is P(S = 1), the probability of the host
opening door 3 is P(H = 3), using Bayes theorem:*
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Here again, the original sample space is {1/3, 2/3}, the
probability of winning or losing. The host did not open a
door at random. He opened a door knowing that it is not
the one you picked and that it does not contain the prize,
so the original sample space remains unchanged. »
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> FIGURE 1.
Asimulation
program for the
boy or girl
paradox.

» FIGURE 2.
Calculating the
relative risk of
having a car
accident whilst
drunk using
hypothetical data
[http://clinengnh
s.livac.uk/MedSt
ats/MedStats_De
mos.htm].

P FIGURE 3.
Simpson's
paradox
illustration.
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Yo Boy or Girl Paradoy Simulation Program %

o Author: A. Taktak %
Date: 4 July 2000 (this is how | spend my weekends &) o,

%o Use: Atthe command line, type: Yo

* = prhoyorgirl guess) “a

Yo where guess is either 0 (for bovs)or | 1|.~r__|rI~: Yo

Urb ‘J"-\l“\lu o ’!Jblul JQ“ ,u i"uun"n“u"u"ujﬂuu"l “v“nou’ o U u VOD“D i"u'r;’u"u' o &

function output=boyorgirliguess)
correct=0;

forn = 1:1000
o Sample a random number from binomial distribution with a probability
%o of (L5 for cach child
ChildA=binornd(1,0.5,1,1);
ChildB=binornd(1,0.5,1,1);

“a Ensure that at least one of the children is a boy as the stated in the problem
while ((ChildA~=0)&&(ChildB~=0))

ChildA=binomd(1,0.5,1,1);

ChildB=binornd(1,0.5,1,1);

end

"-- I'he next condition is importamt since we don't know which of the two
%a children is a boy. Note that if the first condition is true for
“u Child A then we skip the condition for Child B so we are not cheating
“» by doubling the chances of a correct answer
i ChildA==0
if ChildB==guess
comect=correct+1;
end
else
if ChildB==guess
comect=comect+1;
end
end
end

"o express the output as a probabilin

' output=correct/1000;

Outcome
Exposure Ves No
- — | B
v | R
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 Relative Risk (RR) (95% Cl)= 2.02 (1.88 - 2.17)
 Odds Ratin (OR) (5% €)= 8.14 (594 - 11.16)

; - Chi-squared test for no association: 216.45 (p: 0.00)
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BOY OR GIRL PARADOX

This is another interesting one. Consider a family that has
two children. If one of the children is a boy, what is the
probability that the other one is also a boy? Here again the
most logical answer is 1/2. Wrong again! The correct
answer is 2/3.

The reason is that there are three possible combinations
for a family with two children. The sample space is: {BB,
GG, BGL.

We were told that one of the children is a boy so it
cannot be GG. The sample space therefore reduces to: {BB,
BGJ.

We were told that one of the children is a boy so we are
drawing one of the children in a pair at random; not the
pair. There are three boys in the above two combinations,
each having a probability of 1/3 of being picked at
random. For two of them, the probability of having a
brother is 1 and for one it is 0, hence the total probability:

1><1-1-lxl+0><—1--=-u3
3 3 3 3

Note that this is not the same as the problem where ‘if
a family has one child who is a boy, what is the
probability of the next child also being a boy?". In this
case, itis 1/2.

If you do not believe me, try the simulation program I
wrote in MATLAB shown in figure 1. Boys are
represented by 0 and girls as 1. If you enter your guess as
0, you will get an answer close to 0.67. If you enter 1, you
will get close to 0.33.

THE LOVER'S DILEMMA

A man who lives in Midville has two lovers, one in
Eastville and one in Westville (he is obviously not a
clinical scientist or he would be far too busy for that sort
of thing). There are an equal number of trains that go to
Eastville than there are to Westville. In order to decide
which lover he should visit, he arrives at the train station
at random times of the day and at random days of the
week and takes the next available train. He expects that
after a long period of time doing this, he would see his
two lovers an equal number of times (another reason to
suspect that he is not a clinical scientist). However, he
finds out that he is five times more likely to see the lover
in Eastville than the one in Westville. Why is that?

The reason is quite simple. Although he arrives at the
train station at random times, trains do not arrive at
random times. They have a timetable to follow. Suppose
that trains to Eastville arrive once an hour, on the hour.
The trains to Westville also run once an hour but arrive at
10 minutes past the hour. There is therefore a 50-minute
window every hour that the next train is the one heading
to Eastville but only a 10-minute window for the train to
Westville. The sample space is therefore {1/6, 5/6).

