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The Inverse Quadratic Eigenvalue Problem

Design a procedure to construct real symmetric quadratic matrix polyno-
mials (with some definiteness constraints on the coefficients, possibly) with
a prescribed set of spectral data: real and complex eigenvalues with their
partial multiplicities and sign characteristics for the real spectrum.

v

For L(A) = Lo\ + LiA + Lo, Ao € C is an eigenvalues of L(\) with
associated eigenvector xp if

L()\o)XO =0

See the book by Chu and Golub?*for motivation, applications and previous
results

2M. T. Chu, G. H. Golub: Inverse Eigenvalue Problems. Oxford University Press,
2005
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Another precedent

In a Technical Report 3 necessary and sufficient conditions were given for
the existence of a selfadjoint complex n x n matrix polynomials with
prescribed spectral data. The degree of such a matrix, however, was not
prescribed.

3]. Gohberg, P. Lancaster, L. Rodman: Spectral analysis of selfadjoint matrix
polynomials. Research paper 419 (1979) Dept. Mathematics and Statistics, University
of Calgary
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Standard triples
F=RorC

(X, T,Y) standard triple = (X, T, Y) irreducible control system: minimal
realization of the inverse of some matrix polynomial:

XM = T)7tY = L()\)~! for some matrix polynomial L()\)

(X, T, Y)= standard triple of L(\) = L,A\* + Lo N1 4+ -+ 4 L.
Equivalently (¢ =2 and det L, # 0 )

@ (X, T) right standard pair: rank [ X ] = 2n (Observable)

XT

@ (T,Y) left standrad pair: rank [Y TY] = 2n (Controllable)
@ XY =0 and XTY invertible (/ = L(A)X(A — T)7ty =
(LoX? 4 Lid 4 Lo)(XY AL+ XTYA 2 +...))

0 Iy 0
X=lln 0], Cr= [—MlK —MlD] V= [M1]
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Jordan triples
(X,J,Y) is a Jordan triple if it is a standard triple and J is a Jordan matrix.J
If LA)™2 = X(A — J)71Y then

e J: Jordan form (over R or C) of L(\)

e X: matrix of right Jordan chains of L(\)
@ Y: matrix of left Jordan chains of L(\)

(X,J,Y) completely determines L()\) J
X 0
© Ix) "= M—1]
U ~1
X X X X 0 /,
° 1x’ [XJ] =Cte [XJ] J=cC [XJ] == [—Ao —AJ

L(A\) = MA? + MALX + MAq
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Selfadjoint standard triples
LA) = L) = (X, T,Y)~ (YT, TT, XT) & (YT, TT, XT) =
(XP~1, PTP~1 PY), P invertible
Definition
A real standard triple (X, T, Y) is real selfadjoint if there is a real
nonsingular symmetric matrix H such that

YT =XH Y(or X" =HY)and TT = HTH™! (1)

Complex case: substitute
real selfadjoint —  selfadajoint
symmetric —  Hermitian

T N *

Remarks
o If T = J (real Jordan form): Real Selfadjoint Jordan Triple
o If (X, T,Y) real selfadjoint there is a unique H in (1)
Uf MA2+ DA+ K =M™ 2+ DT X+ KT
D M]

0 I, 0
X=1ln 0, Cr=|_p1g —M—lD]’ - [M—ll’H: [M 0
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A real Selfadjoint Jordan Triple

Any real symmetric matrix polynomial (of any degree) admits a selfadjoint
Jordan triple (X, J, PXT) with

) . U .
g |1 s | b B = wj £ iv;
/= DD : Y= | T
Jj=1 J=1 s ;- Vj Hj
i 1 Q| i /2 UJ_
ijéj 2mj;2mj
0 0 0 1]
. . 0 ... 1 0
P=@ ¢k, DD Fam; Fir = (k< k)
J=1 J=1 0 1 0
1 0 --- 0 0]
¢; = £1: sign characteristic
q
In the quadratic case: For odd ¢;, > ¢ =0 -

J=1

Spectral data

Spectral data of L(\): eigenvalues (¢, 5;) with partial multiplicities (¢,
m;) and sign characteristic:

(4, P)

Inverse Real Symmetric Quadratic Eigenvalue Problem

@ Characterize the spectral data (J, P) admissible for some n x n
L(\) = LoA? + L1\ + Lo real and symmetric.

