

LMU, Geophysics • Robert Barsch

SeisHub: a web-based database

For storage, processing and simulation of multi-component data

What is SeisHub?

- Native, document-centric XML database
 - RESTful Web service (HTTP, HTTPS)
 - Standard relational database as back-end (PostgreSQL, SQLite)
 - both worlds: SQL for querying and manipulating data and any standard connected to XML, e.g. XSLT or XSD
 - Not restricted to seismology at all (collocated multi-disciplinary data)
- "Classical" seismic database
 - Index of local file-based MiniSEED waveform archive
 - Meta data about gaps, overlaps, quality and timing information
 - direct access via ObsPy to continuous seismic waveform data & meta data
 - remote waveform access via ArcLink

What is SeisHub?

- Python-based, standalone web service
- Platform independent, open source
- Implementation of various web protocols, like HTTP, SSH, SFTP
- Plug-in architecture: Dynamic discovering and loading of modules and support for Python .egg files
- Development remarks:
 - Test-driven development → proven software, so far ca. 250 test cases
 - Well-documented source code
 - Subversion
 - Trac: ticket system and project wiki

What is SeisHub?

- Data storage
 - Primary data → file based system
 - Waveform: local Mini-SEED archive
 - Other data via (GeoTIFF, GPS time series, etc.) file system
 - Meta Data → Web service on top of a XML/relational database hybrid
 - Data is packed into a XML document → Data structure is within the document, no need for a predefined database schema
 - XML resources are archived into a BLOB field
 - Only searchable values are indexed
 - Pointers to primary data

SeisHub

- Data access
 - HTTP/HTTPS: REST web service
 - XML documents have a fixed resource identifier (URL's)
 - Data transformation via XML Style Sheets on request (?output=...)
 - Data validation via Schema (XML Schema, RelaxNG, Schematron) on resource upload
 - Document properties like related meta data or indexes
 - SFTP: XML documents mapped into a virtual file system

SeisHub

- Indexing
 - Generated using a XPath expression, type and additional options
 - Simple creation + reindexing via web interface
 - Various build-in types (datetime, bool, numeric, double, float, etc..)
 - ProcessorIndex: custom processing
- Searching
 - XPath-like query on XML catalog object (restricted to indexes)
 - SQL on database object
- Mapper: predefined queries & output format bound to an fixed URL
- FileSystemResource: integrates a file system directory (read only)

Why using a web-based XML database?

Advantages:

- Data access via HTTP(S) protocol (no firewall problems)
- Most basic client to access the data is a browser
- Data provider:
 - May extend there XML based data at any time
 - Don't care about any SQL tables, because data structure is within the XML resource they provide
 - May add or delete indexes & reindex on the fly
 - Data validation on upload
 - Data transformation on request

Why using a web-based XML database?

Disadvantages:

- Slower than "common" solutions (direct access to a relational database)
 - XML parsing for validation and indexing
 - Data overhead (XML verbosity)
- Infrastructure
- Seismologist != IT nerds

www.seishub.org