This is known in statistical terms as the class prior. It
has a huge implication on statistical modelling. Supposing
I have a dataset from a particular clinic, say a diabetes
clinic, and I am looking for a particular event, say heart
failure. I use a statistical model (like logistic regression) to
predict the probability of heart failure using a range of
risk factors like age, BMI, family history, smoking, etc. If
50 per cent of the patients from that clinic went on to
develop heart failure, i.e. a class prior of 0.5 because they
are at high risk, my model has a 50 per cent overall chance
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of predicting heart failure. It would be wrong of me then
to use the same model on a random person off the street
since the class prior for the general public (also known
as prevalence) is a lot less than 0.5.

A TOMMY COOPER JOKE
Last Christmas, [ got a Tommy Cooper joke book from
my wife which I thoroughly enjoyed. One joke of
particular relevance to the topic here is as follows. It is
said that three out of every ten car accidents are caused
by drunk drivers. That means that seven out of ten are
caused by sober drivers so if everyone gets drunk, there
would be fewer car accidents. At the risk of killing the
joke, I will try to show the flaw in this argument.

If we represent the event of being drunk as D, the
event of being sober as S and the event of having a car
accident as A, then:

P(DIA)=0.3
P(S1A)=0.7
ie. P(DIA) < P(S1A).

This is not the same as:
P(AID)<P(AIS)

which is what the joke implies. This is known as the
transposition of conditioning fallacy. The only way to
test the inequality is by doing a controlled trial where
we choose 100 drunk drivers and 100 sober drivers,
send them out on a long journey and see how many of
them make it home safely. Clearly not feasible. The other
option is to use observational data (more about this in
the next section). If we assume that the above statistics
came from a sample of 1,000 car accident records, we
send out anonymous questionnaires to 1,000 drivers at
random who have not been involved in car accidents
and ask them if they have ever been under the influence
of alcohol whilst on the wheel. Suppose that 95 per cent
of respondents said no (I think it is safe to assume that
at least 95 per cent of drivers on the road are sober).
That means the relative risk of having a car accident
whilst drunk is about 2 (figure 2). That is, there is 100
per cent more risk of being involved in a car accident
whilst drunk than if you were sober. Sorry Mr Cooper!

SIMPSON’S PARADOX
Simpson’s paradox is a phenomenon that occurs when
studying correlation between two variables from
observational data without taking the effect of
confounders into consideration. Edward H. Simpson
first described this phenomenon in a technical paper in
1951.* This effect can be best illustrated in figure 3.
Suppose variable Y has a positive linear relationship
with variable X. The slope of the best fit line is constant
but the intercept depends on the level of a binary
variable C so that when C = 0, the correlation is
described by the blue line and when it is 1, it is
described by the red line. Now if we did not take C into
account, we might do an experiment which results in
the dashed black line which has a negative slope so we
might wrongly conclude that X and Y have an inverse
relationship.

In observational (non-randomised) studies
comparing treatments, it is likely that the initial choice
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of treatment would have been influenced by patients’
characteristics such as age or severity of condition, so
any difference between treatments could be accounted
for by these original factors. To take a real-world
example, Charig et al. undertook a historical
comparison of success rates in removing kidney stones.?
He showed that open surgery had a success rate of 78
per cent (273/350) while keyhole surgery had a success
rate of 83 per cent (289/350). The study concluded that
keyhole surgery improves the chances of a successful
outcome. However, when stone diameter was taken
into account, this showed that, for stones <2 cm
diameter, 93 per cent (81/87) of cases with open surgery
were successful compared with just 87 per cent
(234/270) of cases with keyhole su rgery. One would
naturally assume that for larger stones, keyhole surgery
must perform much better than open surgery in order
to make up the difference. In fact it was observed that
for stones of > 2 em, success rates were 73 per cent
(192/263) for open surgery and 69 per cent (55/80) for
keyhole surgery. The main reason that the success rate
reversed is because the choice of surgery depends on
the diameter of the stones.

Although randomised-controlled trials are more
scientifically rigorous than observational studies, it is
not always feasible to do randomised trials for a variety
of reasons. The section on alcohol and car accidents
above is one example. Another ‘tongue-in-cheek’
example is the use of a parachute as an intervention to
prevent death or serious injury after jumping out of an
aeroplane.® The authors point out in a highly articulate
and extremely witty way that we must not always jump
(pun not intended) to conclusions when assessing
evidence of interventions resulting from observational
data. In the discussion, the authors make the following
point related to selection bias: ‘individuals jumping
from aircraft without the help of a parachute are likely
to have a high prevalence of pre-existing psychiatric
morbidity”. If you have not come across this article yet,
['strongly recommend that you get a copy.

I'hope you enjoyed reading this article and it served
to educate rather than to confuse. I would like to leave
you with this famous Aaron Levenstein quote:
‘Statistics are like bikinis. What they reveal is
suggestive, but what they conceal is vital’. B
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