@ Construct real symmetric n x n matrices L(\) = Lo)\? + L1\ + Lg
with prescribed admissible spectral data (J, P).
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Real symmetric matrix polynomials and selfadjoint triples

Theorem

(a) If L(\) is real and symmetric then all its real standard triples are
selfadjoint.

(b) If L(\) admits a real selfadjoint standard triple then L()\) is real and
symmetric.

Conclusions(quadratic case)
@ (J, P) admissible if and only if (X, J, PXT) selfadjoint Jordan triple
for some X € R™2":
@ rank X =n
@ XPXT =0
© XJPXT invertible
@ If (J, P) is admissible design a procedure to obtain matrices X such
that (X, J, PXT) selfadjoint Jordan triple. For each X there is a real
symmetric L(\)
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The semisimple case
EJ- = ]., mj =1
J =Diag(n,...,rnq, U,..., Us)
i eR, U= [MJ.' —Vj] » B = i £ 1y

Vi Hy

2q .

ei=+1, 1<,;<q
E e=0=¢ ’ ;
= {EJZ—L q+1<j<2q

1 0
X=[Xy X2 V2wu V2u - V2vs V2u]

P = Diag (lg; =lg, F1, .- Fs), Fix = [O 1]

Remark: UkTFkUk = [_01 (1)]
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A convenient selfadjoint Jordan triple

: M —N
J = Diag <R+,R_, [N M]) e R2mx2n

with
Ry = Diag(r,...,rq), R- =Diag(rg+1,...,nq)
M = Diag(u1, pt2, ..., ps), N = Diag(v1,v2,...,vs) >0
P = Diag (lg, —lq, —1s, Is) € R?"2"
X=[Xy X2 V U] eR™
Xy e R™49 X_ € R™4

V:\@[Vl e vs| €RTX U:\@[ul o ug] ER™S
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The orthogonality property of eigenvectors

XPXT=0 & [Xp X V U]

o b U] =pe Vi

s |[[Xo V]=[Xp U]e

© € R™" orthogonal and

rank X = n < det [X+ U] # 0, det [X_ V} #0
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Property det(XJPX ") # 0
X V=[x, U]©

XJPXT =
R, 1 T, 1 X7
R_ —1 X'
X, X VvV U] VN L Ul =
i N M| Is| [UT
R, 1 IxT
M -N| |UT
Xy U X_ V] e 7| =
N ~M]| VT
R, ’
M N | [, ] [XT
X, U [ e = e 7]
. —N —M | )
H(®)
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Consequences for the IRSQEP

Given the spectral data (J, P)

@ (J, P) is admissible if and only if det H(©) # 0 for some n x n
orthogonal ©.

@ If (J, P) is admissible then the following procedure yields real
symmetric quadratic matrix polynomial with spectral data (J, P):

@ Take any nonsingular X; € R™" and write X; = [XJr U]

@ Take any orthogonal © € R"*" such that det H(®) # 0

© Construct [X_ V] =X;®and X=[X; X_ V U]

0 (X,J,PX") is a selfadjoint Jordan triple. Construct a real symmetric
L(N)= LyX\? + Ly X+ Ly. In particular

.
Lyt =XJPXT = [Xy U] H(O) [)5#]

©@ L, >0ifand only if H(©) >0
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Remark

2
r—R+ ~
M —N In
H©) = [, ©] " [@T]
- _N _M_
1 l, ©
Q= NG [_@T /n] orthogonal
H(®) is a principal submatrix of 3QGQT:
Ai(G) = Ai(H(©)) = Aiga(G)
/\(G) = (I’l, ceey I’q, —I’q+1, ceey —I’2q, :E‘ﬁﬂ, ceey :E‘ﬁs‘)

J = Diag(3,2,1,~1,-2, —3), P = Diag(+1, -1, —1,+1, +1, 1),
ANG)=(3,-1,-2,—-2,-1,3). (J, P) may be admissible but
/HL()\) = L2)\2 + Ly A+ Lo with L, > 0.
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Admissible spectral data

4
(J, P) admissible = J= linearization of L(\) Theorem 1.7 4¢ p=largest

geometric multiplicity of eigenvalues of L(\) (dim Ker L(\g)) then p < n.
Sincen=qg+s
(J, P) admissible = s> p—gq

Theorem
(J, P) admissible spectral data if and only if s > p — g J

Two possible cases
@ g > p. L(X\) can be taken diagonal.
@ p > q. No diagonal L(\) with (J, P) as spectral data.

4. Gohberg, P. Lancaster, L. Rodman: Matrix Polynomials. SIAM, 2009
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Example |

—2

J = Diag <—2, ~1, [ ) -1

_2]> P = Diag(1,—-1,—1,1)

=M +2)(A+1) 0
LQ)‘[ 0 A2 44X +5
L, = Diag(—1,1) = L,* = Xy H(©)X{
R, _
M —N In
H©) = [In ©] = e
- _N _M_
[Ry O 0 01 [0 07 .7 R. 01 .7
|0 M]@[o N| |0 /\/]e @[ 0 I\/I_@
-2 0] J[oo0] [oolar o[-1 0147
|0 —2] @[01 |0 1}@ @[o —2_e
1 0
@:[(1) 01]7 =1 L 17 / 30
- V2
Example | (cont.)
With the same © and X1:[2 1]
0 2
>> Th=sym([1 0; 0 -1]1); Xi1=sym([2 1;0 2]);
>> G=sym([-2 0 0 0;0 -2 0 -1;0 0 1 0;0 -1 0 2]);
>> L2=inv(X1*[eye(2) Th]l*G*[eye(2) Th]’*X1’)
L2 =
[ -1/4, 1/8]
[ 1/8, 1/16]
>> J=sym(blkdiag(diag([-2 -11),[-2 -1;1 -2]));
>> X=X1*[eye(2) Thl; X=X(:,[1 3 4 2]);T=[X;X*J]; C=T*J*T"(-1)
C =
[ o, 0, 1, 0]
[ o, 0, O, 1]
[ -2, -3/2, -3, -1/2]
[ 0, -5, 0, -4]
>> L0=L2*C([3 4],[1 2]), L1=L2xC([3,4], [3,4])
LO = Li=
[ 1/2, -1/4] [ 3/4, -3/8]
[ -1/4, -1/2] [ -3/8, -5/16]
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Example Il

0 0 -1 0
: 00 0 -1 .
J =Diag | 0,0, 10 0 0 P = Diag(1,—-1,—-1,-1,1,1)
01 0 0]

s=2>p—q=1
No diagonalizable quadratic with this spectral data

ooo 0 000 000
H(©) = 0|-{010|06"-6|0 00|07
1 001 000
010
With@=|1 0 0
001
0 -1 0
He)=| -1 0 0
O 0 =2 19 / 30

Positive definite leading coefficient

The semisimple case

Theorem

Any semisimple real symmetric quadratic matrix polynomial with positive
definite leading coefficient is diagonalizable over R

Consequence: There is no real symmetric quadratic matrix polynomial
with positive definite leading coefficient and, for example, A, A, A2+ 1 and
A% + 1 as elementary divisors.

Advantage

@ Sign characteristic easy to compute from diagonal matrix polynomials
Drawback

@ Nonconstructive proof.
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Eigenfunctions®
det(jul, — L(A)) = 0

implicitly defines n real functions p1(A), ..., wa(A) which are analytic for
real \.

@ L(Ag) =0 if and only if pj(Ag) = 0 for some ;.
o dimKer L(Xo) = #{j : 1j(Xo) = 0}
Semisimple case: For each A\ € A(L) there is j such that

pi(A) = (A= X)y(A), v(Ae) # 0

sgn(vj(Ak)) = sign characteristic of L(\) at Ak
v(Ak) = 15 (Ak)

®|. Gohberg, P. Lancaster, L. Rodman: Spectral analysis of selfadjoint matrix
polynomials. Research paper 419 (1979) Dept. Mathematics and Statistics, University
of Calgary
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Example
L _p ~1/4 1/8 1, [ 3/4 -3/871, [ 12 -1/4
(A) = [ 1/8 1/16 ] T [ —3/8 —5/16 ] i [ —1/4 —-1/2 ]

has spectral data J = Diag (—2, —1, [

-2 -1
1 =2

det(ul — L(\)) =0

D P = Diag(1,—1,—1,1)

A(L2) = {-0.2938...,0.10634 ...} 22 /30




Example

0 -1 0 -1 0 0 0 0 O
LA=|-1 0 0 |[XM+| 0 1 0|X+|00 O

o 0 -1/2 0 00 0 0 1/2
Spectral data: A, A, A 4+1, \2+1. Sign characteristic: +1 and —1.

det(ul — L(N)) =0

ML) = {~1,-1/2,1}
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Asymptotic behaviour of the eigenfunctions

Lemma

Let L(N\) = LeAE + Lo N7Y + - + Ly be a selfadjoint matrix polynomial
with det Ly # 0. Let pui(A), ..., pwn(X) be the eigenfunctions of L(\) and
let (m,n — 7,0) the inertia of Ly. Let \max be the highest real eigenvalue
of L(\). Then there are w indices {i1,...,iz} C {1,...,n} such that for
A > Amax j(A) >0 ifj € {in,...,ix} and pj(A) <0 ifj & {i,...,ir}.
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Positive leading coefficient. Example

1 0 -1 3 0 -3 -2 0 2
LAD)=| 0 1 0 [X+| 0 1 0 |[AX+] 0O 0 O
-1 0 3 -3 0 3 2 0 -2

Spectral data: A—1, A—1, A—2, X and A2 4+ 1 and the following sign
characteristic: +1, —1, +1 and —1

-1 -0.5 0.5 1 1.5 2 2.3 3 3.8 4

A(L) ={1,0.2192...,2.2807 ...} 25 /30

The Sign Characteristic of MP with PD leading coeff.

Theorem

Let L(\) be a semisimple symmetric matrix polynomial with Ly, > 0 and a
maximal and minimal real eigenvalue Amax and Amin, respectively. For any
a < Amax, let p(«) denote the number of real eigenvalues (counting
multiplicities) of L(\) of positive type in (v, Amax] and n(«) the number of
real eigenvalues (counting multiplicites) of L(\) of negative type in

[, Amax]. Then

n(a) < p(a)

for all o € [>\min7 )\max]-
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The IRSQEP with positive definite leading coefficient

Theorem

There exists a semisimple real symmetric quadratic matrix polynomial L()\)
with positive leading coefficient and (J, P) as spectral data if and only if

n(a) < p(a)

prescribed real eigenvalues. Moreover, under this condition the matrix
polynomial can be constructed diagonal.

27 / 30
Example
Eigenvalues 2 1 1 0 i
Sign Characteristic | +1 +1 -1 -1
(A=2)(A—-1)
D()\) = (A —1)A
A4
2 0 0 000 000 1 00
HO)=|010|-©|{000|-|0O0O0|6"-©@|0 006
000 001 0 0 1 000
1 0 0 1 0 O
Taken©®= |0 1 0 |[andX;=|0 1 0 |, XiHO)X] =k
0 0 —1 0 0 1/V2

With this ©, choose any non-singular X; and use the tech-
nique of page 14 to produce many nondiagonal L(\) with the
prescribed spectral data.
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Changing the orthogonal matrix

@ Nonsingular leading coefficient: det H(©) # 0
S ={0 € O,|det H(©) # 0}

O, set of n x n orthogonal matrices. S # (0 if andonlyif s > p— g
and then its open and dense in O,,.

@ Positive definite leading coefficient: H(©) > 0
P ={0 € O,|H(O) is positive definite}

P is open in O,.
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Thank you very much
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